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Editorial on the Research Topic

Role of the Thalamus in Motivated Behavior

Growing evidence shows that the thalamus, beyond serving as an information relaying center,
has key roles in motivated behaviors (Martin-Fardon and Boutrel, 2012; James and Dayas, 2013;
Kirouac, 2015; Millan et al., 2017; Huang et al., 2018; Choi et al., 2019; Otis et al., 2019; McNally,
2021). The aim of this Research Topic is to highlight the specific roles of distinct thalamic
nuclei in a variety of motivated behaviors. Our collection of 10 articles includes four reviews,
one mini-review, one perspective, one hypothesis-and-theory, and three original research papers.
Among these, the majority focus on paraventricular thalamic nucleus (PVT, a midline thalamic
nucleus), while others highlight rostral intralaminar thalamic nuclei (rILN), posterior intralaminar
thalamic nuclei (also known as parafascicular thalamic nuclei, Pf), andmediodorsal thalamus (MD,
another midline thalamic nucleus). Taken together, this collection provides evidence that thalamus
integrates and processes information within the cortico-striatal-thalamo-cortical circuit to guide
salience processing, adaptive controls, cognitive engagement, feeding and drug seeking.

The hypothesis-and-theory by Worden et al. proposes that thalamus functions as a central
blackboard in cognition with an emphasis on three distinct thalamic nuclei: pulvinar, MD, and
PVT. These nuclei, through their anatomical connections with cortical and other thalamic regions,
entrain the cortico-cortical circuitry to take over routine tasks and therefore spare thalamus for
engagement in novel tasks. Although empirical data directly corroborating these intriguing views
are not yet available, a role of thalamus and its associated circuitry in cognitive and emotional
processes is well-documented. The mini-review by Zhou et al. summarizes recent findings on
thalamic circuits implicated in reward, pain processing, arousal, attention controls, and adaptive
behavior. These thalamic activities (especially those associated with PVT) contribute to both
normal (e.g., associative learning) and abnormal (e.g., drug addiction, posttraumatic stress disorder
and schizophrenia) salience processing.

In our collection, five articles exclusively focus on PVT. The original research article
by Quiñones-Laracuente et al. examined the time-dependent recruitment of pre-limbic (PL)
prefrontal inputs onto PVT following auditory fear learning. The authors showed that PL to
PVT projections are activated by conditioned stimuli (CS) 7 d, but not 2 h, following learning. In
contrast, the PL-amygdala circuit is preferentially recruited 2 h following learning. In addition, unit
recordings of Layer VI PL neurons, the origin of projections to PVT, exhibit increased cue-induced
inhibition at later, but not earlier, time points. Together, these results suggest that PL signaling of
simple fear associations shifts with time toward inhibitory modulation of PVT, which may underlie
disinhibition of PVT neurons (via neurons in reticular nucleus of thalamus) and subsequently
enhanced central amygdala output.
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The original research article by Matzeu and Martin-Fardon
reported that posterior PVT injections of orexin-A peptide
promotes reinstatement of extinguished cocaine seeking after
intermediate (2–3 weeks), but not protracted (4–5 weeks),
abstinence. Intermediate but not protracted abstinence is
associated with an upregulation of orexin 2 receptor expression in
PVT, while orexin cell numbers increase after both intermediate
and protracted abstinence. This work extends previous work on
the role of hypothalamic orexin (hypocretin) neurons in PVT in
addiction-related behavior (Dayas et al., 2008; Mahler et al., 2014;
Matzeu et al., 2016; Ubaldi et al., 2016; James et al., 2017; Matzeu
and Martin-Fardon, 2020), and supports emerging evidence
linking increased orexin signaling to addiction propensity
(Thannickal et al., 2018; Fragale et al., 2019; James et al., 2019;
Collier et al., 2020; Pantazis et al., 2020).

Munkhzaya et al. recorded PVT unit activities in rats
performing a cue-licking task to determine the involvement
of PVT in the predictive vs. incentive information of CS.
Neural activity in PVT immediately after CS onset discriminates
reward/non-reward association (predictive information) but not
reward value (incentive information). In contrast, activity of PVT
neurons that fire immediately before reward delivery is correlated
with reward value but not predictive information. Together, these
data capture the heterogeneity of PVT responses to discrete
processes involved in cue-induced motivated behaviors.

PVT is also a regulator of stress (Beas et al., 2018; Dong et al.,
2020). Rowson and Pliel provide a timely review on the sex-
dependent effects of acute vs. chronic stress on PVT, and outline
the implications of this dimorphism for motivated behaviors.
Consistent with the idea of PVT as a complex integrator of
varied physiological signals, Petrovich elegantly discusses the role
of PVT in controling feeding behavior. Petrovich describes a
framework whereby PVT integrates homeostatic and hedonic
needs to feed with physiological and environmental stress
signals, ultimately guiding the balance between food seeking
and consumption.

Two reviews focus on ILN, recently implicated in goal-
direct behaviors (Bradfield et al., 2013; Bradfield and Balleine,
2017; Li et al., 2018; Cover et al., 2019). Cover and Mathur
reveal distinct anatomic, physiologic, and synaptic properties
of rILN through comparison with other thalamic nuclei, such
as thalamocortical relay nuclei and the Pf. Together with
evidence implicating rILN in arousal, pain, executive function,

and action control, the authors propose a unique role of
rILN in task-dependent behavioral engagement, such as goal
valuation based on interceptive and external factors, action
learning, expression and reinforcement. Stayte et al. review the
function of Pf and orbitofrontal cortex (OFC) in action selection.
Further discussion of afferents of each structure leads to the
hypothesis that Pf and OFC together contribute to internal state
representation during action selection either through direct Pf to
OFC projections or convergence of their respective inputs onto
striatal cholinergic interneurons.

Finally, Mair et al. discuss the roles of medial prefrontal
cortex (mPFC) and individual central thalamic nuclei (e.g.,
PVT, rILN, and MD) in delayed conditional discrimination
tasks through lesion studies in rodents. The authors review
electrophysiological findings in MD and mPFC during
adaptive goal-directed behaviors, which suggest that MD
affects both action and outcome-related neuronal responses
in mPFC.

We appreciate these excellent contributions. These
articles not only summarize the current findings on the
role of individual thalamic nuclei mediating motivated
behavior, but also raise intriguing questions about how
thalamus exerts these effects. We hope that this issue
gives impetus to ongoing work in the field to better
characterize the role of thalamus in motivated behaviors and
related disorders.
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