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Abstract
In this study, we explore blood parasite prevalence, infection intensity, and co-infection levels in an urban population of feral
pigeons Columba livia in Cape Town. We analyze the effect of blood parasites on host body condition and the association
between melanin expression in the host’s plumage and parasite infection intensity and co-infection levels. Relating to the
haemosporidian parasite itself, we study their genetic diversity by means of DNA barcoding (cytochrome b) and show the
geographic and host distribution of related parasite lineages in pigeons worldwide. Blood from 195 C. livia individuals was
collected fromApril to June 2018. Morphometric measurements and plumage melanismwere recorded from every captured bird.
Haemosporidian prevalence and infection intensity were determined by screening blood smears and parasite lineages by DNA
sequencing. Prevalence ofHaemoproteus spp. was high at 96.9%. The body condition of the hosts was negatively associatedwith
infection intensity. However, infection intensity was unrelated to plumage melanism. The cytochrome b sequences revealed the
presence of fourHaemoproteus lineages in our population of pigeons, which show high levels of co-occurrence within individual
birds. Three lineages (HAECOL1, COLIV03, COQUI05) belong toHaemoproteus columbae and differ only by 0.1% to 0.8% in
the cytochrome b gene. Another lineage (COLIV06) differs by 8.3% from the latter ones and is not linked to a morphospecies,
yet. No parasites of the genera Leucocytozoon and Plasmodium were detected.
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Introduction

Wild feral pigeon populations of Columba livia f. domestica
Gmelin, 1789 are typical inhabitants of urban landscapes, where
they are associated with humans due to the availability of suit-
able nesting sites and anthropogenic food. These factors have
enabled feral pigeons and many of its parasites to colonize cities
across the globe (Johnston and Janiga 1995). The undomesticat-
ed relative is the rock pigeonColumba livia, whose native range
is restricted to Western and Southern Europe. Archeological
evidence suggests that rock pigeons were domesticated several
thousand years ago (Shapiro and Domyan 2013) and have been
used as a food source as early as 10,000 years ago (Blasco et al.
2014). Since then, feral pigeons have successfully expanded
their range and established wild populations worldwide, mainly
in urban environments. The feral pigeon is not native to South
Africa but was introduced as a domestic species in the seven-
teenth century (Brooke 1981; Dean 2000). Cape Town is a
hotspot of biodiversity (Myers et al. 2000) and of special interest
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as an urban study location. Not only is the literature body com-
paratively scarce in the “Global South” in comparison to the
“Global North” (Hedblom and Murgui 2017), but urban envi-
ronments are also rapidly changing in the Southern Hemisphere
(Swilling 2006). Feral pigeons are likely the most successful
avian urban exploiters that manage very well in urban and sub-
urban environments. Furthermore, they are also a model organ-
ism in many research disciplines, i.e., parasitology, behavioral
science, and physiology (i.e., Abs 1983; Harbison et al. 2009;
Klopfleisch et al. 2006).

Avian haemosporidians are comprised of apicomplexan pro-
tozoans of the genera Plasmodium, Haemoproteus, and
Leucocytozoon. Haemosporidians are the most diverse group
of avian blood parasites with several hundred species infecting
birds all over the world (Valkiūnas 2004). The genus
Haemoproteus contains two subgenera: Haemoproteus and
Parahaemoproteus (Valkiūnas 2004). Haemoproteus com-
prises about ten parasite species described from Columbidae
hosts and one species each from Laridae and Fregatidae hosts.
Parahaemoproteus comprises the majority of Haemoproteus
parasite specialized on passerines (Levin et al. 2012; Levin
et al. 2011; Valkiūnas 2004; Valkiūnas et al. 2013; Valkiūnas
et al. 2010). The two Haemoproteus subgenera form distinct
clades in molecular phylogenetic analyses (Galen et al. 2018;
Pacheco et al. 2017) and depend on different dipteran groups as
vectors. Species of the subgenusHaemoproteus are transmitted
by dipterans of the family Hippoboscidae, whereas species of
the subgenus Parahaemoproteus are transmitted by biting
midges of the family Ceratopogonidae (genus Culicoides).

Haemoproteus columbae Kruse, 1890 was described from
C. livia and is transmitted horizontally by blood-sucking in-
sects, predominantly by the ectoparasitic pigeon louse fly
Pseudolynchia canariensis Macquart, 1839 (Sol et al. 2000).
Blood stages of Haemoproteus species are quite conspicuous
in blood smears (Valkiūnas 2004), but species determination is
complicated due to the limited number of distinct morpholog-
ical features. More recently, DNA sequencing using PCR has
been established to identify blood parasite lineages (Fallon
et al. 2003) and has also been used as a more accurate method
for identifying blood parasite prevalence, especially at low
infection intensities (Fallon and Ricklefs 2008; Fallon et al.
2003; Garamszegi 2010). Furthermore, genetic sequencing en-
ables the identification of closely related blood parasite line-
ages, which cannot be differentiated through microscopic ex-
amination. Sequencing also allows the determination of co-
infections of multiple haemosporidian lineages, which com-
monly occur (Alizon et al. 2013; Poulin and Morand 2000;
Silva-Iturriza et al. 2012). To distinguish avian haemosporidian
species or lineages, the mitochondrial cytochrome b (cytb) is
often used as a genetic marker as it incorporates the so-called
“DNA barcode” region for haemosporidians (Bensch et al.
2009; Dimitrov et al. 2014). Single and multiple infections of
several blood parasite lineages can have different effects on the

hosts and have been associated with negative effects on their
body conditions (Marzal et al. 2008), lower hematocrit values
(Palinauskas et al. 2011), and lower host survival (Pigeault
et al. 2018). However, in studies on house martins Delichon
urbica, birds with double infections showed better reproduc-
tive performance (Marzal et al. 2008; Pigeault et al. 2018).

Generally, H. columbae infections are not considered to be
very detrimental to their hosts (Bennett et al. 1993; Earle et al.
1993; Sol et al. 2003). However, high infection intensity can be
associated with negative physiological (Earle et al. 1993) and
behavioral (Markus and Oosthuizen 1972) changes. In some
cases, infections can even be lethal, especially in young indi-
viduals that have not yet developed an adequate immune re-
sponse (Sol et al. 2003). Due to their successful expansion
across the globe, feral pigeons act as vectors for H. columbae
and other haemosporidian parasites. They can facilitate the
spread into naïve new hosts and can potentially threaten local
columbid bird species (Chagas et al. 2016; Foronda et al. 2004;
Lee-Cruz et al. 2016; Peirce et al. 1997; Swinnerton et al. 2005;
van Riper et al. 1986). Specifically in Cape Town, feral pigeons
regularly form mixed flocks with the native speckled pigeon
Columba guinea and might allow the spread of feral pigeon–
specific blood parasites to naïve hosts (Earle and Little 1993;
Little 1994). In an earlier study, Haemoproteus has been iden-
tified in speckled pigeons; however, this study was based on
blood smear analysis only. In the absence of DNA sequencing,
it remains unknown whether these represent blood parasite lin-
eages originating from feral pigeons or whether they are unique
to native speckled pigeons. Furthermore, feral pigeons were
identified as potential vectors of novel parasites for endemic
and endangered columbid species native in the Canary Islands
(Foronda et al. 2004). Haemoproteus columbae has not yet
been found in a non-columbid host and might be specific to
pigeon and dove hosts (Valkiūnas 2004).

The domesticated feral pigeon is color polymorphic,
whereby different morphs are independent of age or sex, are
interbreeding freely, and can be present within the same pop-
ulation (Huxley 1955). The species features a wide range of
plumage colorations ranging from completely white to almost
fully melanistic (Haase et al. 1992; Jacquin et al. 2011, 2013;
Johnston and Janiga 1995). Plumage phenotypes are deter-
mined by eumelanin and pheomelanin that are known for their
pleiotropic effects on the immune system through the
melanocortin system (Ducrest et al. 2008), whereby the gene
coding the phenotype also controls the expression of several
different traits, unrelated to color, such as immunocompe-
tence. Plumage variation in the feral pigeon is associated with
a stronger immune system (Jacquin et al. 2011), and white
pigeons (i.e., lacking melanin) were found to have a higher
blood parasite prevalence with increasing levels of urbaniza-
tion (Jacquin et al. 2013). In turn, darker individuals showed a
stronger cortisone stress response in rural areas than in urban
habitats (Corbel et al. 2016).
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In the present study, (1) we describe H. columbae preva-
lence and infection intensity in a wild feral pigeon population
in the city of Cape Town, South Africa. Additionally, (2) we
assess blood parasite diversity by PCR screening for
H. columbae lineages and by sequencing a section of the mi-
tochondrial cytb gene. (3) We show the geographic and host
distribution of H. columbae and related parasite lineages in
pigeons worldwide. (4) We test for potential health conse-
quences of blood parasite infection by exploring whether
higher infection intensity and co-infection with different
Haemoproteus lineages reduce individual body condition.
We hypothesize that those blood parasites have a negative
effect on the health of the host and thus predict that individual
body condition decreases with increasing infection intensity
or infection by multiple parasite species. Lastly, (5) we ex-
plore for potential pleiotropic effects of color polymorphism
by correlating infection intensity and co-infection with the
expression of eumelanin. Here, we hypothesize that
eumelanin expression influences an individual’s health.
Therefore, we predict that feral pigeons with darker plumage
coloration have lower haemosporidian infection intensity and
a lower number of co-infections.

Material and methods

Study site and feral pigeons

For this study, 195 wild feral pigeons were caught in walk-in
traps in suburban areas of Cape Town, South Africa (33.92° S,
18.42° E) from April to June 2018, during the austral autumn
and winter. We attempted to obtain data for all birds on mor-
phometric measurements, blood samples for smears, and
DNA extraction; however, some data is missing from some
birds due to time constraints in processing several individuals
in a short period of time. Sample sizes (n) are given in brackets
below throughout; for a complete sample list, see Appendix
Table S1.

Before blood sampling, pigeons were routinely housed
communally in a pigeon coop at Eagle Encounters,
Stellenbosch (33.97° S, 18.78° E), for a maximum of 6 days
prior to being part of an unrelated behavioral experiment
(Nebel et al. 2019). A maximum of 1 ml blood was taken
from the brachial vein of each individual, and these blood
samples were then immediately use to prepare blood smears
on microscope slides and air-dried. Remaining blood was
stored in EDTA buffer at 4 °C. We measured the tarsus
length with a caliper (to the closest 0.1 mm) and weighed
the pigeon on a scale (in g). These measures were taken to
derive individual body condition and were obtained from
187 individuals in total. The age of the pigeons was classi-
fied depending on the color of the eyes and cere (immature,
< 6 months of age, n = 12, or adult, > 6 months, n = 183;

following Kautz and Seamans 1986). Sex was not deter-
mined. All pigeons were individually marked and released
back at the source of capture.

Assessment of plumage phenotype

Plumage coloration in the feral pigeon is determined by
eumelanin and pheomelanin deposited in the feathers (Haase
et al. 1992). Although both eumelanin and pheomelanin are
associated with the melanocortin system, and both can have
beneficial effects on the immune system (Ducrest et al. 2008;
Jacquin et al. 2011), in this study, we focus on pigeons show-
ing a variation of eumelanin and excluded all individuals with
a pheomelanin-based plumage (i.e., reddish plumage; n = 3)
due to the small sample size. Systematic photographs were
taken (showing the belly, back with one wing spread and the
head) to document the plumage of every individual. The feral
pigeons’ phenotypes were determined in a twofold approach.
First, melanin content of the wing was quantified by using the
software ImageJ (Abramoff et al. 2004) and then categorized
according to levels of melanism by author AP following
established protocols of Johnston and Janiga (1995) and
Jacquin et al. (2011): phenotypes 0 (“white,” n = 1), 1 (“blue
bar,” n = 40), 2 (“checker,” < 50% dark feathers on the wing
surface, n = 57), 3 (“T-pattern,” > 50% dark feathers on the
wing surface, n = 65), and 4 (completely melanistic, n = 28).
The plumage of one pigeon could not be scored, because no
photos were taken during processing. One individual showing
mainly white feathers (score 0) was excluded from all analyses
due to low sample size. Ten percent of all individuals were
randomly re-scored, and the assignment was highly
reproducible.

Assessment of infection intensity by blood slide
screening

Blood smears of 192 individual C. liviawere fixed with meth-
anol and stained with Giemsa stain following the standard
protocol of Hemacolor® Rapid staining of blood smear kit
(Merck, Darmstadt, Germany). The slides were first scanned
under the microscope at × 400 magnification to determine the
presence or absence of haemosporidian blood parasites. For
infected individuals, the intensity of infection was then deter-
mined by scanning each slide at × 1000 magnification with an
oil immersion lens and counting the number of parasites seen
within 10,000 erythrocytes.

Molecular genetics: assessment parasite lineages
and co-infections

Molecular screening for blood parasites and identification
of Haemoproteus lineages were performed on 144 feral
pigeon samples of which aliquots of blood were stored in
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EDTA buffer (in 51 cases, all obtained blood was used up,
preparing the blood smears). DNA was extracted with the
DNeasy Blood & Tissue Kit (Qiagen, Venlo, Netherlands)
following the standard protocol for isolation from blood
and using equivalents of about 10 μl blood from each sam-
ple. We amplified an 886-bp section of the mitochondrial
cytb using the primers CytB_HPL_intF1 (5′-GAGA
ATTATGGAGTGGATGGTG-3′) and CytB_HPL_intR1
(5′-ATGTTTGCTTGGGAGCTGTAATC-3′) (Harl et al.
2019), which covers the so-called DNA barcode region
for avian haemosporidians. CytB_HPL_intF1 binds at nu-
c leo t ide pos i t ions 174 to 195 of the cy tb , and
CytB_HPL_intR1 binds at a conserved site 13-bp from
the 3′ end of the cytb. PCRs were performed with the
GoTaq Long PCR Master Mix (Promega, Madison,
Wisconsin, USA) on a peqSTAR 2X Universal Gradient
thermocycler (VWR, Radnor, Pennsylvania, USA). Each
25 μl master mix contained 12.5 μl GoTaq Long PCR
Master Mix, 9.5 μl H2O, each 1 μl of 10 mM primer, and
1 μl of DNA template. The PCRs started with an initial
denaturation for 2 min at 94 °C, followed by 35 cycles with
30 s at 94 °C, 30 s at 53 °C, 1 min at 65 °C, and a final
extension for 10 min at 72 °C. PCR products were visual-
ized on 1% agarose gels, and positive samples were puri-
fied with the QIAquick PCR Purification Kit (Qiagen).
Sequencing was performed at Microsynth Austria GmbH
(Vienna, Austria) using the PCR primer CytB_HPL_intR1.
Raw sequences were inspected by eye with BioEdit v.7.0.8
(Hall 1999). Sequences of samples with double and triple
infections featured ambiguous sites with wobble bases,
which were consequently checked in the electrophero-
grams. After the first inspection, the sequences were sorted
by similarity and all aberrant sites were rechecked.
Identification (and unphasing) of parasite lineages in sam-
ples with multiple infections was straightforward, because
the number of different haplotypes in our sample was low.
Haplotype networks, based on a 478-bp cytb fragment,
were calculated with two different datasets, the first com-
prising haplotypes related to H. columbae and the second
comprising the lineage of a yet unidentified Haemoproteus
species (COLIV06) and related haplotypes. To visualize
the geographic and host distribution, we included already
published sequences from GenBank (NCBI) in the net-
works. These were retrieved by performing BLAST
searches and including all samples with sequence similar-
ity of 97% to 100% to haplotypes found in the present
study. Only those BLAST hits were kept, which did not
contain ambiguities and which covered the 476-bp DNA
barcode region of the cytb. The respective lineage names of
the haplotypes were retrieved by BLAST searches against
the MalAvi database (Bensch et al. 2009). The sequences
were aligned with MAFFT v.7 (Katoh and Standley 2013)
and trimmed to the size of the barcode region. Median-

Joining networks were calculated with Network v.5.1.0.0
(Fluxus Technology Ltd., Suffolk, England) applying the
default settings. In order to reduce unnecessary median
vectors, the networks were post-processed with the maxi-
mum parsimony (MP) option. Networks were graphically
prepared and supplemented by information on host species
and geographic region in Network Publisher v.2.1.1.2
(Fluxus Technology Ltd.) and finalized in Adobe
Illustrator CC v.19.0.0 (San Jose, California, USA). Co-
infection was determined based on DNA sequencing and
reflects the number of Haemoproteus lineages (1 = mono-
infection, 2 = double-infection, and 3 = triple-infection).

Statistical analysis

We explored whether individual body condition was associat-
ed with blood parasite parameters (i.e., infection intensity or
co-infection level, models a and b) using linear models (LMs),
and whether blood parasite parameters were associated with
plumage phenotype using LM (model c) and a multinomial
logistic regression (model d). Linear models were fit with the
stats package (version 3.4.0) and the multinomial regression
nnet package (7.3-12) (Ripley et al. 2016) in the R environ-
ment, version 3.4.4 (R Core Team 2018). All quantitative
variables (body mass, tarsus length, and infection intensity)
were scaled beforehand. Six individuals that showed no prev-
alence in the blood smear analysis (even if they were positives
in the PCR screening) were excluded from all models featur-
ing infection intensity. However, four of these were included
in all models exploring the effects of co-infection on body
condition and the effect of melanism expression on co-infec-
tion, because sequence data were available.

Previous research has shown that juvenile individuals are
often suffering from higher infection intensities and are in lower
body condition than adults (Sol et al. 2003). Therefore, before
running the main analyses, we explored the influence of age-
specific differences on individual body condition and infection
intensity. Two linear models were fitted: one with body condi-
tion and a second with infection intensity (log-transformed to
ensure normally distributed residuals) as response variables.
Age was the key explanatory variable (immature or adult),
and the length of the tarsus was added as a control variable in
the model exploring body condition to control for individual
variation in size. Due to a significant difference between imma-
ture and adult pigeons (see the “Results” section) and small
sample size, immature individuals (n = 12) were excluded from
the main models introduced below.

In the first set of the main analysis, we explored the effect of
infection intensity (model a, n = 169) and co-infection (model
b, n = 125) on individual condition and we fitted a linear model
with body mass as the response variable and infection intensity
(%) or co-infection of Haemoproteus spp. lineages (categorical
variable, mono-, double-, or triple-infection) as explanatory
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variables. The length of the tarsus and the phenotype were also
added as covariates to control for the individual size of the
pigeon and to take the effect of different melanin expression
levels into account. This approach was generally favored, rather
than fitting residuals of a regression between body mass and
tarsus as a body condition response in the model (García-
Berthou 2001; Smith 1999).

In a second set of analysis, we explored the effect of plum-
age phenotype on blood parasite parameters, infection intensity
(model c, n = 169), and co-infection (model d, n = 130). To do
so, we fitted a linear model with log-transformed infection in-
tensity as a response in order to fulfill the requirement of nor-
mally distributed residuals. In all linear models, residuals were
visually inspected to ensure a normal distribution. Additionally,
we explored whether pigeons of different phenotypes were in-
fected by different numbers of blood parasites by fitting a mul-
tinomial logistic regression with the number of lineages as the
response variable. Infection with only one parasite was the ref-
erence. p values were obtained by performing a Wald test (z
test). In both models, the degree of melanism (phenotypes 1–4)
was fitted as a continuous explanatory variable. As infection
intensity might be influenced by multiple competing parasites
(Clark et al. 2016), we fitted the co-infection variable as a fixed
effect in explorative models a and c, and co-infection did not
improve the model fit (by AIC) and was returned as not signif-
icant. It was thus removed from the final models.

Results

Haemosporidian parasite infection intensity
and prevalence

Blood smears were prepared for 192 feral pigeons and scored
for haemosporidian parasite infections. In the blood smear anal-
ysis, only six individuals, out of 192, were identified as unin-
fected (no parasites detected in 10,000 erythrocytes, 96.9%
infection prevalence). However, four of these six birds did score
positive in the PCR screening. Molecular screening could not
be performed for one sample due to insufficient blood volume,
and for a second one, the repeated PCR was negative. All pos-
itive samples were infected with Haemoproteus spp., whereas
Leucocytozoon spp. and Plasmodium spp. were absent in our
study population. The mean infection intensity of
Haemoproteus spp. positive individuals was 1.3% (SD 2.9),
ranging from 0.007 and 20.4% of erythrocytes being infected.
The distribution of infection intensity was skewed, and the
median was lower than the mean (median = 0.3%).

Molecular analysis of haemosporidian parasites

Molecular screening for blood parasite lineages was per-
formed on 144 DNA samples isolated from pigeon blood.

PCRs for all but one sample were positive, and products
were sequenced from 143 samples. Almost all samples
contained lineages belonging to H. columbae (HAECOL1,
COLIV03, COQUI05), which is a common parasite of pi-
geons, and only four samples contained another
Haemoproteus lineage (COLIV06) not yet linked to a mor-
phospecies. A high number of pigeons were infected with
more than one parasite lineage. From the 143 PCR positive
samples, 81 (56.6%) featured a single lineage, 51 (35.7%)
two lineages, and 11 (15.7%) three lineages. The most com-
mon lineage HAECOL1 was found in 133 pigeons. We ac-
tually found two haplotypes matching 100% with
HAECOL1, but differing in a single site at position 1003
of the cytb. The first variant (HAECOL1a) was found in
110 specimens and the second one (HAECOL1b) in 37
birds, and both haplotypes co-occurred in 16 individual pi-
geons. In the following, we refer to both of the latter haplo-
types as lineage HAECOL1. The MalAvi lineages COLIV03
and COQUI05 were found in 44 and 36 samples, respective-
ly. At the 478-bp DNA barcode section, HAECOL1 and
COQUI05 differ from each other in three sites (0.6% uncor-
rected p distance), HAECOL1 and COLIV03 in four sites
(0.8%), and COLIV03 and COQUI05 in five sites (1%).
Only four pigeons were infected with the lineage COLIV06
belonging to an unidentified Haemoproteus species, differing
from the H. columbae lineages by about 10%. The relation-
ship of haplotypes found in the present study and already
published data is displayed in Median-Joining networks
(Fig. 1). All cytb sequences are available at NCBI
GenBank under the accession numbers MN065190–
MN065419.

Relationship between parasite infection, plumage
phenotype, age, and body condition

Young pigeons (n = 12) had a significantly lower body condi-
tion (immature, 292.5 (SD 51.4); adult, 332.1 (SD 43.7); χ2 =
6.9, estimate = − 0.8 (SE 0.3), n = 174, p = 0.002) and higher
infection intensity (immature, 5.7% (SD 5.7); adult, 1.0% (SD
2.4); χ2 = 53.2, estimate = 2.2 (SE 0.5), n = 174, p < 0.001).
These young birds were excluded from the subsequent analy-
sis. There was a significant (linear) negative relationship be-
tween infection intensity and body condition. Body mass de-
creased by 5.24 g with a 1% increase of infected red blood cell
(Table 1, Fig. 2).

We found no relationship between the levels of co-
infection of Haemoproteus spp. (mono-, double-, or triple-
infection) and body condition (Table 1). We also found no
relationship between plumage phenotype and infection inten-
sity or co-infection levels (Table 1). Feral pigeons with a paler
plumage had similar levels of infection intensity and co-
infection as conspecifics with darker melanic plumage
(Table 2).
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Discussion

Based on the blood smear analysis, the prevalence of
Haemoproteus spp. was high in our study population with a
96.9% infection rate. Only six individuals did not show any
infection with haemosporidian parasites based on the blood
smear screening, but four of these tested positive through mo-
lecular screening. Screenings of blood smears often underes-
timate infection prevalence—especially when infection inten-
sity is low—whereas PCR is more sensitive (Valkiūnas et al.
2008). Our results thus show that almost all feral pigeons
sampled in suburban Cape Town were infected with
H. columbae. This high rate is in line with results of a study
conducted in Pretoria in the 1970s with 100% (Markus and
Oosthuizen 1972), but much higher than previously reported

in Cape Town in the 1990s with 72.7% infection rate (Earle
and Little 1993). Both studies used only blood smear screen-
ings and did not apply any PCR-based methods. Similarly
high prevalence values were found in cities outside of South
Africa, i.e., 97–100% in Madrid, Barcelona, and Granollers
(Spain) (Sol et al. 2000; Vázquez et al. 2010); 100% in Sao
Paulo (Brazil) (Chagas et al. 2016); or 100% in Hyattsville
(Maryland, USA) (Knisley and Herman 1967).Haemoproteus
spp. infection intensities of C. livia have been studied in other
Sub-Saharan African countries with prevalence levels varying
greatly both between and within countries. Haemoproteus
spp. prevalence was high at 75–80% in Sebele (Botswana),
Owerri (Nigeria), and Kampala (Uganda) (Dranzoa et al.
1999; Mushi et al. 2000; Opara et al. 2012); intermediate at
50% in Kano (Nigeria) (Karamba et al. 2012), and 37% in
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Morogoro (Tanzania) (Msoffe et al. 2010); and low at 15.2%
in Zaria (Nigeria) (Owolabi et al. 2009). High prevalence
levels and infection intensities of Haemoproteus spp. are not
surprising, given that pigeons live and roost in flocks, making
parasite transmission very easy (Johnston and Janiga 1995).
Possibly, the high infection prevalence is depending on pop-
ulation density. Both Haemoproteus spp. prevalence and feral
pigeon population density are generally high in suburban and
urban studies (Chagas et al. 2016; Dranzoa et al. 1999;
Karamba et al. 2012; Knisley and Herman 1967; Mushi
et al. 2000; Opara et al. 2012; Sacchi et al. 2002; Sol et al.
2000; Vázquez et al. 2010). It can be assumed that these pop-
ulations of feral pigeons are more likely to become infected by
parasites and diseases because of their larger population

densities. However, since natural populations of C. livia are
poorly investigated, there is no data to compare with.
Haemoproteus columbae does not infect non-columbid birds
and thus is not a threat to other bird groups. However, breed-
ing pigeons or native, naïve pigeon species are prone to be-
come infected as the close proximity between wildlife, live-
stock, and pets could facilitate cross-species disease transmis-
sion in suburban and urban environments (Earle and Little
1993).

Although not much sequence data on avian haemosporid-
ians of pigeons has been published so far, the four cytb line-
ages found in the present study seem to be common in feral
pigeons. Exactly the same lineages were isolated from feral
pigeons in the Sao Paolo Zoo (Chagas et al. 2016). The au-
thors of the latter study confirmed that the lineages
HAECOL1, COQUI05, and COLIV03 morphologically be-
long to H. columbae. The similarity in parasite lineage com-
position should be viewed in a historical context, since feral
pigeons were introduced into both South Africa and South
America by humans (Johnston and Janiga 1995), most likely
together with their louse fly (Hippoboscidae) vectors. Apart
from the four H. columbae lineages, only two other haplo-
types are so far published for the feral pigeon: COLIV07 from
Peru (Pacheco et al. 2017), differing in one site from
HAECOL01, and an unnamed haplotype isolated from a pi-
geon in Japan (LC325859; published on GenBank only), dif-
fering in a single site from COQUI05. Related haplotypes
have been isolated from common wood pigeon Columba
palumbus in Europe (Dunn et al. 2017), African olive pigeon
Columba arquatrix in Malawi (Lutz et al. 2015), Amboyna
cuckoo-doveMacropygia amboinensis in Papua New Guinea

Table 1 Output of LMs showing effect sizes of blood parasite infection parameters on body condition (models a and b) and phenotype (i.e., degree of
melanism) on infection intensity (model c)

Fixed effect df Estimate SE χ2 Pr(>χ2)

Model a: body mass ~ infection intensity + tarsus length + phenotype, n = 162

Intercept 1 −0.039 0.170 0.031 0.821

Infection intensity 1 −0.336 0.072 13.338 < 0.001

Tarsus length 1 0.523 0.066 38.972 < 0.001

Phenotype 1 0.021 0.065 0.066 0.743

Model b: body mass ~ co-infection + tarsus length + phenotype, n = 125

Intercept 1 0.269 0.687 0.070 0.697

Co-infection: 1 Haemoproteus spp. lineage 3 −0.150 0.684 0.228 0.918

Co-infection: 2 Haemoproteus spp. lineage 3 −0.090 0.682 0.228 0.918

Co-infection: 3 Haemoproteus spp. lineage 3 −0.244 0.720 0.228 0.918

Tarsus length 1 0.448 0.067 20.481 < 0.001

Phenotype 1 0.005 0.063 0.001 0.942

Model c: infection intensity ~ phenotype, n = 169

Intercept 1 −1.039 0.341 24.130 0.003

Phenotype 1 −0.095 0.130 1.390 0.465

Sample size (n) for each model is given. Significant effects are indicated in italic

Fig. 2 Relationship between individual body mass (g, raw values) and
Haemoproteus spp. infection intensity (%). Each black dot represents one
individual feral pigeon. Linear regression as a red line (adjusted R2 =
0.34). The standard error for the linear regression is shaded
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(Beadell et al. 2004), band-tailed pigeon Patagioenas fasciata
in Peru (JQ988683, JQ988729; published on GenBank only),
and two mosquitoes (Culicidae, Diptera) in Cameroon (Njabo
et al. 2011). Since the actual vector of H. columbae is the
pigeon louse fly P. canariensis (Brooke 1981; Dean 2000;
Sol et al. 2000), the parasites were probably in the blood meal
of the mosquitoes. Interestingly, seven other related lineages
(differing in 2 to 23 sites fromHAECOL1) were found in both
domestic and wild forms of the chicken Gallus gallus in
Malaysia (Gimba et al., data published on GenBank only:
KT290923–KT290928), which were not considered as hosts
of H. columbae so far. Other than H. columbae, the second
Haemoproteus species (lineage COLIV06) was found only in
Columbidae birds. COLIV06 was elsewhere found in feral
pigeons from Brazil, and several related lineages (differing
in eight to 14 sites) were isolated in C. palumbus and
European turtle-dove Streptopelia turtur in England (Dunn
et al. 2017) and Spain (Drovetski et al. 2014); in red-eyed
dove Streptopelia semitorquata, C. arquatrix, and African
green pigeon Treron calvus in Malawi (Lutz et al. 2015);
and in island bronze-naped pigeon Columba malherbii in
Sao Tome and Principe (KT376899; published on GenBank
only).

In our study, young pigeons had a significantly lower body
condition and higher infection intensity than older individuals,
a pattern often reported in different bird species (Sol et al.
2003). In adults, individual body condition was negatively
correlated with infection intensity of Haemoproteus—imply-
ing that there may well be a physiological cost associated with
being heavily infected. Parasites might drain energy from their
host (Price et al. 1986), or infection could directly impair
foraging activities (Marzal et al. 2005) and thus negatively
affect body condition. To our knowledge, no correlation be-
tweenHaemoproteus spp. and body condition in feral pigeons
has been reported to date. The influence of different
Parahaemoproteus parasites and infection intensity in non-
columbids on body condition is frequently reported; however,
these associations are not consistent. Negative effects of in-
fection intensity on body condition have been found in
American kestrel Falco sparverius (females only) (Dawson
and Bortolotti 2000), but not in Eurasian kestrel Falco
tinnunculus (Korpimäki et al. 1995) nor for European

blackcap Sylvia atricapilla (during the first days after infec-
tion with Haemoproteus belopolskyi) (Valkiūnas et al. 2006).
Furthermore, no significant negative correlations between in-
fection intensity and body condition were documented in sev-
eral other passerine species (Bennett et al. 1988; Granthon and
Williams 2017), including during migration (correlation with
body fat scores) (Ashford 1971). In the present study, co-
infections with several Haemoproteus lineages did not affect
the body condition more than infections with a single lineage
only, which is in line with findings of Palinauskas et al. (2011)
and Marzal et al. (2008). For future work, it would be inter-
esting to investigate whether closely related lineages interact
with each other. This interaction could be positive and favor
co-infections, or it could be negative and closely related par-
asite lineages could compete within the host or within the
vector. An example of a positive interaction was found in
experimentally infected passerines. Two Plasmodium spp.
acted synergetically during primary infections and were found
to be highly virulent (Palinauskas et al. 2011). In a cross-genus
study, microfilariae parasites were enhancing the co-infection
of certain, but not all haemosporidians (Clark et al. 2016). In
the present study, sequences were obtained by standard PCR
and Sanger sequencing. Mixed infections were identified by
the presence of wobble bases in the electropherograms, but we
did not quantify the amount of each lineage in samples with
mixed infections. It should be mentioned that with standard
PCR and Sanger sequencing, parasites at much higher
parasitemia (quantity) may be amplified preferentially,
masking the fact that other parasites are present. In order to
overcome this problem in future studies, deep amplicon se-
quencing would provide a possibility to accurately determine
the percentage of two or more pathogen lineages in samples
with mixed infections (Olmstead et al. 2019).

The feral pigeons caught for this study are part of a wild
population in an area with large populations of native avian
predator species (e.g. black sparrowhawk Accipiter
melanoleucus (Martin et al. 2014; Rose et al. 2017); peregrine
falcon Falco peregrinus (Jenkins 2000)), which may explain
the absence of individuals with extremely high infection in-
tensities of 50% or higher, since such birds might appear
physically “sick” and might be rapidly removed from the sys-
tem (Earle et al. 1993; Markus and Oosthuizen 1972). Most

Table 2 Output of a multinomial model showing effect sizes of phenotype (i.e., degree of melanism) on co-infection (model d)

Response Reference category df Estimate SE χ2 Pr(>χ2)

Intercept: 2 Haemoproteus spp. lineages1 1 1 0.477 0.491 – 0.331

Intercept: 3 Haemoproteus spp. lineages1 1 1 −2.970 1.200 – 0.013

Co-infection: 2 Haemoproteus spp. lineages 1 3 −0.167 0.185 2.183 0.366

Co-Infection: 3 Haemoproteus spp. lineages 1 3 0.359 0.401 2.183 0.371

The sample size (n) available for this model is 130. Significant effects are indicated in italic
1 ANOVA III was used to derive χ2 values, but it is not available for the intercept in multinomial logistic regression
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individuals sampled are likely exhibiting chronic infections
rather than primary infections that are usually characterized
by higher infection intensities (Asghar et al. 2012).
Individuals during primary infections that show extreme in-
fection intensities are more likely to die due to predation
(Møller and Nielsen 2007; Temple 1987) or through the ef-
fects of the parasite themselves, like anemia (Earle et al.
1993). Our results show that H. columbae infection intensity
has negative effects on a body condition which could lower
individual fitness (Chastel et al. 1995; Cichoiń et al. 1998).
However, our study does not include any long-term effects on
individual survival, mate choice, or reproductive success and
no such studies have been conducted to date on the
H. columbae-C. livia parasite-host system. However, long-
term fitness correlations have been studied in other species,
for example female Eurasian kestrels mating with males in-
fected with Haemoproteus (Parahaemoproteus) tinnunculi
laid later and smaller clutches than females mating with unin-
fected males (Korpimäki et al. 1995), thus suggesting that
Haemoproteus spp. infections play a role in mate choice.
Prevalence of Haemoproteus (Parahaemoproteus) payevskyi
in female great reed warblers Acrocephalus arundinaceus led
to a smaller number of fledged offspring (Asghar et al. 2011),
and high infection intensity of Haemoproteus spp. negatively
influenced the return rates of female American kestrels, im-
plying that infection reduced survival rates (Dawson and
Bortolotti 2000). On the contrary, white-crowned sparrow
Zonotrichia leucophrys oriantha females infected with
Haemoproteus (Parahaemoproteus) beckeri had higher sur-
vival rates and about twice as high lifetime reproductive suc-
cess than uninfected females (Zylberberg et al. 2015).

Interestingly, other avian malaria parasites like
Leucocytozoon spp. and Plasmodium spp. were absent in
our study population. Leucocytozoon spp. have been reported
in two maleC. livia in South Africa in the 1990s, one from the
southwestern Cape and one from Stromberg, Eastern Cape
(Earle and Little 1993). The absence of Leucocytozoon spp.
and Plasmodium spp. in feral pigeons has also been reported
from Sao Paulo (Brazil) (Chagas et al. 2016) and Santiago
(Chile) (Toro et al. 2010); however, in the latter study, no
Haemoproteus spp. were found in the feral pigeon population
either. Leucocytozoon spp. and Plasmodium spp. use different
dipteran vectors thanHaemoproteus spp. with Leucocytozoon
spp. being mainly transmitted by blackflies (Simulium spp.,
Simuliidae, Diptera) and Plasmodium spp. by mosquitoes
(Culicidae, Diptera) (Njabo et al. 2009; Russell and Mohan
1942; Ventim et al. 2012). Blackflies need running, fast-
flowing streams (Rivers-Moore et al. 2007), which might be
absent in highly urbanized areas in Cape Town, as suggested
in a haemosporidian parasite study in black sparrowhawks
(Suri et al. 2017). In that study, prevalence of Leucocytozoon
spp. significantly decreased with a higher degree of urbaniza-
tion; however, the prevalence for Haemoproteus spp. was

similar along the urban gradient (Suri et al. 2017). The ab-
sence of vectors seems unlikely to cause the absence of
Plasmodium in this study, and feral pigeons might not be
native hosts for Plasmodium parasites (but see the experimen-
tally infected C. livia with Plasmodium (Giovannolaia)
gabaldoni and Plasmodium (Novyella) columbae)
(Valkiūnas 2004). Generally, Plasmodium species were re-
ported only rarely in wild feral pigeons (see exceptions, i.e.,
Gupta et al. 2011; Natala et al. 2009; Opara et al. 2012), but
none of these records was confirmed by molecular screening
methods and Haemoproteus and Plasmodium can easily be
confused depending on the development stage of the parasite
and the quality of the blood slide (Valkiūnas 2004).

Lastly, no effect of eumelanism on the infection intensity
was found. Higher levels of eumelanism are hypothesized to
have beneficial effects on the immune system (Ducrest et al.
2008) and have been shown to be correlated with improved
immunocompetence in other species (Baeckens and Van
Damme 2018; Figuerola et al. 1999; Galeotti and Sacchi
2003; Galván et al. 2010; Roulin et al. 2001). Lei et al.
(2013) found for the color-polymorphic black sparrowhawk
that darker individuals showed lower infection intensity. In the
barn owl Tyto alba, individuals with more melanistic spots in
their plumage had a smaller bursa of Fabricius, suggesting that
they were less parasitized (Roulin et al. 2001). In feral pi-
geons, darker individuals are assumed to show stronger im-
mune response, but blood parasite intensity was independent
of melanism in a study by Jacquin et al. (2011), a result that is
in line with our finding. Differences of blood parasite intensity
and melanism were found only along an urban gradient, and
only when completely white individuals were considered
(Jacquin et al. 2013), which were largely absent in our study
system.

To conclude, our study represents the largest dataset to date
that combines sequences of mitochondrial cytochrome b
(cytb) of haemosporidian parasites in feral pigeons, and pro-
vides evidence for a negative association between host body
condition and parasite infection with Haemoproteus spp.
However, it would be interesting to understand the long-
term fitness consequences of infection by Haemoproteus
spp. on feral pigeons, a species that is closely associated with
humans, and has been introduced to several cities across the
globe. This is especially the case, given that there is the po-
tential for it to introduce its parasites to naïve native avifauna.
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Table S1 Individual sample list of C. livia that were collected in Cape Town as part of this study

Pigeon
ID

Date Age Tarsus
(mm)

Body
mass
(g)

Plumage Infection
intensity
(%)

Prevalence HAECOL1 COLIV03 COQUI05 COQUI06 Co-infection

Cliv01 07/05/2018 Adult 37.00 356 2 1.28 1

Cliv02 07/05/2018 Adult 40.50 330 3 1.19 1

Cliv03 07/05/2018 Adult 35.10 297 2 1.52 1 1 1 0 0 1

Cliv04 07/05/2018 Adult 36.80 399 1 0.01 1 1 1 0 0 1

Cliv05 07/05/2018 Adult 40.60 414 2 0.52 1

Cliv06 08/05/2018 Adult 40.00 422 1 0.16 1 1 0 0 0 0

Cliv07 08/05/2018 Adult 38.30 332 2 0.01 1 1 1 0 0 0

Cliv08 08/05/2018 Adult 40.70 467 2 0.04 1

Cliv09 08/05/2018 Adult 37.20 385 2 0.14 1

Cliv10 09/05/2018 Adult 39.00 410 2 0.06 1 1 0 0 0 0

Cliv11 09/05/2018 Adult 36.70 320 3 0.97 1

Cliv12 09/05/2018 Adult 35.60 259 1 1.66 1

Cliv13 09/05/2018 Adult 40.50 423 3 0.58 1

Cliv14 09/05/2018 Adult 40.30 445 1 2.05 1 1 0 0 0 0

Cliv15 10/05/2018 Adult 38.30 332 3 0.00 0 1 0 0 0 0

Cliv16 10/05/2018 Adult 38.50 235 3 0.14 1

Cliv17 10/05/2018 Immature 37.20 199 1 3.50 1

Cliv18 10/05/2018 Adult 36.00 250 2 0.07 1 1 0 0 0 0

Cliv19 10/05/2018 Adult 37.10 286 0 0.79 1

Cliv20 11/05/2018 Adult 33.20 298 3 2.40 1 1 0 0 0 0

Cliv21 11/05/2018 Adult 34.00 242 2 2.10 1

Cliv22 12/05/2018 Adult 36.60 292 2 0.04 1

Cliv23 12/05/2018 Adult 32.50 337 4 0.00 0 1 1 0 0 1

Cliv24 12/05/2018 Adult 39.00 316 3 6.66 1 1 0 0 0 1

Cliv25 14/05/2018 Adult 35.70 293 4 0.31 1

Cliv26 14/05/2018 Adult 34.70 253 1 1.92 1

Cliv27 14/05/2018 Immature 29.50 238 1 0.75 1 1 1 1 0 1

Cliv28 14/05/2018 Adult 33.30 319 3 0.03 1 1 0 0 0 0

Cliv29 14/05/2018 Adult 31.80 262 2 0.53 1 1 1 0 0 1
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Table S1 (continued)

Pigeon
ID

Date Age Tarsus
(mm)

Body
mass
(g)

Plumage Infection
intensity
(%)

Prevalence HAECOL1 COLIV03 COQUI05 COQUI06 Co-infection

Cliv30 14/05/2018 Adult 37.10 327 3 0.20 1 0 1 1 0 1

Cliv31 14/05/2018 Adult 35.50 298 4 15.74 1 1 1 0 0 1

Cliv32 15/05/2018 Immature 38.00 312 2 8.49 1 0 1 0 0 0

Cliv33 14/05/2018 Adult 39.50 355 3 0.35 1 1 1 0 0 1

Cliv34 14/05/2018 Adult 38.10 394 3 0.16 1 1 0 0 0 0

Cliv35 14/05/2018 Adult 34.60 327 3 6.52 1

Cliv36 17/05/2018 Adult 36.50 328 3 0.03 1

Cliv37 17/05/2018 Adult 34.90 277 2 1.56 1 1 1 1 0 1

Cliv38 17/05/2018 Adult 36.60 441 2 0.40 1

Cliv39 17/05/2018 Adult 39.00 388 2 0.01 1 1 0 1 0 1

Cliv40 17/05/2018 Adult 40.50 371 2 0.16 1 1 0 0 0 0

Cliv41 17/05/2018 Adult 37.10 322 2 0.82 1 1 0 0 0 0

Cliv42 16/06/2018 Adult 34.70 3 0.01 1 1 0 0 0 0

Cliv43 16/06/2018 Adult 38.70 320 2 0.47 1 0 1 0 0 0

Cliv44 16/06/2018 Adult 36.00 2 0.31 1 1 0 0 0 0

Cliv45 16/06/2018 Adult 39.17 368 2 0.07 1 1 0 0 0 0

Cliv46 16/06/2018 Adult 34.48 1 0.76 1 1 0 0 0 0

Cliv47 16/06/2018 Adult 38.66 362 2 0.15 1 1 0 1 0 1

Cliv48 16/06/2018 Adult 30.99 4 0.00 0 1 1 0 0 1

Cliv49 16/06/2018 Adult 37.28 311 4 1 1 1 0 1

Cliv50 16/06/2018 Adult 4 0.07 1

Cliv51 16/06/2018 Adult 38.16 334 3 0.40 1 1 0 0 0 0

Cliv52 16/06/2018 Adult 38.75 2 0.08 1 1 1 0 0 1

Cliv53 16/06/2018 Adult 31.58 306 3 0.08 1 1 0 0 0 0

Cliv54 17/05/2018 Adult 38.10 346 0.02 1 0 0 1 0 0

Cliv55 17/05/2018 Adult 35.50 324 3 0.40 1 1 1 0 0 1

Cliv56 17/05/2018 Adult 38.50 329 3 1.23 1 1 1 0 0 1

Cliv57 17/05/2018 Adult 39.60 335 4 1.12 1

Cliv58 17/05/2018 Adult 34.20 334 3 0.05 1 1 0 0 0 0

Cliv59 17/05/2018 Adult 35.00 318 4 0.24 1 1 0 0 0 0

Cliv60 17/05/2018 Adult 34.60 275 3 1.00 1 1 0 0 0 1

Cliv61 17/05/2018 Adult 38.30 340 1 0.18 1 1 0 1 0 1

Cliv62 17/05/2018 Adult 36.40 290 1.35 1 1 0 0 0 0

Cliv63 17/05/2018 Adult 37.70 335 2 1.82 1 1 1 1 0 1

Cliv64 17/05/2018 Adult 39.20 354 1 0.99 1 1 1 0 0 1

Cliv65 17/05/2018 Adult 39.20 385 3 0.11 1 1 1 1 0 1

Cliv66 16/06/2018 Adult 37.63 367 3 0.05 1 1 0 0 0 0

Cliv67 16/06/2018 Adult 35.04 371 1 0.13 1 1 0 0 0 1

Cliv68 16/06/2018 Adult 39.29 391 1 0.03 1 1 1 0 0 1

Cliv69 16/06/2018 Adult 35.42 357 2 0.53 1 1 0 1 0 1

Cliv70 16/06/2018 Adult 38.66 411 4 0.23 1 1 0 1 0 1

Cliv71 16/06/2018 Adult 35.24 328 0.21 1 1 0 0 0 0

Cliv72 16/06/2018 Adult 35.87 321 1 0.16 1 1 0 0 0 0

Cliv73 16/06/2018 Adult 34.20 313 4 1.19 1 1 1 1 0 1

Cliv74 16/06/2018 Adult 35.60 281 3 0.75 1 1 0 1 0 1

Cliv75 16/06/2018 Adult 36.17 302 4 0.03 1 1 1 0 0 1

Cliv76 16/06/2018 Adult 40.80 358 2 0.13 1 1 0 0 0 0
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Table S1 (continued)

Pigeon
ID

Date Age Tarsus
(mm)

Body
mass
(g)

Plumage Infection
intensity
(%)

Prevalence HAECOL1 COLIV03 COQUI05 COQUI06 Co-infection

Cliv77 16/06/2018 Adult 37.94 381 4 0.30 1 1 1 0 0 1

Cliv78 19/05/2018 Adult 38.80 303 3 0.24 1 1 1 0 0 1

Cliv79 19/05/2018 Adult 35.00 289 3 1.02 1 1 0 0 0 0

Cliv80 19/05/2018 Adult 39.00 358 3 2.06 1 1 0 1 0 1

Cliv81 19/05/2018 Adult 36.50 315 2 0.86 1 1 1 0 0 1

Cliv82 19/05/2018 Adult 35.10 274 3 1.66 1 1 0 1 0 1

Cliv83 19/05/2018 Adult 37.20 340 2 4.57 1

Cliv84 19/05/2018 Adult 33.10 286 3 1.66 1 1 0 0 0 0

Cliv85 19/05/2018 Adult 39.20 370 1 0.00 0 1 1 0 0 1

Cliv86 19/05/2018 Adult 34.90 302 3 0.29 1

Cliv87 19/05/2018 Adult 38.00 306 1.89 1 1 0 0 0 0

Cliv88 19/05/2018 Adult 38.60 343 3 0.01 1

Cliv89 19/05/2018 Adult 36.10 315 3 0.19 1 1 1 0 0 1

Cliv90 16/06/2018 Adult 36.71 356 1 0.35 1 1 1 0 0 1

Cliv91 16/06/2018 Adult 36.59 344 3 0.07 1 1 1 0 0 1

Cliv92 16/06/2018 Adult 39.54 341 4 0.11 1

Cliv93 16/06/2018 Adult 39.81 396 2 0.12 1 1 0 0 0 0

Cliv94 19/05/2018 Adult 39.80 361 1 0.25 1 1 0 0 0 0

Cliv95 19/05/2018 Adult 35.40 387 4 0.20 1 1 0 1 0 1

Cliv96 19/05/2018 Adult 33.20 297 1 0.24 1 1 1 0 0 1

Cliv97 19/05/2018 Adult 40.00 380 3 2.23 1 1 0 0 0 0

Cliv98 19/05/2018 Adult 37.20 302 2 0.09 1 1 0 0 0 0

Cliv99 19/05/2018 Adult 36.00 336 2 0.18 1 1 0 0 0 1

Cliv100 19/05/2018 Adult 36.20 348 2 0.12 1

Cliv101 19/05/2018 Adult 33.60 322 3 0.06 1 1 1 0 0 1

Cliv102 19/05/2018 Adult 39.40 336 3 0.03 1 1 0 0 0 0

Cliv103 19/05/2018 Adult 39.00 359 3 0.62 1 1 0 0 0 0

Cliv104 19/05/2018 Adult 38.50 317 2 0.43 1 1 0 0 0 0

Cliv105 19/05/2018 Adult 34.70 378 3 0.40 1 1 0 0 0 0

Cliv106 16/06/2018 Adult 38.43 379 3 0.08 1 1 0 0 0 0

Cliv107 21/06/2018 Immature 38.67 327 2 0.41 1 1 0 0 0 0

Cliv108 16/06/2018 Adult 40.25 326 2 0.07 1 0 1 1 0 1

Cliv109 16/06/2018 Adult 34.70 364 3 0.33 1 1 0 1 0 1

Cliv110 21/06/2018 Adult 39.95 327 4 0.36 1 1 0 0 0 0

Cliv111 16/06/2018 Adult 39.86 339 3 0.07 1 1 0 0 0 0

Cliv112 21/06/2018 Adult 37.77 292 1 7.48 1 1 0 0 0 1

Cliv113 21/06/2018 Immature 37.62 252 3 17.75 1 1 1 1 0 1

Cliv114 21/06/2018 Adult 37.30 339 3 0.09 1 1 0 0 0 1

Cliv115 16/06/2018 Adult 35.99 340 3 0.16 1 1 0 1 0 1

Cliv116 21/06/2018 Adult 32.41 292 3 2.03 1

Cliv117 21/06/2018 Adult 33.89 292 2 0.75 1 1 0 0 0 0

Cliv118 16/06/2018 Adult 38.14 328 4 0.55 1 1 0 0 0 0

Cliv119 16/06/2018 Adult 34.46 292 1 0.06 1

Cliv120 21/06/2018 Adult 32.57 249 1 0.65 1

Cliv121 16/06/2018 Adult 38.18 296 2 0.97 1 1 0 0 0 0

Cliv122 19/05/2018 Adult 35.50 277 2 2.89 1

Cliv123 19/05/2018 Adult 35.50 307 2 0.05 1 1 0 0 0 1
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Table S1 (continued)

Pigeon
ID

Date Age Tarsus
(mm)

Body
mass
(g)

Plumage Infection
intensity
(%)

Prevalence HAECOL1 COLIV03 COQUI05 COQUI06 Co-infection

Cliv124 19/05/2018 Adult 36.40 339 3 0.21 1 1 1 0 0 1

Cliv125 19/05/2018 Adult 38.10 331 3 0.30 1 1 0 0 0 1

Cliv126 19/05/2018 Adult 34.30 277 2 1.06 1 1 0 1 0 1

Cliv127 19/05/2018 Immature 36.30 296 1 12.23 1 0 0 1 0 0

Cliv128 19/05/2018 Adult 35.00 367 4 0.17 1 1 0 1 0 1

Cliv129 19/05/2018 Adult 39.30 345 2 0.29 1

Cliv130 19/05/2018 Adult 40.50 318 3 0.01 1

Cliv131 19/05/2018 Adult 36.00 349 1 1.82 1 1 1 0 0 1

Cliv132 19/05/2018 Adult 36.70 346 3 0.12 1

Cliv133 19/05/2018 Immature 35.60 284 3 8.10 1 1 0 1 0 1

Cliv134 21/06/2018 Adult 36.87 333 1 0.27 1 1 0 0 0 1

Cliv135 21/06/2018 Adult 35.57 273 2 0.01 1 0 1 0 0 0

Cliv136 21/06/2018 Adult 38.49 366 3 1 0 0 0 0

Cliv137 21/06/2018 Adult 37.55 336 1 1.31 1 1 0 1 0 1

Cliv138 21/06/2018 Adult 36.83 388 1 0.08 1 1 0 0 0 1

Cliv139 21/06/2018 Adult 37.64 352 2 0.14 1 1 0 0 0 0

Cliv140 21/06/2018 Adult 37.29 340 2 0.03 1 1 0 0 0 1

Cliv141 21/06/2018 Adult 40.55 390 3 0.12 1 1 0 0 0 1

Cliv142 21/06/2018 Adult 38.08 352 3 0.48 1 1 0 0 0 1

Cliv143 21/06/2018 Immature 37.22 383 1 0.21 1 1 0 1 0 1

Cliv144 21/06/2018 Adult 38.87 343 1 0.02 1

Cliv145 21/06/2018 Adult 38.66 348 4 0.78 1

Cliv146 21/06/2018 Adult 36.11 348 2 0.24 1 1 0 1 1 1

Cliv147 21/06/2018 Adult 37.94 1 0.15 1 1 0 0 1 1

Cliv148 21/06/2018 Adult 38.67 335 2 1.06 1 1 1 1 0 1

Cliv149 21/06/2018 Adult 37.75 338 4 1 0 0 0 0

Cliv150 23/04/2018 Adult 41.00 296 3 20.40 1

Cliv151 23/04/2018 Adult 35.00 226 2 3.52 1

Cliv152 23/04/2018 Adult 39.00 259 2 9.32 1

Cliv153 19/05/2018 Adult 38.20 310 1 0.24 1 1 0 0 0 1

Cliv154 19/05/2018 Adult 33.20 297 4 0.15 1 1 0 0 0 0

Cliv155 19/05/2018 Immature 38.20 271 3 8.78 1 1 1 0 0 1

Cliv156 19/05/2018 Adult 36.40 291 1 0.15 1 0 0 0 1 0

Cliv157 19/05/2018 Adult 34.80 299 2 0.07 1 1 0 0 0 0

Cliv158 19/05/2018 Adult 41.20 348 2 0.11 1 1 0 0 0 0

Cliv159 19/05/2018 Adult 38.30 335 4 0.36 1

Cliv160 19/05/2018 Adult 37.10 328 3 0.88 1 1 0 1 0 1

Cliv161 19/05/2018 Adult 36.40 280 2 1.11 1 0 1 1 0 1

Cliv162 19/05/2018 Adult 36.40 297 3 0.02 1

Cliv163 19/05/2018 Adult 39.20 351 3 0.14 1

Cliv164 19/05/2018 Immature 36.20 286 1 0.55 1

Cliv165 19/05/2018 Adult 33.70 310 1 0.71 1 1 0 0 0 0

Cliv166 19/05/2018 Adult 38.70 3 0.21 1

Cliv167 19/05/2018 Adult 36.80 314 2 0.13 1 1 0 0 0 0

Cliv168 21/06/2018 Adult 35.75 348 1 0.14 1 1 0 1 0 1

Cliv169 21/06/2018 Adult 35.72 317 4 0.98 1 1 0 0 0 0

Cliv170 21/06/2018 Adult 36.64 347 3 1.75 1 1 0 0 0 0
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