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Abstract

Background: Cytoplasmic pH homeostasis in Escherichia coli includes numerous mechanisms involving pH-dependent
catabolism and ion fluxes. An important contributor is transmembrane K+ flux, but the actual basis of K+ compensation for
pH stress remains unclear. Osmoprotection could mediate the pH protection afforded by K+ and other osmolytes.

Methods and Principal Findings: The cytoplasmic pH of E. coli K-12 strains was measured by GFPmut3 fluorimetry. The
wild-type strain Frag1 was exposed to rapid external acidification by HCl addition. Recovery of cytoplasmic pH was
enhanced equally by supplementation with NaCl, KCl, proline, or sucrose. A triple mutant strain TK2420 defective for the
Kdp, Trk and Kup K+ uptake systems requires exogenous K+ for steady-state pH homeostasis and for recovery from sudden
acid shift. The K+ requirement however was partly compensated by supplementation with NaCl, choline chloride, proline, or
sucrose. Thus, the K+ requirement was mediated in part by osmolarity, possibly by relieving osmotic stress which interacts
with pH stress. The rapid addition of KCl to strain TK2420 suspended at external pH 5.6 caused a transient decrease in
cytoplasmic pH, followed by slow recovery to an elevated steady-state pH. In the presence of 150 mM KCl, however, rapid
addition of another 150 mM KCl caused a transient increase in cytoplasmic pH. These transient effects may arise from
secondary K+ fluxes occurring through other transport processes in the TK2420 strain.

Conclusions: Diverse osmolytes including NaCl, KCl, proline, or sucrose contribute to cytoplasmic pH homeostasis in E. coli,
and increase the recovery from rapid acid shift. Osmolytes other than K+ restore partial pH homeostasis in a strain deleted
for K+ transport.
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Introduction

The enteric neutralophile E. coli maintains a cytoplasmic pH

within a narrow range, approximately pH 7.4 to 7.8, when grown

over a large range of environmental pH from pH 5 to 9 [1–3].

When E. coli experiences rapid external acid shift, the cytoplasmic

pH falls, then largely recovers in less than 1 min [2,4]. No single

mechanism appears to be essential for pH homeostasis [5–8]. The

regulation of cytoplasmic pH during acid stress depends on

catabolic acid consumption and ion transport [5]. The effect of

osmolytes on the cytoplasmic pH is important to understanding

the survival of food pathogens such as E. coli O157, whose survival

in extreme acid is enhanced by high NaCl [9]. Both E. coli and

Salmonella enterica show prolonged survival in model acidic food

broths with NaCl concentrations up to 4% [10,11].

K+ transport plays a role in pH homeostasis of E. coli and other

bacteria, although the mechanism remains unclear [7,12,13]. E. coli

has many K+ transport systems, of which the major systems for K+

uptake are Kdp, Trk, and Kup (formerly TrkD) [14,15]. Both Trk

and Kup activity appear to involve proton symport, requiring the

proton-motive force (PMF) to energize transport under aerobic

conditions [14,16,17]. At low pH during hyperosmotic stress, Kup

transport of K+ corresponds to a 1:1 reduction in H+ efflux,

suggesting the coupling of K+ influx to H+ influx [16]. Under

aerobic conditions, transport of K+ by the Trk system is driven by

the PMF and binding of ATP has a regulatory role [17]. Under

anaerobic conditions, however, Trk may form a complex with the

F0F1 ATP synthase, which is proposed to act as an ATP-driven K+/

H+ antiporter [18]. The electrogenic activity of all three systems is

thought to drive proton extrusion to maintain electroneutrality [14].

K+ transport is one of a large number of mechanisms

contributing to pH homeostasis, some of them constitutive, others

under regulons or distributed control [5]. Many bacteria primarily

use net potassium uptake to compensate for proton extrusion that

establishes the PMF, thus alkalinizing the cytoplasm at low external

pH [12,19]. In E. coli, the DpH of potassium-depleted cells varies

with the K+ concentration of resuspension medium [20]. Further-

more, the cytoplasmic pH of K+-depleted cells increases upon

addition of excess K+ [21]. A strain defective for all three uptake

systems (Kdp, Trk, and Kup) shows a decreased growth rate at low

pH and low potassium concentrations and fails to maintain a near

neutral cytoplasmic pH during growth at pH 5.9 with 100 mM K+;

an addition of excess K+ restores pH homeostasis in the triple

mutant [22]. Nevertheless, the triple mutant shows limited K+
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uptake through so-called ‘‘illicit’’ transport (also known as TrkF

activity) of potassium through multiple minor pathways, such as

mutated forms of the mechanosensitive channel MscL and the

oligopeptide transport permeases of the opp operon [23].

The role of Kdp and TrkA in pH homeostasis is complicated by

their roles in osmoregulation [24]. Osmoregulation in E. coli

involves at least fifteen different transport systems for potassium

and small molecules such as betaine and proline. The Kdp and

TrkA systems take up K+ to maintain a normal cytoplasmic

concentration of approximately 200 mM, or to an increased level

at higher external osmolarities. Osmotic upshift activates the high-

KM system Trk, enabling K+ uptake in cells at concentrations

above 1 mM. Below 1 mM K+, Trk is progressively supplemented

by the low-KM system Kdp (K+ uptake at micromolar concentra-

tions). The Trk system is expressed constitutively while Kdp

expression is modulated in part by osmolarity, via a sensor kinase/

response regulator whose mechanism remains unclear.

Thus, in E. coli the K+ concentration contributes both to

osmoprotection and pH homeostasis. How these two stress

responses are connected remains unclear. Here we report the

measurement of cytoplasmic pH in E. coli K-12 Frag1 as well as

strain TK2420, a triple mutant defective for all major potassium-

uptake mechanisms, under varying conditions of ion concentration

and osmolarity. The cytoplasmic pH was measured by GFP

fluorimetry [4], a technique allowing observation of both steady-

state adaptation and kinetic responses on a 4-second time scale.

Results

Cytoplasmic pH measurement of Frag1 and TK2420 with
different osmolytes

We tested whether K+ contributes to steady-state pH homeo-

stasis, and whether other ions or osmolytes could substitute for K+.

For measurement of cytoplasmic pH, the wild-type strain E. coli K-

12 Frag1 and the triple mutant TK2420 were each transformed

with the pH-dependent GFPmut3b reporter plasmid pMMB1311.

Fluorescence was measured, and cytoplasmic pH was calculated,

as described under Materials and Methods.

Cytoplasmic pH was measured in the presence of various

osmolytes (Fig. 1A, B). For each of these experiments, two

representative replicates are shown for each condition; all

subsequent figures show a single replicate, but the range of variation

was comparable. Cultures were resuspended in M63A (5 mM MES)

at pH 5.6, which includes less than 10 mM K+ ion. The cytoplasmic

pH was measured for 3 min before collapsing the transmembrane

pH difference with 30 mM sodium benzoate. Under these

conditions, the parental strain Frag1 maintained a cytoplasmic

pH of pH 7.1660.03 (Fig. 1A). These pH values are consistent

with our observations in an MC4100 background strain [4].

The TK2420 potassium transport-deficient strain, however,

maintained a much smaller DpH and a cytoplasmic pH of

pH 6.2760.02 (Fig. 1A). When cultures of TK2420 were

resuspended in media supplemented with an additional 300 mM

KCl, the ability to maintain a large DpH comparable to that of the

parent strain was largely restored (pH 7.0460.04). Inclusion of an

additional 300 mM NaCl (Fig. 1A), or of 150 mM choline

chloride (Fig. 1B) led to partial restoration of cytoplasmic pH

homeostasis (pH 6.560.02 and pH 6.5460.01, respectively),

though to a lesser degree than that seen with K+ supplementation.

Cytoplasmic pH during rapid osmotic upshift
We tested the effect of rapid addition of KCl and other

osmolytes on cytoplasmic pH of the parental strain and the triple

mutant TK2420. GFPmut3b reporter strains of Frag1 (JLS0916)

and TK2420 (JLS0917) were resuspended in M63A and subjected

to a rapid addition of 150 mM KCl. The cytoplasmic pH was

observed on a 4-s time scale (Fig. 1C, D). Cultures of Frag1 at both

pH 5.6 and pH 6.9 experienced an immediate increase in

cytoplasmic pH. The Frag1 cultures at pH 6.9 attained the higher

constant cytoplasmic pH at pH 7.4960.02, an increase from the

initial cytoplasmic pH at pH 7.1260.02, while cultures at pH 5.6

experienced an increase from pH 7.0460.09 to pH 7.2960.11.

Rapid KCl addition to strain TK2420 suspended at either

pH 5.6 or pH 6.9 caused a sharp decrease in cytoplasmic pH of

0.15 to 0.18 pH units. The decrease was transient, followed by slow

recovery over 5 min (Fig. 1C). When the initial medium already

contained 150 mM KCl, however, a slight immediate increase in

cytoplasmic pH occurred, followed by a decrease back to the

starting pH. Cultures supplemented with 150 mM NaCl, 150 mM

choline chloride, or 300 mM proline showed a small transient

decrease in pH upon KCl addition, but not of the same magnitude

of cultures suspended without any additional osmolytes; the pH

decrease was followed by a slow recovery that brought the pH above

the initial value (Fig. 1D). Cultures with NaCl, choline chloride, or

proline present did not experience the same sharp decrease in

cytoplasmic pH upon KCl addition, suggesting that osmolytes

protect the cytoplasmic pH during perturbation.

Rapid pH shift in MC4100
We tested the effect of K+ and of other osmolytes on

cytoplasmic pH recovery following a rapid acid shift. Cytoplasmic

pH response was measured during rapid acidification of the

external medium from pH 7.5 to pH 5.5, in the presence of

several different osmolytes. The acid shift experiments were

conducted with MC4100 DtatABCDE containing an arabinose-

inducible TorA-GFPmut3* plasmid (Fig. 2A, B) [4]. Bacteria were

resuspended in M63A buffered with 5 mM HOMOPIPES at

pH 7.5, a medium estimated to contain less than 10 mM K+. The

external pH was shifted to pH 5.5 by addition of 8.5 mM HCl.

The acid shift experiments were conducted under different ionic

conditions: supplemented with 100 mM choline chloride or

100 mM NaCl (Fig. 2A) and 200 mM sucrose or 200 mM proline

(Fig. 2B). Each set of experiments included three biological replicates

without added solutes and three replicates with 100 mM KCl added.

Cultures resuspended without additional osmolytes experienced an

initial cytoplasmic pH drop to pH 6.0760.05 with rapid recovery.

The cytoplasmic pH of cultures resuspended with any solute (KCl,

NaCl, proline, or sucrose) maintained a higher minimum pH during

acid shock: 6.856.08 for KCl; 6.9360.05 for NaCl; 6.8460.06 for

proline; and 7.2460.05 for sucrose. No significant difference was

observed among the type of solute (one-way ANOVA: F(5,

12) = 2.01, p = 0.15). Similar results were obtained with inclusion

of 50 mM K2SO4 or 100 mM K+ gluconate; thus, the anion made

no difference (data not shown). The presence of an osmolyte also

enhanced the overall pH recovery, allowing recovery to a higher

level of cytoplasmic pH than observed in the unsupplemented M63A

controls (Fig. 2A, B). These results indicate that in a wild type strain,

pH recovery following rapid acid shift depends on osmolarity, rather

than specifically on K+ concentration.

Rapid pH shift in TK2420
We tested the effect of a rapid acid shift on the cytoplasmic pH

recovery in the triple mutant strain TK2420. GFPmut3b reporter

strains of Frag1 and TK2420 were resuspended in M63A (5 mM

MES, 5 mM MOPS) at pH 7.0 and subjected to an acid shift to

pH 6.0, using approximately 10 mM HCl (Fig. 2C). Cytoplasmic

pH recovery of the strains was observed after rapid acidification of

the medium. With minimal potassium and sodium present, Frag1

Osmolytes and pH in E. coli
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exhibited the normal cytoplasmic pH recovery profile (Fig. 2C) as

previously described [4]. The K+-uptake triple mutant TK2420 in

M63A supplemented with 150 mM KCl exhibited the same rapid

recovery as the parental strain (Fig. 2C). Without supplelmental

KCl, however, the cytoplasmic pH of TK2420 dropped nearly to

the external pH with minimal recovery, though still maintaining a

small DpH (Fig. 2C, D). The cytoplasmic pH of TK2420 was

partially restored in the presence of 300 mM NaCl and 300 mM

proline (Fig. 2D), showing a more distinct recovery. Additionally,

NaCl or proline prevented the cytoplasmic pH from dropping as

low as the control TK2420 cultures without additional osmolytes.

This result suggests that any osmolyte will offer partial protection

against rapid acidification.

Discussion

Cytoplasmic pH homeostasis and acid resistance in E. coli

interact with numerous other kinds of stress, such as anaerobiosis,

Figure 1. Effect of various osmolytes on cytoplasmic pH homeostasis. Fluorescence intensity was converted to cytoplasmic pH as described
in the Materials and Methods with the addition of 30 mM sodium benzoate to collapse the DpH and addition of KOH to raise the pH for the second
standard pH point. Each trace shown is a representative replicate of three biologically independent cultures; panels A and B show two replicate
curves for each condition, indicating the range of minimal variability seen throughout our experiments. (A, B): E. coli K-12 strains Frag1 and TK2420
transformed with the GFPmut3b reporter plasmid (pMMB311) were resuspended in M63A medium (5 mM MES; pH 5.6) with different osmolytes.
Each panel includes Frag1 (black) and TK2420 (dark brown) cultures in M63A medium that contains less than 10 mM of each K+ and Na+. The other
conditions included TK2420 with an additional 300 mM KCl (red), TK2420 with an additional 300 mM NaCl (blue), and TK2420 with 150 mM choline
chloride (violet). (C, D): Strains Frag1 and TK2420 transformed with the GFPmut3b reporter plasmid were resuspended in M63A and subjected to a
rapid osmotic upshift with the addition of 150 mM KCl. Each panel includes a TK2420 (brown) culture in media that contain less than 10 mM of both
K+ and Na+. The other conditions included (C) Frag1 at pH 6.9 (gray), Frag1 at pH 5.6 (black), and TK2420 at pH 6.9 (light brown); (D) all TK2420 at
pH 5.6: 150 mM KCl (red), 150 mM NaCl (blue), 150 mM choline chloride (violet), and 300 mM proline (cyan). Addition of KOH is not shown.
doi:10.1371/journal.pone.0010078.g001
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oxidative stress, and stationary phase [5]. Anaerobiosis, specific

amino acids, and low pH co-induce amino-acid decarboxylases

that generate polyamines [6,25]. Stationary phase greatly

enhances survival in extreme acid, including mechanisms

mediated by RpoS [26,27]. In addition, acid stress up-regulates

enzymes and envelope proteins that protect the cell from oxidative

stress and extracytoplasmic stress [28–30]. Acid resistance can be

increased by high NaCl and sucrose concentrations [9–11]. A

possible mechanism for the role of Na+ in acid protection may

involve induction of the Gad acid resistance regulon [31]. Thus it

is interesting to consider whether osmoprotection may contribute

part of the observed effect of K+ on pH homeostasis.

Potassium transport has long been understood to play a role in

pH homeostasis, possibly by storing energy to drive H+ efflux or

influx, either by symport or antiport mechanisms. Our data shows

that another important function of K+ in cytoplasmic pH

homeostasis is osmoregulation. In wild-type cells the contributions

of K+, Na+, and organic osmolytes to pH recovery appeared

Figure 2. Effect of various osmolytes on cytoplasmic pH recovery after a rapid pH shift. Each trace shown is a representative replicate of
three biologically independent cultures. Fluorescence intensity was converted to cytoplasmic pH as described in the Materials and Methods with the
benzoate and KOH additions not shown. (A, B): E. coli strain MC4100AR DtatABCDE TorA-GFPmut3* was resuspended in M63A (5 mM HOMOPIPES;
pH 7.5) and subjected to a pH shift to pH 5.5 with 8.5 mM HCl at 0.6 min (arrow). The media contained 100 mM NaCl (blue), 100 mM choline chloride
(violet), 100 mM KCl (red), 200 mM sucrose (orange), 200 mM proline (cyan), or no added osmolyte (brown). (C, D): E. coli K-12 strains Frag1 and
TK2420 transformed with the GFPmut3b reporter plasmid (pMMB311) were resuspended in M63A (5 mM MOPS, 5 mM MES; pH 7.0) with different
osmolytes and subjected to an acid shift to pH 6.0 with approximately 10 mM HCl. Each panel includes Frag1 (black) and TK2420 (brown) cultures in
M63A that contains less than 10 mM of both K+ and Na+. The other conditions included TK2420 with an additional 300 mM KCl (red line), TK2420 with
an additional 300 mM NaCl (blue), and TK2420 with 300 mM proline (cyan).
doi:10.1371/journal.pone.0010078.g002
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equivalent (Fig. 2A, B). The mechanism of the link between

osmoregulation and pH remains unclear, but it may involve

maintaining cell volume and stabilizing ion fluxes.

Exogenous KCl restores pH homeostasis to the triple K+

transport mutant strain TK2420 under steady-state conditions

(Fig. 1A), during a rapid acid shift (Fig. 2C), and as reported

previously for the triple mutant strain TK2401 [22]. Growth rates

of triple mutant strains at low pH are also restored to rates near

that of the parental strain when excess KCl is included in the

growth medium (data not shown). Yet we found that partial pH

homeostasis was restored to TK2420 by addition of NaCl (Fig. 1A)

or choline chloride (Fig. 1B) at low pH. Osmolyte compensation

was observed both for cells resuspended in the presence of an

osmolyte (Fig. 1A, B) and for cell suspensions subjected to an

osmotic upshift with the rapid addition of 150 mM KCl (Fig. 1C,

D). These observations indicate that other osmolytes may

compensate for some of the lost contribution of K+. The osmolyte

compensation is seen both for steady-state pH homeostasis (Fig. 1)

and for cytoplasmic pH recovery following external acid shift

(Fig. 2).

The kinetics of pH response to osmolyte addition (Fig. 1C, D)

show a rapid immediate effect on cytoplasmic pH, followed by a

more gradual adaptation. The parental strain Frag1 achieved a

slightly higher cytoplasmic pH (and DpH) in the presence of KCl

at both pH 5.6 and pH 6.9. These data conform to the models

presented for cytoplasmic pH increase upon osmotic upshift in

wild type cultures already in the presence of some potassium

[24,32]. For the triple mutant, however, the cytoplasmic pH fell

transiently for about 8 seconds when KCl is added and then

recovers slowly to a level higher than the original. Osmotic upshifts

similar to this rapid KCl addition are associated with an

immediate and significant reduction in cytoplasmic volume,

followed by slow recovery that is similar in duration to the

cytoplasmic pH recovery in the triple mutant strain shown in

Fig. 1C [33]. The volume reduction increases cytoplasmic solute

concentrations, possibly increasing the overall contribution of

acidic components to a reduction in cytoplasmic pH. McLaggan

et al. reported a reduction in both cytoplasmic pH and volume

upon addition of 0.9 M glucose to potassium-depleted cultures

[34], suggesting a coupling between cytoplasmic volume and pH

in the absence of potassium.

KCl addition to TK2420 cultures pre-supplemented with

150 mM KCl caused cytoplasmic pH to rise transiently, then fall

(Fig. 1D). These observations might be explained based on the

kinetics of the poorly understood ‘‘illicit’’ transport processes that

can mediate some K+ flux in a triple mutant strain [23]. In

absence of K+, an osmotic upshift with KCl may increase flux

through the secondary K+ transport pathways postulated by

Buurman et al. [23]. Potassium cotransport with a proton could

explain the rapid decrease in cytoplasmic pH seen in the minimal

K+ TK2420 cultures (Fig. 1D). When cytoplasmic K+ attained a

sufficient internal concentration through this transport activity,

cytoplasmic pH began to recover as K+ drove proton extrusion.

The transient increase in cytoplasmic pH observed upon osmotic

upshift with KCl to TK2420 cultures where KCl was already

present could be explained by the cotransport of potassium and

protons out of the cell, causing the transient increase in

cytoplasmic pH observed in Fig. 1D. The secondary K+ transport

activity reported in Ref. [23] showed a strong dependence on

external pH.

We have shown directly that various osmolytes, including K+,

Na+, choline chloride, and proline can elevate cytoplasmic pH

under acid stress, both in wild-type E. coli K-12 strains and in the

K+ deficient triple mutant. Our data may shed light on earlier

results that concluded Na+ enhances survival at pH 2.5 more

strongly than K+ [31], whereas exogenous K+ enhances pH

homeostasis during growth in moderately acidic medium where

growth is still possible [20,21]. Osmotic enhancement of pH

homeostasis may play a role in the survival of pathogenic strains of

E. coli and Salmonella enterica in acidic food products, where elevated

NaCl concentration decreases the bacteriocidal effect of low pH

[9–11].

Materials and Methods

Cytoplasmic pH measurements using GFPmut3b
E. coli strains Frag1 and TK2420 ((DkdpFAB)5 D(trkA-mscL’)

trkD1), kindly supplied by Wolfgang Epstein, were transformed

with pMMB1311 (GFPmut3b) [35], creating strains JLS0916 and

JLS0917, respectively. The strains were cultured overnight in

Luria broth (LB) buffered with 50 mM 3-(N-morpholino)propa-

nesulfonic acid (MOPS) adjusted to pH 7.5 with NaOH and

included only 5 mM KCl for minimal K+-carry over into the

resuspension media. Overnight cultures were incubated for

approximately 16–18 hours at 37uC with 50 mg/ml ampicillin to

maintain the plasmid. The cultures were diluted 100-fold into the

same LB medium as the overnight cultures in 250-ml baffled flasks

rotating at 260 rpm in a 37uC shaker bath. Bacteria were cultured

to approximately OD600 0.4–0.5 and then centrifuged (5000 rpm,

25uC, 10 min) and resuspended in 3 ml buffered M63A medium

(5 mM 2-(N-morpholino)ethanesulfonic acid (MES) for the steady-

state and KCl additions; 5 mM MES and 5 mM MOPS for the

pH shifts) with varying osmolyte concentrations added to

experimental conditions, including KCl, NaCl, choline chloride,

and proline. K+ and Na+ were kept at a minimum for control

replicates at concentrations less than 10 mM. Cell suspension

fluorimetry on a 4-s time scale was performed as previously

described [4,35]. After recording sufficient excitation spectra every

4 s, 30 mM sodium benzoate was added to collapse the DpH and

provide the first point where directly measured external pH

equaled the fluorescence intensity. The pH of the cell suspension

did not change significantly when the benzoate was added. While

the DpH remained collapsed, the pH was then raised with KOH

for a second direct measurement of pH and fluorescence intensity.

Signal intensity was converted to cytoplasmic pH values by

interpolation from the slope of the line between the two known

pH/fluorescence intensity points. For each condition, three

biologically independent trials were performed. Each set of trials

was conducted at least twice. Figures show one or two

representative curves for each condition; results were highly

consistent among replicates. Error stated in the text is standard

error of the mean (SEM; n = 3); and where necessary significance

of the results was assessed with a one-way analysis of variance

(ANOVA).

Fluorimetry optimized for this reporter plasmid was per-

formed as described previously [4,35]. Excitation spectra of the

cell suspensions were recorded using a Fluoromax-3 spectroflu-

orimeter (Horiba Jobin Yvon). For each measurement, a 3-ml

sample was placed into a Starna Spectrosil quartz cuvette with a

path length of 10 mm. The temperature of the chamber was

adjusted to 30uC. GFPmut3b excitation was measured from 480

to 510 nm (2 nm slit width) with an emission wavelength of

545 nm (20 nm slit width). Data were corrected for changes in

excitation intensity by dividing the spectrally corrected emission

data by the spectrally corrected excitation intensity (Sc/Rc).

Continuous excitation spectra were recorded every 4 s for up to

8.5 min.

Osmolytes and pH in E. coli
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Cytoplasmic pH measurements using TorA-GFPmut3*
E. coli strain MC4100 DtatABCDE containing a TorA-

GFPmut3* plasmid [4] was cultured overnight in LBK (10 g

tryptone, 5 g yeast extract, 7.45 g of KCl per liter) buffered with

50 mM homopiperazine-N, N’-bis-2-ethane-sulfonic acid

(HOMOPIPES) at pH 7.5 and contained 50 mg/ml ampicillin.

The overnight culture was diluted 1000-fold into pre-warmed 250-

ml baffled flasks containing 10 ml of buffered LBK (20 mM

HOMOPIPES, pH 7.5). In order to ensure plasmid selection and

GFPmut3* expression, ampicillin (50 mg/ml) and L-arabinose

(200 mg/ml) were added to the medium. Bacteria were cultured to

an optical density at 600 nm (OD600) of 0.8–0.9 at 37uC in a

shaker bath rotating at 250 rpm. For cytoplasmic pH measure-

ment, the cultures were resuspended at OD600 0.4 in buffered

M63 medium [36] substituted with 0.2% casein hydrolysate

(M63A) adjusted to pH 7.5 (5 mM HOMOPIPES). The buffering

capacity of the media was sufficient to maintain the external pH

for the duration of the fluorimetry. The osmotic strength of the

suspension media depended on the experiment. All cultures were

stored on ice until fluorimetry. The fluorimetry protocol is the

same as described above for GFPmut3*. Continuous excitation

spectra were obtained every 4 s for 2.6 min. After 0.6 min,

8.5 mM HCl was added to the cuvette to lower the pH from 7.5 to

5.5. At the end of each time-course, 40 mM sodium benzoate was

added to collapse the DpH. Signal intensity was converted to pH

units by interpolating between the benzoate signal intensity and

the signal intensity before HCl addition as described previously

[4]. Figures show one representative trial out of three independent

cultures; all sets of trials were reproduced at least twice. Error

stated in the text is SEM (n = 3).
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