
Cyclic Shift on Multi-component
Grammars

Alexander Okhotin1(B) and Alexey Sorokin2,3

1 St. Petersburg State University, Saint Petersburg, Russia
alexander.okhotin@spbu.ru

2 Moscow State University, Moscow, Russia
alexey.sorokin@list.ru

3 Moscow Institute of Physics and Technology, Dolgoprudny, Russia

Abstract. Multi-component grammars, known in the literature as
“multiple context-free grammars” and “linear context-free rewriting sys-
tems”, describe the structure of a string by defining the properties of
k-tuples of its substrings, in the same way as ordinary formal grammars
(Chomsky’s “context-free”) define properties of substrings. It is shown
that, for every fixed k, the family of languages described by k-component
grammars is closed under the cyclic shift operation. On the other hand,
the subfamily defined by well-nested k-component grammars is not closed
under the cyclic shift, yet their cyclic shifts are always defined by well-
nested (k + 1)-component grammars.

1 Introduction

The cyclic shift operation on formal languages, defined as shift(L) = {vu |uv ∈
L} for a language L, is notable for several interesting properties. The closure of
the class of regular languages under this operation is likely folklore, and proving
it is a standard exercise in automata theory [2, Exercise 3.4(c)]. An interesting
detail is that the cyclic shift incurs a huge blow-up in the number of states in a
DFA, which is of the order 2n2+n log n−O(n). [3,9] An analogous (quite an unob-
vious one) result for context-free grammars was first discovered by Maslov [10]
and by Oshiba [12], and a direct construction of a grammar was later presented
in the textbook by Hopcroft and Ullman [2, Exercise 6.4(c)]. In their proof, a
grammar describing a language L is transformed to a grammar for the cyclic
shift of L, and the transformation turns the grammar inside out, so that each
parse tree in the new grammar simulates a parse tree in the original grammar,
while reversing the order of nodes on one of its paths.

In contrast to this remarkable closure result, all noteworthy subfamilies of
the ordinary grammars—that is, unambiguous, LR, LL, linear, input-driven,
etc.—are not closed under the cyclic shift. A non-closure result for the lin-
ear conjunctive languages [11] was established by Terrier [17]. For conjunctive
grammars [11], whether they are closed under the cyclic shift, remains an open

Research supported by Russian Science Foundation, project 18-11-00100.

c© Springer Nature Switzerland AG 2020
A. Leporati et al. (Eds.): LATA 2020, LNCS 12038, pp. 287–299, 2020.
https://doi.org/10.1007/978-3-030-40608-0_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-40608-0_20&domain=pdf
http://orcid.org/0000-0002-1615-2725
http://orcid.org/0000-0003-3877-4223
https://doi.org/10.1007/978-3-030-40608-0_20

288 A. Okhotin and A. Sorokin

problem. A summary of these results can be found in a fairly recent survey [11,
Sect. 8.2].

This paper investigates the cyclic shift operation on one of the most well-
known families of formal grammars, the multi-component grammars. These
grammars describe the syntax of a string by defining the properties of k-tuples of
its substrings, in the same way as ordinary formal grammars and their basic vari-
ants, such as conjunctive grammars, define properties of individual substrings. In
their modern form, multi-component grammars were independently introduced
by Seki, Matsumura, Fujii and Kasami [14] (as “multiple context-free gram-
mars”, MCFG), and by Vijay-Shankar, Weir and Joshi [18] (as “linear context-
free rewriting systems”, LCFRS). These grammars are subject to much ongoing
research [1,7,8,19]. Also much attention is given to their special case: the well-
nested multi-component grammars, in which all components of any intermediate
k-tuple are listed in the order, in which they occur in the final string, and the
grammar rules combine these k-tuples. This family is believed to correspond to
the natural language syntax better than other grammar formalisms.

The first result of this paper is the closure of the language family defined by
k-component grammars under the cyclic shift operation. The proof, presented in
Sect. 3, proceeds by transforming an arbitrary k-component grammar to another
k-component grammar describing the cyclic shift of the original language.

However, this construction does not preserve well-nestedness. A new con-
struction adapted for well-nested grammars is presented in Sect. 4, and it incurs
the increase of the number of components by one. In the final Sect. 5, it is shown
that, whereas the language {am

1 bn
1 cn

1dm
1 . . . am

k bn
kcn

kdm
k | m,n � 0} is defined by a

well-nested k-component grammar, its cyclic shift is defined by no grammar from
this class, and accordingly requires k + 1 components. This points out a pecu-
liar difference between the general and the well-nested cases of multi-component
grammars.

2 Multi-component Grammars

Definition 1. (Vijay-Shankar et al. [18]; Seki et al. [14]). A multi-
component grammar is a quintuple G = (Σ,N,dim, R, S), where

– Σ is the alphabet of the language being described;
– N is the set of syntactic categories defined in the grammar, usually called

“nonterminal symbols”;
– dim: N → N is a function that defines the number of components in each

nonterminal symbol, so that if dim A = k, then A describes k-tuples of sub-
strings;

– R is a set of grammar rules, each of the form

A(α1, . . . , αdimA) ← B1(x1,1, . . . , x1,dimB1), . . . , B�(x�,1, . . . , x�,dimB�
), (*)

where � � 0, the variables xi,j are pairwise distinct, α1, . . . , αdimA are strings
over symbols from Σ and variables xi,j, and each variable xi,j occurs in
α1 . . . αdimA exactly once;

Cyclic Shift on Multi-component Grammars 289

– a nonterminal symbol S ∈ N of dimension 1 is the “initial symbol”, that is,
the category of all well-formed sentences defined by the grammar.

A grammar is a logical system for proving elementary propositions of the form
A(w1, . . . , wk), with k = dimA and w1, . . . , wk ∈ Σ∗, meaning that the given
k-tuple of strings has the property A. A proof proceeds using the rules in R, with
each rule (*) treated as a schema for derivation rules, for any strings substituted
for all variables xi,j.

B1(x1,1, . . . , x1,dimB1), . . . , B�(x�,1, . . . , x�,dimB�
) � A(α1, . . . , αdimA)

The language generated by the grammar, denoted by L(G), is the set of all such
strings w that the proposition S(w) can be derived in one or more such steps.

Whenever a string w is generated by G, the derivation of a proposition
S(w) forms a parse tree. Each node in the tree is labelled with a proposition
A(w1, . . . , wk), where k = dimA and w1, . . . , wk are substrings of w. Every
node has a corresponding rule (*), by which the proposition is derived, and
the direct successors of this node are labelled with B1(x1,1, . . . , x1,dimB1), . . . ,
B�(x�,1, . . . , x�,dimB�

), as in the definition of a derivation step.
The dimension of a grammar, dim G, is the largest dimension of a nonter-

minal symbol. A multi-component grammar of dimension k shall be called a
k-component grammar.

A special case of these grammars are well-nested multi-component gram-
mars, in which, whenever multiple constituents are joined in a single rule,
their components cannot be intertwined, unless one’s components are completely
embedded within another’s components. Thus, patterns such as A(x1y1, x2y2) ←
B(x1, x2)C(y1, y2) are prohibited.

Definition 2. A multi-component grammar is called well-nested, if every
rule (*), satisfies the following conditions.

1. (non-permuting condition) For every i, the variables xi,1, . . . , xi,dimBi
occur

inside α1 . . . αdimA in this particular order.
2. For all i, i′ the concatenation α1 . . . αdimA satisfies one of the following pat-

terns:
– . . . xi,di

. . . xi′,1
– . . . xi′,di′ . . . xi,1
– . . . xi,r . . . xi′,1 . . . xi′,di′ . . . xi,r+1

Example 1. A language L = {ambncmdn |m,n ∈ N} is defined by a 2-component
grammar with the rules

S(x1y1x2y2) ← A(x1, x2), B(y1, y2),
A(ax1, cx2) ← A(x1, x2),
B(by1, dy2) ← B(y1, y2).

290 A. Okhotin and A. Sorokin

A well-nested 2-component grammar for the same language is

S(x1x2) ← A(x1, x2),
A(x1, bx2d) ← A(x1, x2),

A(x1, x2) ← B(x1, x2),
B(ax1, cx2) ← B(x1, x2).

A well-nested multi-component grammar can be transformed to the following
form resembling the Chomsky normal form.

Proposition 1. ([15], Thm. 1). Each well-nested k-component grammar is
equivalent to a well-nested k-component grammar, in which all rules are of the
following form.

A(x1, . . . , xm−1, xmy1, y2, . . . , yn) ← B(x1, . . . , xm), C(y1, . . . , yn)
A(x1, . . . , xi, xiy1, y2, . . . ynxi+1, xi+2, . . . , xm) ← B(x1, . . . , xm), C(y1, . . . , yn)

A(a) ←
S(ε) ←

Rules of the first kind generalize the concatenation. The operation implemented
in the rules of the second kind, defined for i ∈ {1, . . . , m − 1}, is known as
displacement or discontinuous product.

A multi-component grammar of dimension 1 is an ordinary grammar, or
“context-free” in Chomsky’s terminology. A well-nested multi-component gram-
mar of dimension 2 is known in the literature as a “head grammar” [13]; these
grammars are equivalent in power to tree-adjoining grammars [4].

3 Cyclic Shift on k-component Grammars

Let G be a non-permuting k-component grammar, the goal is to construct a new
k-component grammar G′ that describes the language shift(L(G)).

Whenever G generates a string w, G′ should generate vu for every parti-
tion w = uv. Consider a parse tree of uv according to G, that is, a proof tree
of the proposition S(uv). Each node in the tree is labelled with a proposition
A(w1, . . . , wk), where k = dim A and w1, . . . , wk are substrings of w. We call a
node split, if one of its components ws spans over the boundary between u and
v, that is, contains both the last symbol of u and the first symbol of v.

In the proposed construction of a grammar for the cyclic shift, each split node
A(w1, . . . , wk) is represented by another node of dimension k, which, however,
specifies an entirely different k-tuple of strings. Consider that, whenever the
original split node A(w1, . . . , wk) is used in a parse tree of a string uv, this
string contains w1, . . . , wk as substrings, in any order. The corresponding node
in the parse tree of vu according to the grammar for the cyclic shift shall contain
all symbols of uv except the symbols in w1, . . . , wk. For the moment, assume
that w1, . . . , wk occur in uv in the order listed, and that some ws spans over

Cyclic Shift on Multi-component Grammars 291

the boundary between u and v. Then, uv = y0w1y1w2y2 . . . yk−1wkyk, and the
symbols not in w1, . . . , wk are arranged into k+1 substrings y0, . . . , yk. However,
note that in the string vu generated by the new grammar, yk and y0 come
concatenated as a single substring yky0, and there is no need to represent them
as separate components. Therefore, the new grammar can represent this split
node A(w1, . . . , wk) by another node ˜A(yky0, y1, . . . , yk−1) of the same dimension
k, where ˜A is a new nonterminal symbol representing the whole string with a gap
for a k-tuple generated by A.

To see how this transformation can be done, the structure of split nodes in
the original parse tree ought to be examined, As long as u �= ε and v �= ε, the root
S(uv) is split. Each split node has at most one split node among its immediate
successors, because the last symbol of u and the first symbol of v cannot be in
two successors at once. If a node is not split, then none of its successors are split.
Thus, split nodes form a path in a parse tree, beginning in the root and ending
somewhere inside the tree. This path shall be called the main path, and the new
grammar G′ retraces this path using the nonterminal symbols of the form ˜A.

In the original grammar, whenever a rule A(. . .) ← B(. . .), C(. . .) is used in
one of the nodes on the main path, where B is the next node along the path,
shorter substrings described by B are concatenated to something taken from
C to form longer substrings described by A. In the new grammar, a nontermi-
nal symbol ˜A generates all symbols of the string except those generated by A,
whereas ˜B generates all symbols except the symbols generated by B. Therefore,
˜B can be defined by a rule that partially fills the gap for A in ˜A, replacing it
with a smaller gap for B in ˜B. This is achieved by a rule ˜B(. . .) ← ˜A(. . .), C(. . .).
The node ˜B is accordingly higher up than ˜A in the parse tree of vu, and the
main path of the original parse tree is retraced in the reverse direction. Each
rule along the path is inverted, and the parse tree is effectively turned inside out.

Theorem 1. For every k-component grammar G with n nonterminal symbols,
there exists another k-component grammar with at most (k! + 1)n nonterminal
symbols that describes the language shift(L(G)).

Proof. Let G = (Σ,N,dim, R, S), The new grammar is defined as G′ = (Σ,N ∪
˜N ∪ {S′},dim, R ∪ R′, S′), where every new nonterminal symbol in ˜N is of the
form ˜Ap1,...,pk

, where A ∈ N is a symbol of dimension k, and (p1, . . . , pk) is a
permutation of (1, . . . , k); the dimension of this new symbol is also k.

Each symbol from N is defined in G′ by the same rules as in G, and hence
LG′(A) = LG(A) for all A ∈ N . For each new symbol ˜Ap1,...,pk

in ˜N , with k =
dim A, the intention is that it generates all such k-tuples (w0, . . . , wk−1) that, for
some partition w0 = v0u0, a proposition S(u0xp1w1xp2w2 . . . wk−1xpk

v0) can be
derived using an assumption A(x1, . . . , xk). In other words, a k-tuple generated
by ˜Ap1,...,pk

is a string from L(G) with k gaps, which should be filled by a k-
tuple generated by A, Note that the components of ˜Ap1,...,pk

(w0, w1, . . . , wk−1)
occur in the final string generated by the grammar G exactly in the given order,
though w0 is split into a suffix and a prefix. On the other hand, the components

292 A. Okhotin and A. Sorokin

of A(x1, . . . , xk) may occur in the final string in L(G) in any order, and this
order is specified in the permutation p1, . . . , pk.

The grammar G′ has three kinds of rules for the new symbols. The first rule
creates an empty string with one gap for a string generated by S.

˜S1(ε) ← (1)

Indeed, using an assumption S(x), one can derive S(x) in zero steps.
For the second type of rules in G′, consider any rule in G, which defines a

symbol A of dimension k, and fix any nonterminal symbol B on its right-hand
side. Let y1, . . . , y� be the variables of B. Denote the remaining nonterminal
symbols referenced in this rule by C1, . . . , Cq.

A(α1, . . . , αk) ← B(y1, . . . , y�), C1(. . .), . . . , Cq(. . .)

For every i-th argument of A, consider all occurrences of variables y1, . . . , y� in
αi, and accordingly let αi = βi,0yri,1βi,1 . . . βi,mi−1yri,mi

βi,mi
, where mi � 0 is

the number of these occurrences, βi,j are strings over the alphabet Σ and over
the variables of C1, . . . , Cq, and ri,j ∈ {1, . . . , �}, for each i. Since each variable is
referenced exactly once, m1+. . .+mk = � and (r1,1, . . . , r1,m1 , . . . , r1,j , . . . , rk,mk

)
is a permutation of (1, . . . , �).

To see how to transform this rule, consider any proposition
˜Ap1,...,pk

(w0, w1, . . . , ww−1), where (p1, . . . , pk) is a permutation of (1, . . . , k).
This symbol represents a full string generated by G, with a gap for A. If A is
derived from B and C1, . . . Cq using the above rule for A, then the substrings
obtained from C1, . . . , Cq partially fill the gaps for A, leaving smaller gaps for B.
The resulting symbol ˜Bp′

1,...,p′
�

has � gaps for B, and the permutation (p′
1, . . . , p

′
�)

of (1, . . . , �) is defined by listing the numbers of the variables of B in the order
they occur as gaps: the sequence yrp1,1 , . . . , yrp1,mp1

, . . . , yrpk,1 , . . . , yrpk,mpk
is

the same as p′
1, . . . , p

′
�.

The corresponding transformed rule in the new grammar has to fill the gaps
in the right order. Let z0, z1, . . . , zw−1 be the variables of ˜Ap1,...,pk

. Then the
circular sequence z0αp1z1 . . . zk−1αpk

containing variables of ˜Ap1,...,pk
, B and

C1, . . . , Cj represents the entire string, and every occurrence of a variable of
B becomes a gap in the new rule. Accordingly, the sequence between any two
subsequent variables of B forms an argument of ˜Bp′

1,...,p′
�
. The first argument is

the one containing z0. The variables of B become gaps between the variables of
˜Bp′

1,...,p′
�
, and the resulting rule is defined as follows.

˜Bp′
1,...,p′

�
(βpk,mpk

z0βp1,0, βp1,1, . . . , βp1,mp1−1, βp1,mp1
z1βp2,0, βp2,1, . . . ,

βpk−1,mpk−1−1, βpk−1,mpk−1
zk−1βpk,0, βpk,1, . . . , βpk,mpk

−1) ←
← ˜Ap1,...,pk

(z0, . . . , zk−1), C1(. . .), . . . , Cq(. . .) (2)

Rules of the third and the last type are defined for the initial symbol of
the new grammar. They correspond to the bottom split node on the main path
of the parse tree in G, where the last symbol of u and the first symbol of v

Cyclic Shift on Multi-component Grammars 293

are finally assigned to different substrings. Denote the bottom split node by
A(x1, . . . , xk), and let u0xp1w1xp2w2 . . . wk−1xpk

v0 be the entire string gener-
ated by the original grammar. In the new grammar, the node A(x1, . . . , xk)
is represented by a proposition ˜Ap1,...,pk

(v0u0, w1, . . . , wk−1). Let xps
, with

s ∈ {1, . . . , k}, be the split component of A(x1, . . . , xk). The plan is to fill
the gaps in ˜Ap1,...,pk

(v0u0, w1, . . . , wk−1) with the symbols in the subtree of
A(x1, . . . , xk). However, it is not possible to do this directly in a rule of the
form S′(. . .) ← ˜Ap1,...,pk

(. . .), A(x1, . . . , xk), because the component xps
is split.

Consider the rule used to derive A(x1, . . . , xk) in the new grammar, and let
C1, . . . , C� be all nonterminal symbols on its right-hand side.

A(α1, . . . , αk) ← C1(. . .), . . . , Cq(. . .)

The split component αps
generates a substring xps

= x̂1x̂2, where the first part
x̂1 is a suffix of u and the second part x̂2 is a prefix of v. Let αps

= ηθ be a
partition of αps

into the symbols generating x̂1 and the symbols generating x̂2.
Then the new grammar has the following rule, where the components of A are
inserted into the gaps in ˜Ap1,...,pk

, and the resulting string is cyclically shifted
to begin in the middle of the component αps

.

S′(θzsαps+1zs+1 . . . zk−1αpk
z0αp1z1 . . . zs−2αps−1zs−1η) ←

← ˜Ap1,...,pk
(z0, . . . , zk−1), C1(. . .), . . . , Cq(. . .) (3)

Overall, for every two strings u and v, the string uv is in L(G) if and only if
vu belongs to L(G′).

It can be easily observed that our construction does not preserve well-
nestedness. Consider the well-nested rule A(x1, ax2b) ← A(x1, x2), by our con-
struction it produces the rule S′(ax2by2x1y1) ← A(x1, x2), ˜A(12)(y1, y2), which
is not well-nested.

4 Cyclic Shift on Well-Nested k-component Grammars

The construction for the cyclic shift in the case of well-nested grammars is gen-
erally easier, since it does not involve turning parse trees inside out. All paths in
the transformed trees continue in the same direction, at the expense of using one
extra component. On the other hand, special care has to be taken to preserve
the order of components and their well-nestedness.

Theorem 2. If a language is defined by a well-nested k-component grammar,
then its cyclic shift can be defined by a well-nested (k + 1)-component grammar.

Proof. Assume that all rules in the original grammar G are as in Proposition 1. If
G defines a string w = uv, the new grammar G′ should generate vu. In the parse
tree of uv according to G, a node A(w1, . . . , wk) is split, if one of its components
ws spans over the boundary between u and v. Let ws = w′

sw
′′
s , where u ends with

294 A. Okhotin and A. Sorokin

w′
s, and v begins with w′′

s . Then, the new grammar shall have a new nonterminal
symbol ̂As, which defines a (k+1)-tuple ̂As(w′′

s , ws+1, . . . , wk, w1, . . . , ws−1, w
′
s).

For a non-split node, let w1, . . . , ws be in u and let ws+1, . . . wk be in v. Then
the new grammar has a new nonterminal symbol As with defines a shifted k-
tuple As(ws+1, . . . , wk, w1, . . . , ws). In particular, the nonterminal ̂S1, where S is
the initial symbol of G, generates the language LG′(̂S1) = {(v, u) |uv ∈ L, u, v �=
ε}. Adding a new initial nonterminal S′ and the rules S′(xy) ← ̂S1(x, y) and
S′(w) ← S1(w) then yields the grammar for the language shift(L(G)). What
remains is to equip the newly introduced nonterminals with the rules that match
their definitions.

For each concatenation rule A(x1, . . . , xm−1, xmy1, y2, . . . , yn) ← B(x1, . . . ,
xm), C(y1, . . . , yn) in the original grammar, first, there are m + n − 1 non-split
shifts, which simply rotate the order of the components. They are using the
rules below corresponding to different shifts; note that in each case one of B,C
remains unshifted, and the other is shifted and wrapped around it.

Ai(xi+1, . . . , xm−1, xmy1, y2, . . . , yn, x1, . . . , xi) ←
Bi(xi+1, . . . , xm, x1, . . . , xi), C(y1, . . . , yn) (i < m)

Am+i(yi+1, . . . , yn, x1, . . . , xm−1, xmy1, y2, . . . , yi) ←
B(x1, . . . , xm), Ci(yi+1, . . . , yn, y1, . . . , yi) (i � 1)

Secondly, the cyclic shift may split one of the components of this (m + n − 1)-
tuple. This is implemented in ̂Ai: then, one of B,C is unshifted, and the other
is split. There are the following cases.

̂Ai(x′′
i , xi+1, . . . , xm−1, xmy1, y2, . . . , yn, x1, . . . , xi−1, x

′
i) ←

̂Bi(x′′
i , xi+1, . . . , xm, x1, . . . , xi−1, x

′
i), C(y1, . . . , yn) (i < m)

̂Am+i(y′′
i , yi+1, . . . , yn, x1, . . . , xm−1, xmy1, y2, . . . , yi−1, y

′
i) ←

B(x1, . . . , xm), ̂Ci(y′′
i , yi+1, . . . , yn, y1, . . . , yi−1, y

′
i) (1 � i � n)

Consider a displacement rule A(x1, . . . , xj−1, xjy1, . . . ynxj+1, . . . , xm) ←
B(x1, . . . , xm), C(y1, . . . , yn) in G, with j ∈ {1, . . . , m − 1}. Again, there are
non-split and split shifts. Non-split shifts fall into the following three cases.

Ai(xi+1, . . . , xj−1, xjy1, y2, . . . ynxj+1, xj+2, . . . , xm, x1, . . . , xi) ←
Bi(xi+1, . . . , xm, x1, . . . , xi), C(y1, . . . , yn) (i < j)

Aj+i(yi+1, . . . , yn, xj+1, . . . , xm, x1, . . . , xi, y1, y2, . . . , yi) ←
B(x1, . . . , xm), Ci(yi+1, . . . , yn, y1, . . . , yi) (1 � i � n)

Am−1+i(xi+1, . . . , xm, x1, . . . , xjy1, y2, . . . ynxj+1, . . . , xi−1) ←
Bi(xi+1, . . . , xm, x1, . . . , xi), C(y1, . . . , yn) (i > j)

Cyclic Shift on Multi-component Grammars 295

If one of the components is split, the corresponding rule for ̂Ai is one of the
following.

̂Ai(x′′
i , xi+1, . . . , xjy1, y2, . . . ynxj+1, . . . , xm, x1, . . . , xi−1, x

′
i) ←

̂Bi(x′′
i , xi+1, . . . , xm, x1, . . . , xi−1, x

′
i), C(y1, . . . , yn) (i < j)

̂Am+i(y′′
i , yi+1, . . . , ynxj+1, . . . , xm, x1, . . . , xjy1, . . . , yn−1, y

′
i) ←

B(x1, . . . , xm), ̂Ci(y′′
i , yi+1, . . . , yn, y1, . . . , yi−1, y

′
i) (1 � i � n)

̂Ai(x′′
i , xi+1, . . . , xm, x1, . . . , xjy1, y2, . . . ynxj+1, . . . , xi−1, x

′
i) ←

̂Bi(x′′
i , xi+1, . . . , xm, x1, . . . , xi−1, x

′
i), C(y1, . . . , yn) (i > j)

A correctness proof for the construction proceeds by induction on the size of
derivations in the respective grammars, formalizing the above explanations. �	

5 Number of Components in Well-Nested Grammars1

Theorem 2 shows how to represent the cyclic shift of a well-nested k-component
grammar by a well-nested (k+1)-component grammar. On the other hand, with-
out the well-nestedness restriction, a k-component grammar can be constructed
by Theorem 1. The growth in the number of components is caused by keeping a
split substring as two components. The question is, whether this weakness is an
artefact of the construction, or is determined by the fundamental properties of
well-nested grammars. In this section we prove, that for any k � 2, there exists
a well-nested k-component grammar, whose cyclic shift lies outside this class;
thus the result of the previous section cannot be strengthened.

As such a counterexample, we take a very simple language EmbBal(2, k),
containing all the strings of the form am

1 bn
1 cn

1dm
1 . . . am

k bn
kcn

kdm
k , with m,n � 0,

which is defined by a well-nested k-component grammar (see Example 2).
It is claimed that the cyclic shift of this language cannot be represented
by a well-nested k-component grammar. Since this language family is closed
under rational transductions, it suffices to demonstrate that the language
NonEmbBal(2, k) = {am

1 bm
1 cn

1dn
1 . . . am

k bm
k cn

kdn
k | m,n > 0} cannot be generated

by a well-nested k-component grammar, because this language is obtained from
CyclicShift(EmbBal(2, k)) by intersection with a regular language b+1 Σ∗a+

1 , and
with a circular letter renaming bi → ai, ci → bi, di → ci, ai → di−1, a1 → dk.

Example 2. The language EmbBal(2, k), containing all the strings of the form
am
1 bn

1 cn
1dm

1 . . . am
k bn

kcn
kdm

k , with m,n � 0, is defined by the following well-nested
k-component grammar.

S(x1 . . . xk) ← A(x1, . . . , xk)
A(a1x1d1, . . . , akxkdk) ← A(x1, . . . , xk)

A(x1, . . . , xk) ← B(x1, . . . , xk)
B(b1x1c1, . . . , bkxkck) ← B(x1, . . . , xk)

B(ε, . . . , ε) ←
1 Most of the proofs are omitted due to space restrictions.

296 A. Okhotin and A. Sorokin

The definitions below are taken from Kanazawa [5].

Definition 3. An r-pump D is a nonempty derivation of the form
D : A(x1, . . . , xr) � A(y1, . . . , yr).

Note that in case of a well-nested grammar in Chomsky normal form, x1 . . . xr

is a proper subsequence of y1 . . . yr. For each pump D, we define the sequence

of its pumping strings: strings(D) =
r
⋃

i=1

[wi,j |yi = wi,0xswi,1 . . . xs+twi,t]. For

example, the derivation A(x1, x2, x3) � A(ax1bcx2, a, bx2) produces the pumping
sequence [a, bc, ε, a, b, ε]. Informally, the pumping strings are maximal contiguous
strings that the pump subtree injects into the derived string. It is easy to prove
that the pumping sequence of an r-pump consists of exactly 2r strings.

Definition 4. An even r-pump is a nonempty derivation of the form
D : A(x1, . . . , xr) � A(u1x1v1, . . . , urxrvr).

Obviously, for an even pump D the pumping strings are strings(D) =
[u1, v1, . . . , un, vn].

We use the term “pump” not only for derivations, but also for derivation
trees. Given a derivation tree, we call a letter occurrence covered if it occurs in
the yield of some pump, and evenly covered if this pump is even.

In what follows we consider only grammars in the Chomsky normal form, as
in Proposition 1. The following lemma is a mathematical folklore for context-free
grammars, the proof for well-nested multicomponent grammars is the same.

Lemma 1. For every language L defined by a well-nested grammar, there exists
a number p, such that for every w ∈ L at most p − 1 letters are not covered.

In the case of ordinary grammars (well-nested 1-component grammars), this
lemma implies a weak version of the Ogden property [6,16] However, as shown
by Kanazawa and Salvati [8], that is not the case for well-nested grammars of
higher dimensions. Namely, the existence of an uneven pump does not imply the
k-pumping lemma. However, in our case we may get rid of uneven pumps.

Definition 5. A language is called bounded if it is a subset of the language
a+
1 . . . a+

m, for some symbols a1, . . . , am ∈ Σ. A language is strictly bounded if all
the symbols a1, . . . , am are distinct.

For a bounded language L ⊆ a+
1 . . . a+

m, its decoration is the language
Dec(L) = {ar1

1 $1ar2
2 $2 . . . arm

m |ar1
1 ar2

2 . . . arm
m ∈ L}. We call decorations of

bounded languages decorated bounded and decorations of strictly bounded lan-
guages decorated strictly bounded. Obviously, Dec(L) is rationally equivalent to
L. Therefore, in what follows we consider the decorated strictly bounded lan-
guage NonEmbBalD(2, k) = Dec(NonEmbBal(2, k)).

Lemma 2. Let G be a grammar in Chomsky normal form without useless non-
terminals for a decorated strictly bounded language. Let τL(w) = i if w[0] ∈
{ai, $i}, and τR(w) = i if w[−1] ∈ {ai, $i−1} (both functions are undefined for
the empty string). Let A �G (u1, . . . , ur) and A �G (v1, . . . , vr). Then, for every
j, it holds that

Cyclic Shift on Multi-component Grammars 297

1. if vj �= ε and uj �= ε, then τL(uj) = τL(vj) and τR(uj) = τR(vj);
2. if uj = ε, then vj = ak

i for some i and k.

Lemma 3. If there exists a well-nested k-component grammar for
NonEmbBalD(2, k) in Chomsky normal form without useless nonterminals, then
its derivations contain only even pumps.

The next result follows from the definition of well-nestedness by simple geo-
metrical considerations.

Lemma 4. Let �G A(u1, . . . , ur) �G S(w0u0w1 . . . urwr) and �G B(u′
1, . . . ,

u′
s) �G S(w′

0u
′
0w

′
1 . . . u′

sw
′
s) be two derivations corresponding to the same deriva-

tion tree of the string w = w0u0w1 . . . urwr = w′
0u

′
0w

′
1 . . . u′

sw
′
s. Then one of the

following is the case:

1. u0w1 . . . wr−1ur is a substring of u′
0w

′
1 . . . w′

s−1u
′
s.

2. u′
0w

′
1 . . . w′

s−1u
′
s is a substring of u0w1 . . . wr−1ur.

3. u0w1 . . . wr−1ur and u′
0w

′
1 . . . w′

s−1u
′
s are two disjunct substrings of w.

Informally speaking, the “continuous spans” of two constituents either are
embedded or do not intersect. Now we are ready to prove our main theorem.

Theorem 3. The language L = NonEmbBalD(2, k) is not defined by any well-
nested k-component grammar.

Proof. Assuming the contrary, let such a grammar exist. Then, by Lemma 1,
there exists a number p such that at most p − 1 letters in every string w ∈ L
are uncovered. For the string w = ap

1b
p
1c

p
1d

p
1 . . . ap

1b
p
1c

p
1d

p
1 ∈ L, at least one c1 in

this string is covered by some pump D1. By Lemma 3, this pump must be of the
form

A(cm1
1 dn1

1 , . . . , cmk

k dnk

k) � A(cm1+r
1 dn1+r

1 , . . . , cmk+r
k dnk+r

k) � S(w)

for some nonterminal A, and natural numbers mj , nj � 0 and r > 0. By analo-
gous arguments applied to the occurrences of a1, we obtain another derivation

A(am′
1

1 b
n′
1

1 , . . . , a
m′

k

k b
n′

k

k) � A(am′
1+r

1 b
n′
1+r

1 , . . . , a
m′

k+r
k b

n′
k+r

k) � S(w).

However, the continuous spans of these two derivations contradict Lemma 4.

Theorem 4. The family defined by well-nested k-component grammars is not
closed under the cyclic shift.

6 Conclusion

This paper has settled the closure under the cyclic shift for both general and
well-nested multi-component grammars, as well as pointed out an interesting

298 A. Okhotin and A. Sorokin

difference between these two grammar families. This contributes to the general
knowledge on multi-component grammars.

This result has an interesting consequence: since the identity language of
any group is closed under cyclic shift, and rational transformations preserve this
closure property, no group identity language can be a rational generator of well-
nested k-component grammars, for any k � 2. This is not the case for k = 1,
where the Chomsky-Schützenberger theorem states that any such language can
be obtained from the language D2, that includes the words equal to 1 in a
free group with two generators, by a composition of intersection with regular
language and a homomorphism.

References

1. Clark, A., Yoshinaka, R.: An algebraic approach to multiple context-free grammars.
In: Asher, N., Soloviev, S. (eds.) LACL 2014. LNCS, vol. 8535, pp. 57–69. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-662-43742-1 5

2. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages and
Computation. Adison-Wesley, Reading (1979)

3. Jirásková, G., Okhotin, A.: State complexity of cyclic shift. RAIRO-Theoret.
Inform. Appl. 42(2), 335–360 (2008)

4. Joshi, A.K., Levy, L.S., Takahashi, M.: Tree adjunct grammars. J. Comput. Syst.
Sci. 10(1), 136–163 (1975)

5. Kanazawa, M.: The pumping lemma for well-nested multiple context-free lan-
guages. In: Diekert, V., Nowotka, D. (eds.) DLT 2009. LNCS, vol. 5583, pp. 312–
325. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02737-6 25

6. Kanazawa, M.: Ogden’s lemma, multiple context-free grammars, and the control
language hierarchy. Inf. Comput. (2019)

7. Kanazawa, M., Kobele, G.M., Michaelis, J., Salvati, S., Yoshinaka, R.: The failure
of the strong pumping lemma for multiple context-free languages. Theory Comput.
Syst. 55(1), 250–278 (2014)

8. Kanazawa, M., Salvati, S.: Mix is not a tree-adjoining language. In: Proceedings of
the 50th Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers), pp. 666–674 (2012)

9. Maslov, A.N.: Estimates of the number of states of finite automata. Dokl. Akad.
Nauk 194(6), 1266–1268 (1970)

10. Maslov, A.N.: Cyclic shift operation for languages. Problemy Peredachi Informatsii
9(4), 81–87 (1973)

11. Okhotin, A.: Conjunctive and Boolean grammars: the true general case of the
context-free grammars. Comput. Sci. Rev. 9, 27–59 (2013)

12. Oshiba, T.: Closure property of family of context-free languages under cyclic shift
operation. Electron. Commun. Jpn 55(4), 119–122 (1972)

13. Pollard, C.J.: Generalized phrase structure grammars, head grammars, and natural
language. Ph.D. dissertation, Stanford University (1984)

14. Seki, H., Matsumura, T., Fujii, M., Kasami, T.: On multiple context-free grammars.
Theoret. Comput. Sci. 88(2), 191–229 (1991)

15. Sorokin, A.: Normal forms for multiple context-free languages and displacement
Lambek grammars. In: Artemov, S., Nerode, A. (eds.) LFCS 2013. LNCS, vol.
7734, pp. 319–334. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-35722-0 23

https://doi.org/10.1007/978-3-662-43742-1_5
https://doi.org/10.1007/978-3-642-02737-6_25
https://doi.org/10.1007/978-3-642-35722-0_23
https://doi.org/10.1007/978-3-642-35722-0_23

Cyclic Shift on Multi-component Grammars 299

16. Sorokin, A.: Ogden property for linear displacement context-free grammars. In:
Artemov, S., Nerode, A. (eds.) LFCS 2016. LNCS, vol. 9537, pp. 376–391. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-27683-0 26

17. Terrier, V.: Closure properties of cellular automata. Theoret. Comput. Sci. 352(1–
3), 97–107 (2006)

18. Vijay-Shanker, K., Weir, D.J., Joshi, A.K.: Characterizing structural descriptions
produced by various grammatical formalisms. In: Proceedings of the 25th Annual
Meeting on Association for Computational Linguistics, pp. 104–111. Association
for Computational Linguistics (1987)

19. Yoshinaka, R., Kaji, Y., Seki, H.: Chomsky-Schützenberger-type characterization
of multiple context-free languages. In: Dediu, A.-H., Fernau, H., Mart́ın-Vide, C.
(eds.) LATA 2010. LNCS, vol. 6031, pp. 596–607. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-13089-2 50

https://doi.org/10.1007/978-3-319-27683-0_26
https://doi.org/10.1007/978-3-642-13089-2_50

	Cyclic Shift on Multi-component Grammars
	1 Introduction
	2 Multi-component Grammars
	3 Cyclic Shift on k-component Grammars
	4 Cyclic Shift on Well-Nested k-component Grammars
	5 Number of Components in Well-Nested Grammars
	6 Conclusion
	References

