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Abstract

Our acoustical environment abounds with repetitive sounds, some of which are related to

pitch perception. It is still unknown how the auditory system, in processing these sounds,

relates a physical stimulus and its percept. Since, in mammals, all auditory stimuli are con-

veyed into the nervous system through the auditory nerve (AN) fibers, a model should

explain the perception of pitch as a function of this particular input. However, pitch percep-

tion is invariant to certain features of the physical stimulus. For example, a missing funda-

mental stimulus with resolved or unresolved harmonics, or a low and high-level amplitude

stimulus with the same spectral content–these all give rise to the same percept of pitch. In

contrast, the AN representations for these different stimuli are not invariant to these effects.

In fact, due to saturation and non-linearity of both cochlear and inner hair cells responses,

these differences are enhanced by the AN fibers. Thus there is a difficulty in explaining how

pitch percept arises from the activity of the AN fibers. We introduce a novel approach for

extracting pitch cues from the AN population activity for a given arbitrary stimulus. The

method is based on a technique known as sparse coding (SC). It is the representation of

pitch cues by a few spatiotemporal atoms (templates) from among a large set of possible

ones (a dictionary). The amount of activity of each atom is represented by a non-zero coeffi-

cient, analogous to an active neuron. Such a technique has been successfully applied to

other modalities, particularly vision. The model is composed of a cochlear model, an SC pro-

cessing unit, and a harmonic sieve. We show that the model copes with different pitch phe-

nomena: extracting resolved and non-resolved harmonics, missing fundamental pitches,

stimuli with both high and low amplitudes, iterated rippled noises, and recorded musical

instruments.

Author Summary

By means of a sound’s pitch, we can easily discern between low and high musical notes,

regardless of whether they originate from a guitar, piano or a vocalist. The relation

between different sounds that yield the same percept is what makes pitch an interesting

subject of research. Today, despite extensive research, the mechanism behind this physical

to perceptual transformation is still unclear. The large dynamic range of the cochlea
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combined with its nonlinear nature makes the modeling and understanding of this pro-

cess a challenging task. Given a large amount of physiological and psychological data, a

general explanation consistent with many of these phenomena would be a major step in

elucidating the nature of pitch perception. In this paper, we recast the problem in the gen-

eral framework of sparse coding of sensory stimuli. This framework, initially developed

for the visual modality, posits that the goal of the neural representation is to represent the

flow of sensory information in a concise and parsimonious way. We show that applying

this principle to the problem of pitch perception can explain many perceptual

phenomena.

Introduction

The perception of pitch is an important feature of speech recognition and perception of musi-

cal melodies. It conveys information of prosody and speaker identity; it helps in grouping dif-

ferent tones into one auditory object; and it conveys information about melody and harmony.

The sensation of a pitch, usually associated with the periodicity of a given physical stimulus,

is usually perceived as having two dimensions: pitch class and pitch height. The pitch class,

or the pitch chroma, is the set of all pitches that are related by whole octave numbers and is

known in musical theory as "octave equivalence"; the pitch height is the continuum perception

of sound from low to high. The percept of pitch is so inherent in us that usually even a slight

repetition in time is needed to create it. When dealing with harmonic signals, pitch is usually

related to the first harmonic, the fundamental frequency, of that signal. Even though most nat-

ural sounds are not strictly periodic, pitch is still clearly perceived and used by the brain in var-

ious hearing-related tasks. A unique property of pitch perception is that it is a many-to-many

mapping: a similar pitch can be perceived by different acoustic stimuli, and a given acoustic

stimulus can yield different percepts of pitch. This property is the reason that makes pitch an

interesting property of the mind, but it is also the reason that makes it hard to explain. The

question arises: How does a brain manage to perform this task?

For almost a century, pitch properties have been extensively researched both experimentally

and theoretically. Generally, most of the existing models that have emerged from this research

activity can be divided into two main categories: (1) temporal models and (2) spectral models

[1]. Modern temporal models, which are currently regarded as prominent, are usually based

on autocorrelation principles [2–4]. These models rely on the fact that periodic stimuli, with

the same perceived pitch but with possibly different spectral harmonic content, have the same

temporal periodic response. For example, a signal consisting of the first six consecutive har-

monics will have the same temporal period as a signal that contains just three successive har-

monics. Thus, both signals are likely to reveal the same perception of pitch. The predictions of

the temporal models are consistent with a large number of psychoacoustic properties of pitch

perception, including: (a) the missing fundamental case, also known as virtual pitch, which is

the pitch of a harmonic series that does not include its fundamental frequency; (b) the pitch

shift effect, which is the perception of a signal with shifted, equally spaced, harmonic compo-

nents that yield ambiguous pitches [5]; and (c) the invariance to the stimuli amplitude levels,

which is an inherent property of the autocorrelation process, in accordance with psychophysi-

cal measurements [6]. There is also neurophysiological evidence for reliably predicting pitches

for different stimuli [7,8] based on calculations of the autocorrelation of a cat’s AN population

response. On the other hand, it seems that temporal models perform too well compared to

human psychophysics. Consider for example the case of resolved and unresolved stimuli. Low
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harmonics are known to be resolved, meaning they are transformed into distinct rate activity

within AN fibers and with distinct peaks at certain CFs. On the other hand, higher harmonics,

approximately the 5th to 10th and above [9], are unresolved in the sense that having these har-

monics in the same stimulus they share the same spatial area along the cochlea. Temporal

models cope well with both types of stimuli [10] because autocorrelation accounts for the

interaction between the different harmonic components of the signal. However, previous mea-

surements have shown that stimuli composed of resolved (low) harmonics are usually more

salient than stimuli that are composed of unresolved (high) harmonics [11,12]. Another exam-

ple of the excessive performance of these temporal models over human performance is the

case of the transposed tones [13]. Transposed tones of low harmonic stimuli are designed to

have, using modulation, the same auditory peripheral representation as their low harmonic

counterparts. These experiments suggest that temporal information alone is not sufficient and

that tonotopic organization must be considered [14]. Finally, temporal models require certain

physiological structures in the auditory neural pathway to work. In particular, the autocorrela-

tion functionality requires the existence of (at least) 40ms long tapped delay lines [15]. But at

present there is currently no physiological evidence to support such mechanism.

A second major class of models is the spectral theory for pitch. These models are based on

the tonotopic organization, or mapping, from stimulus frequencies to stimulated spatial loca-

tions along the cochlea; high frequencies resonate the basal parts of the cochlea while low fre-

quencies resonate its apical parts. These vibrations are transduced into the auditory system

through the innervation of the auditory nerve (AN) fibers. The spatial arrangement of these

ANs along the cochlea means that each of these neurons is most responsive to a specific fre-

quency, which is denoted as its characteristic frequency (CF). Spectral models exploit this

mapping to extract the frequency components of the incoming stimuli. A prominent imple-

mentation of these models is the class of pattern-matching models [16–18]. The overall struc-

ture shared by these types of models is composed of two main phases: the first extracts the

spectral components of the stimulus from the AN population activity, and the second matches

the resulting spectral pattern with the model’s existing templates. Each of these templates is

indexed to match different pitches, and a percept of a particular pitch is the best probable

match between a given stimulus and a certain template.

Similarly to the temporal models, the predictions of these models are also consistent with a

large number of psychoacoustic properties of pitch [19–22]. However, there are also psycho-

acoustic phenomena that are difficult to explain within this framework. One main disadvan-

tage of these models is their inability to infer pitches that are composed of high harmonic

components. As mentioned above, the cochlea decomposes the stimulus’ frequencies into spa-

tial locations, which are represented by the CFs, and not all harmonics transduce into auditory

activities in the same way. As a result, spectral models cannot easily account for pitches of

unresolved stimuli.

Common to these models is the use of the AN population response to extract features from

a given stimulus. These features are then translated into a scalar that represents the pitch per-

cept. The problem of feature extraction from input stimuli has been studied in more general

settings [23,24], and it is instructive to consider this approach in a wider sense. The general

task of all modalities is the need to process streams of incoming sensed data abundant with

information, and to extract desired low dimensional properties from it. For example, in the

visual system a low dimensional percept of an object’s orientation is extracted from the activi-

ties of photoreceptors in the retina at the time of the stimulus (high dimensional input). Like-

wise, in the case of the auditory system, the input signal is a continuous auditory stream. It is

composed of the spiking activity of approximately 30,000 ANFs in a healthy human adult and

lasts for the duration of the whole stimulus. Yet, the auditory system usually extracts relatively
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low-dimensional and slow changing features such as the pitch of that signal. Namely, the per-

ception of the pitch height and the pitch class is represented by just two dimensions as opposed

to about 30,000 dimensions for each ANF that changes over time.

Today there are well developed and closely related mathematical frameworks that specialize

in feature extraction. Specifically, we refer to a family of algorithms known as sparse coding
(SC). This mathematical technique has many applications displaying a wide variety of variants

and flavors [25]. Additionally, it seems that the SC approach is in accordance with the known

physiology of the central nervous system, that of the auditory system and of other physiological

modalities [23].

In this paper we apply a SC algorithm to predict pitches for different signals. We apply it to

the AN population responses taken from simulations of known cochlear models [26–29]. The

SC algorithm concurrently uses both the spatial and temporal domain. In this sense, the pro-

posed model is a hybrid of the “classic” temporal and the spectral pitch models mentioned

above. We show that this type of model can predict a variety of psychoacoustic properties of

pitch. Specifically, the model can infer the pitches of missing fundamental complex tones; it

exhibits the psychoacoustic phenomena of pitch shifts; and it is invariant to stimuli levels. Our

results suggest that the principle of sparse coding can explain relatively high perception func-

tionality such as pitch.

Model Overview

The proposed model consists of three main parts: (i) a cochlear model that translates auditory

stimulus, sin(t), into the AN population activity, SAN(t,fCF) (Fig 1A); (ii) a sparse coding (SC)

unit that represents the AN population response as a sparse (few non-zeros) set of coefficients,

h. (Fig 1B); (iii) a readout unit that translates the active coefficients in h into a probability den-

sity function pdf(fp) of pitches. To compare the model with known psychoacoustic phenom-

ena, we set the estimated stimulus’ pitch to be the maximum value of that pdf function, sp 2 R1

(Fig 1C). This scalar represents the most plausible pitch for the particular given input signal,

sin(t). Each part is briefly described in the following sections.

The Cochlear Model. For low and medium sound levels, each location along the BM rep-

resents a specific frequency, the CF of this location. We denote these frequencies by fCF. The

Fig 1. The model. The model is composed of three main sections: (A) The cochlear model [26–29]

transduces a one-dimensional input stimulus, sin(t), into a two-dimensional matrix that represents the AN

population response, SAN(t,fCF). (B) The AN’s spatiotemporal response is introduced into the sparse coding

(SC) block to produce the sparse coefficient vector, h. The vector h carries invariant information of the input

stimulus that we refer to as pitch cues. The (sparse) information in h represents harmonics in sin(t). (C) Finally,

the likelihood probability of the pitch given the vector h is extracted and denoted as pdf(fp).

doi:10.1371/journal.pcbi.1005338.g001
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cochlear models that we use in this paper [26–29] transduce a stimulus, sinðtÞ 2 RTa , into in-

stantaneous rates of the ANs, SAN(t,fCF) 2 RT×N. Accordingly, Ta is the total length of the stim-

ulus in samples; T is a segment out of Ta for the cochlear response; and N is the number of the

CF channels in the cochlear model. Throughout this paper, regardless of the cochlear model

that we use, we always set T = 5ms; this 5ms interval is taken from the end of the total Ta =

15ms cochlear simulation.

Fig 2B shows the cochlear model [26] responses SAN(t,fCF) for the following three stimuli

sin;1ðtÞ ¼ g30dB � sinð2pkf0tÞ

sin;2ðtÞ ¼ g30dB �
X4

k¼1

sinð2pkf0tÞ

sin;3ðtÞ ¼ g30dB �
X13

k¼10

sinð2pkf0tÞ

: ð1Þ

The parameter f0 = 240 Hz is the fundamental frequency of the given harmonic series. The

amplitude of each of the stimuli, g30dB, is given in Pascals and is equivalent to 30 dB SPL in this

case. Fig 2A represents the Fourier transform (FT) of these three stimuli, Sin,r(f) = FT{sin,r(t)},

which denote the three different cases for r 2 {1, 2, 3}, respectively. The first stimulus, Sin,1(f),

consists of the first fundamental component, f0. The second stimulus, Sin,2(f), includes the first

four successive harmonics of f0, and Sin,3(f) contains the 10th to 13th harmonics of f0. Note that

although these stimuli sound differently, it is known [9,30,31] that these stimuli, especially the

first and second ones, yield the same percept of pitch, namely f0.

Fig 2. Different complex harmonic stimuli with the same pitch. (A) The Fourier transform (FT) of three

complex harmonics stimuli with a fundamental frequency of f0 = 240 Hz. The three signals have different

spectral components: Sin,1(f) is composed of the first harmonic component of f0; Sin,2(f) consists of the first four

successive harmonics of f0; and Sin,3(f) is formed from of the 10–13 harmonics. (B) The corresponding output

of the cochlear model [26], i.e., the AN population responses for the three stimuli. The y-axis represents the

normalized characteristic frequencies (CFs), which is CF divided by f0, on a linear scale, and the x-axis shows

the post-stimulus time in milliseconds. The cochlear input is a 15ms long stimulus, and the resulting output is

taken from the last 5ms. Note the different patterns of the AN activities that correspond to the three different

cases: a stimulus with low frequencies excites the apical parts of the cochlea (lower part in the images), while a

stimulus with higher frequencies excites the basal parts. Note also that the AN population responses define

unique spatiotemporal patterns of activities for each of the stimuli. All the three stimuli have relatively low sound

levels (30 dB SPL), which means that the cochlea response is linear.

doi:10.1371/journal.pcbi.1005338.g002
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The normalized AN population responses, SAN,r(t,fCF), of all the three stimuli, r 2 {1, 2, 3},

are depicted in Fig 2B. The matrix SAN,r(t,fCF) is presented in the figure as a color-coded

image, where the x-axis represents the post-stimulus time (10ms to 15ms), and the y-axis rep-

resents the normalized CFs relative to the stimuli’s fundamental frequency, i.e., fCF /f0. It is

clear from Fig 2B that the AN population responses depend on the spectrum of the input sig-

nal. For instance, the SAN,1(t,fCF), that corresponds to the 240 Hz sine wave, shows local AN

activities only in lower CFs (at the apical part of the cochlea). On the other hand, the SAN,3(t,

fCF), which is composed of the 10–13 harmonics of f0, yields activity at higher CFs (towards

the basal part of the cochlea).

It is noteworthy that each frequency component in the auditory stimulus reflects the ANs

activity of specific location along the cochlea. Hence, each of these AN population responses

has its own spatiotemporal typical pattern.

The Sparse Coding Phase. Next, we wish to exploit the unique aforementioned spatio-

temporal structures of the AN population responses. Given the AN response to a specific stim-

ulus, we wish to represent it as a weighted sum of a small number of response primitives using

the following optimization:

arg min
h

1

2
kvAN � Dhk2

2
þ lkhk

1
; ð2Þ

Where the operator k�k2 specifies the Euclidian norm, k�k1 is the ℓ1-norm. The vector vAN 2

RT�N is the vectorized AN response; the matrix D 2 RT�N×M is a collection of M primitives

known as the dictionary; the vector h 2 RM is the (sparse) coefficient vector; and λ is a scalar

that controls the sparseness of the solution h. Note that the entries in h assign weights to differ-

ent atoms in D, and thus we have h[k]� 0 for all k 2 [1,M]. There are various numerical tech-

niques [25] to solve Eq 2 for h; here we chose to use LASSO, a linear regression with ℓ1-norm

regularization [32,33].

The dictionary D can either be learned from examples [24,34–37], or chosen according to

some prior knowledge (see for example [25], Ch. 12). In this paper, we opt for the latter option

but will also explore the effect of a different dictionary later on. Thus, we chose those primi-

tives, which within the SC paradigm are known as atoms, to be the AN population response to

pure sine waves,

sdðtÞ ¼ g30dB � sinð2pfdtþ �gÞ: ð3Þ

In this equation, d 2 [1,gM] is the index of the atom, each one is created by its own sd(t)
stimulus; the parameter fd 2 [100 Hz, 20k Hz] is the frequency that this particular atom repre-

sents. When solving for Eq 2, we may need the dictionary to account for different phases of an

incoming stimulus. One simple way to achieve that is to use groups g� 1 of atoms with the

same frequencies fd but with different phases ϕg = 2π/g � k, k 2 [0,g−1]. This technique can be

seen as a simplified variant of the group-lasso algorithms [38,39]. Solving for Eq 2, the solution

of the sparse coefficient vector ~h 2 RgM contains entries that belong to the same group (same

frequency, different phases). These entries represent the same frequency and should not “com-

pete”. Thus, the entries of each group are summed together, forming the final sparse vector h

2 RM. In the following, we would assume that g = 1 for simplicity (i.e., each atom is a group

that is created by a sine with zero phase). We would use the extended scheme (g> 1) when

dealing with stimuli of random or unknown phase (see Iterated Rippled Noise and Musical

Notes).

Fig 3A shows an example of an atom d 2 RT�N, g = 1, that corresponds to a sinusoid stimulus

of about fd = 1.5k Hz. Fig 3B shows a typical dictionary that is a concatenation of M such

A New Approach to Model Pitch Perception Using Sparse Coding

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005338 January 18, 2017 6 / 36



atoms, i.e., D = [d1,. . .,dM]. As mentioned, the scalar λ = 0.01 in Eq 2 determines the sparse-

ness of the solution h. On the one hand, increasing λ assigns more weight to the ℓ1-norm (the

second term in Eq 2) and so leads to a sparser solution for h (i.e., more components in h are

set to zero). But this sparseness comes at the expense of the matching between vAN and Dh

Fig 3. Composing the dictionary D. (A) An example of one atom in D. It is the AN population response to a

sine wave of 1.5k Hz tone generated by the cochlear model [26]. The atom was normalized to a peak value of

1, as for all other population responses. The y-axis of the two-dimensional matrix represents the CF along the

BM, and the x-axis is the post-stimulus time in milliseconds. (B) Each of the atoms, dj, j 2 [1, M], is vectorized

into a column in D. These M columns are concatenated to form the dictionary matrix D. All the input signals

used for the creation of the dictionary have the same level of 30 dB SPL (i.e., at the cochlear linear region). In

this example, we used only one atom per group (g = 1).

doi:10.1371/journal.pcbi.1005338.g003
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(the first term in Eq 2) and for a large enough λ the solution becomes trivial, h = 0. On the

other hand, setting λ = 0.0 usually leads to a non-sparse solution, that is, most of the entries in

h are nonzero. With regard to this observation, the solution of Eq 2 decreases to an ordinary

least-square (LS) solution, without any sparseness considerations.

As a simplified example, consider the AN population response of the second stimulus case

(Fig 2B). Solving for h, the AN population response is equivalent to a linear combination of

just four atoms in D, that is vAN� 0.05 � d5 + 0.31 � d15 + 0.46 � d25 + 0.82 � d35 (Fig 4B, green

circles in h2). Solving for Eq 2 for the other three signals, we get the solutions of h1, h2, and h3,

respectively (Fig 4B). Note that there is a clear similarity between the FT of the input signals

(Fig 2A) and the derived coefficients of h1, h2, and h3. Explicitly, the spectral structures of the

stimuli are reconstructed by the SC algorithm, yet one can see that the three expressions are

not alike. For example, there is a difference between the magnitudes of the FT coefficients of

sin,2(t) and the nonzero entries in h2, meaning that the SC decomposition is not in general an

FT decomposition.

Fig 4. The sparse coefficient vector h and the final pitch probability vector. (A) A simplified view of the

SC methodology. The algorithm decomposed the two-dimensional signal SAN,2(t,fCF) into a linear combination

of four atoms (columns) within D. This is a simplified view that shows the primary values in h2 (green indices)

multiplied by the atoms. (B) The sparse coefficient solution vectors, hk, for the three cases (k 2 [1,2,3]). The

green circles in the figure of h2 correspond to the four terms in the simplified example of (A). All x-axes are

normalized by the fundamental frequency f0 = 240 Hz for convenience. Observe that the solutions for hk

resemble that of the FT for the respective stimuli (Fig 2A). (C) Using the pitch estimation unit (harmonic

sieve), we can easily map the information in hk, for k 2 [1,2,3], into a pitch probability vector, pdf(fp). Each of

the y-axes of the pdfs functions is multiplied by a constant (x100) for visual clearance. The red arrows indicate

the locations of the maximum peaks, all of which are shown to occur at the fundamental harmonic. In other

words, it is most probable that all three stimuli represent the same pitch. Still, note that other options are also

plausible, especially in rational ratios of f0.

doi:10.1371/journal.pcbi.1005338.g004
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Pitch Estimation. The output of the SC stage is a sparse vector h (Fig 4B) that represents

the weights of each atom in the dictionary D. We wish to relate a single pitch percept for each

such vector to facilitate a comparison with human psychophysics’ tests. We do this by comput-

ing the likelihood for each possible pitch [16,19,40], by assuming a generative model of a har-

monic series for each pitch. The resulting likelihood function is a normalized product of the

vector h with a template for the specific pitch in question:

pdf ðfPÞ ¼
1

kG � ~hk
Gðfp; spÞ �

~h; ð4Þ

where ~h is an interpolated version of the vector h (see Methods); each row of the matrix G (fp,
σp) 2 RP×P contains Gaussian functions centered around the harmonics of the pitch nfp as

weights; and kG � ~hk is the normalization factor of the pdf. The derived probability density

functions pdfr(fp), for r 2 {1, 2, 3}, are depicted in Fig 4C. The three pdfs are aligned, and the x-

axis is normalized by the fundamental frequency fo for convenience. The red arrows show that

the maximum peaks in each of the three cases are pointing at fo. Note that the maximum peak

in the probability distribution is just one option among many. For example, in the first case, in

which sin,1(t) is composed of just the fundamental spectral component, the pdf1(fp) indicates

that other pitches are also possible; specifically, these other options occur at subharmonics of

fo. Adding spectral components into the stimulus, i.e., in the second case of pdf2(fp), narrows

the width of the peaks. Additionally, more peaks appear at harmonics that are not complete

ratios of fo. In the third case of sin,3(t), which contains the 10th-13th harmonics, the probability

function is denser. This thickening of the pdf indicates that the third stimulus is perceived as

having less salience than the other two (for a detailed treatment of salience, see Resolved and

Unresolved Harmonics). Additional peaks are formed (not shown, but see the same effect in

Resolved and Unresolved Harmonics) in its probability function, pdf3(fp), around the ‘center-

of-mass’ of the spectral components (i.e., the flocus around the 10th-13th harmonics[1]).

Finally, a standard paradigm in psychoacoustic experiments is to yield a scalar, i.e., specific

pitch or a pitch difference, per a given stimulus. Moreover, it is a known practice in psycho-

acoustics to restrict the participants (or to modulate the results) to a one octave interval (see

for example [41–43]). Thus, the collapsing of the resulting probability function, the pdf (fp),
into a single scalar, the inferred pitch, is a straightforward and convenient procedure that

enables us to compare the model at hand with known psychophysical results. In this paper we

defined the estimated pitch for a given stimulus as

f̂ o ¼ max
fp
fpdf ðfpÞg: ð5Þ

Additionally, in some of the displayed cases, we follow the convention by limiting the

inferred pitch to an octave around the fundamental frequency.

Results

Below, we demonstrate the ability of the proposed model to match known psychoacoustic phe-

nomena qualitatively. Using these phenomena, we illustrate how the various components of

the model contribute to its performance.

Why Do We Need Sparse Representation?

To demonstrate the advantage of using sparse coding algorithms, we compared the perfor-

mance of the algorithm (Eq 2) for sparse (λ = 0.01) and non-sparse solutions (λ = 0, Least

squares). The resulting vectors, hLS and hSC, for the two cases are shown in Fig 5 for the two
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aforementioned 30 dB SPL stimuli of sin,2(t) and sin,3(t). In the case of sin,2(t), there is little dif-

ference between the two solutions (Fig 5A). For the case of sin,3(t), which includes relatively

higher (non-resolved) frequency components, the difference is more substantial (Fig 5B). Still,

Fig 5. Comparing LS with SC. (A) From left to right: the AN population response for a harmonic complex

with the 1st – 4th harmonics. The y-axis is the CFs normalized by the fundamental frequency, in a linear scale

(f0 = 240 Hz). The x-axis indicates the post-stimulus time (between 10ms to 15ms). Next, the h coefficient

vectors for the LS case (λ = 0.0) and for the sparse case (λ = 0.01). (B) Same as in (A) but for a complex tone

stimulus that contains the harmonics 10th–13th. Note that for the lower harmonic stimulus (A), the results

between the two cases, i.e., hLS vs. hSC, are almost identical. On the other hand, for the stimuli with the higher

harmonics (B), the difference is more substantial. Specifically, there are much more nonzero coefficients in

hLS than in hSC that are unrelated to the original spectrum structure of the signal (compare with the FTs in

Fig 2A).

doi:10.1371/journal.pcbi.1005338.g005
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although the LS solutions (hLS) yield more nonzero coefficients than those of the sparse ones

(hSC), the solutions can visibly be related to the harmonic structures of the two input stimuli

(compare the resulting h vectors with the FTs in Fig 2B).

The benefits of the sparse representation are evident when we introduce stimuli with high

volume levels. Fig 6 compares the processing of a missing fundamental harmonic series with

six harmonic components (k 2 [3,8]),

sin;LðtÞ ¼ gL � ð
X

k2½3;8�
sinð2p � f 0k � tÞÞ: ð6Þ

The fundamental frequency is set to f0 = 225 Hz, and the amplitude gL corresponds to either

30 dB (Fig 6A) or 90 dB SPL. In these simulations, to account for the nonlinearities of the

cochlea in the case of the higher sound level, we used the more updated model of Zilany et al.

[27–29]. Fig 6A shows that for the 30 dB SPL signal, the AN population response is limited to a

small region around the CFs of the stimulus’ spectral components, as expected. On the other

hand, for the 90 dB SPL case (Fig 6B), the AN population response is dramatically different as

it spreads out along the whole cochlea. Moreover, since the response is heavily saturated, the

spatiotemporal patterns of peaks and troughs for each of the AN fibers are biased relative to

the case of the moderate sound levels. Despite this significant difference in the AN responses

between different sound levels, psychoacoustic measurements indicate that the sensation of

pitch is robust to that effect [6,44].

The output of the SC model, h, is shown in Fig 6C and 6D for the two stimuli levels, 30 and

90 dB-SPL, respectively. Each panel shows both the sparse (SC, λ = 0.01, red) and non-sparse

(LS, λ = 0.0, blue) solutions. As can be expected, the number of nonzero components in the

vector h is much smaller for the SC solution when compared with that obtained by the LS algo-

rithm. This sparseness applies to both sound levels, but the difference between the two solu-

tions is much more noticeable for higher sound level (compare the blue line in Fig 6C with

that of Fig 6D). Specifically, the LS solutions for the two stimuli levels are fundamentally differ-

ent, and there is no apparent preservation of the spectral components of the input stimulus.

Thus, the LS solution is variant to sound level, as opposed to what we would have expected

from a representation of a pitch in the auditory system [45]. In comparison, the SC solutions

do manage to preserve their overall structure. While the two SC solutions are not identical,

both have only a few non-zero terms that directly relate to the frequency components of the

input stimulus. Consequently, it seems that the sparse requirement in Eq 2, at the expense of

the accuracy of the ordinary LS solution, contributes to the invariant representation of the

stimulus in the vector h, regardless of its sound level.

In order to understand the effect of these different representations on pitch perception, we

compare the resulting probability density functions (the pdf(fp)) for the two stimulus levels and

both LS and SC solutions (Fig 6E and 6F). For the low sound level (Fig 6E and 6F), the two

solutions are alike, and there is no apparent benefit to using one over the other: both curves

(blue and red) have peaks at the same frequencies, and the maximum probability point equals

that of the stimulus’ fundamental frequency, i.e., f̂ 0 ¼ 225 Hz. The result is substantially dif-

ferent for the 90 dB SPL amplitude. In this case, the pdf that corresponds to the solution of the

LS algorithm has lost all resemblance with the stimulus’ frequency components—it is just a

flat, noisy curve. In comparison, the pdf that corresponds to the SC solution still has a clear

indication of the original stimulus properties. In particular, the pdf curve (red line in Fig 6F)

peaks at the harmonics of the fundamental f0, with a maximum peak at f̂ 0 ¼ 225 Hz.

A New Approach to Model Pitch Perception Using Sparse Coding

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005338 January 18, 2017 11 / 36



Fig 6. Stimulus level invariance. (A) The AN population response for the missing-fundamental harmonic complex tone of Eq 6, with f0 = 225

Hz. The stimulus has an amplitude level of 30 dB SPL, and the AN population response is normalized to one, as usual. The x-axis shows post-

stimulus time, and the y-axis denotes the (linear) mapping between locations along the cochlea and CFs. (B) The AN population response for

the same spectral structure as in A (3–8 harmonics), but for a stimulus level of 90 dB SPL. For this relatively high stimulus level, the nonlinearity

effects of the cochlea over the AN population response are apparent. (C–D) The solutions of the LS case (hLS) and the SC case (hSC) for the

30 dB (C) and 90 dB SPL (D) stimulus levels, respectively. (E–F) Probability functions of the LS (Sp,LS) and the SC (Sp,SC) cases, for the two

amplitude levels, respectively. In the 30 dB SPL case (E), the same pitch is succesfully estimated for both the LS and the SC simulations (blue

and red arrows indicate maximum peaks). However, for the 90 dB SPL case (F) only the SC solution proved to be robust and invariant to the
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Effect of Different Dictionaries

Unlike, for example, the Fourier transform, the SC transform enables the use of various dictio-

naries that can be set according to some desired specifications. A standard option is to train a

dictionary according to desired optimal constraints [35], but this is certainly not a prerequisite.

For instance, when mapping patches of images into their parsimonious representations, one

can choose to set the atoms of the dictionary as the basis of the discrete cosine transform,

which is a straightforward and efficient choice (see for example Ch.12 in [25]).

In the current study, we checked two families of dictionaries: the first (Dsine) contains

atoms created by sine stimuli, and the second (Dstack) contains atoms created from harmonics

tones stimuli (harmonic stack). Specifically, each of the atoms in Dsine was produced by stimuli

of one tone with random (uniformly distributed) amplitudes, and the atoms of Dstack were cre-

ated by complex tone stimuli (harmonics 1st-6th) of the same moderate amplitude level (see

Methods)

The two dictionaries were checked with both stimuli of 45dB SPL (Fig 7A–7C) and high

amplitude levels of 90dB SPL (Fig 7B–7D). All simulations had the same spectral structure as

given by Eq 6, i.e., all signals were complex tones with the 3–8 harmonics (the missing funda-

mental case). The results show the maximum peaks (blue dots) of the resulting pdfs that are

stimulus level, as desired (red arrow indicates maximum peaks). In order to account for the cochlear nonlinearities due to the changing in the

stimuli levels, all simulations of the AN fibers in this section were made using Carney’s cochlea model (Zilany’s et al. [27–29]).

doi:10.1371/journal.pcbi.1005338.g006

Fig 7. Comparing the performance of different dictionaries over moderate and high amplitude

stimulus levels. All simulations have the same spectral structure (Eq 6). This spectral structure is simulated

for various fundamental frequencies, f0, and the figures show the estimated pitches for each such case (i.e.,

the maximum peak in each pdf). The estimations are taken from an interval of ± 0 .5 octaves around f0. Each

row, i.e., figures A-B and figures C-D, show the estimation results of the SC model for the two dictionaries

Dsine, and Dstack, respectively (see text). The column subplots refer to different stimuli levels: moderate (45dB

SPL), and high (90dB SPL) amplitudes. The x-axis denotes the location of the first harmonic within the stimuli

(i.e., the 3rd harmonic); the thick black dashed lines define the main octave (f0), and the thin black dashed lines

define the lower and upper octaves, i.e., 0.5 f0 and 2f0, respectively. (A-B) At low frequencies, up to about 4k Hz

of the lower harmonic in the complex stimulus, the estimations of the Dsine dictionary converge to the expected

frequencies for both moderate and high stimuli. However, from 4k Hz and above, the pitch estimations for the

high stimuli levels diverge from the main octave to other ratios of f0. (C-D) The pitch estimations of the Dstack

dictionary converge to the main octave better for the low and high frequencies and for both amplitudes.

doi:10.1371/journal.pcbi.1005338.g007
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taken from an interval of an octave around the fundamental frequency, as is the practice in

psychoacoustic measurements (see for example [41,42]).

Comparing the four subplots of Fig 7, the dissimilarities between the results of the two dic-

tionaries demonstrate quantitatively different results but qualitatively similar performances, at

least in the lower frequency regions. For example, the two dictionaries yield relatively good

estimations of the pitches up to about 4k Hz of the first stimulus’ harmonic (the third har-

monic). For frequencies higher than 4k Hz, there is more variance around the expected funda-

mental frequency (thick black dashed middle line). Specifically, the 90dB SPL estimations for

both Dsine and Dstack seem to be horizontally spread (Fig 7B–7D). From our experience, these

deviations can be reduced by using dictionaries of higher resolution (i.e., with more cochlear

channels and more atoms). However, due to the naïve structure of this model, there is a

computational limit to the dictionary size that we can use. This restriction will hopefully be

alleviated by a future model (see Discussion).

Fig 8 shows in more detail four selected examples of f0 = 606.4 Hz. The two h vectors in Fig

8A are taken from the moderate and high amplitudes levels of the Dsine dictionary case. The

performance of the model for the 90dB level is a bit degraded compared to the 45dB level, as

expected (see also Fig 6). Specifically, in the 90 dB SPL, the model estimates lower coefficients

in h due to the nonlinearity of the cochlea. The resulting pdf, i.e., the probability for a particu-

lar pitch given these SC coefficients, is shown in Fig 8B. Fig 8C and 8D show the h vectors

and pdfs for the second dictionary, the Dstack. Comparing Fig 8A with Fig 8C for the respected

amplitude levels shows that the two SC vectors have different coefficients. This difference is

Fig 8. Detailed results for f0 = 606.4Hz. The selected examples are taken from Fig 7 and show the SC

coefficient vectors h and the pdfs for the two dictionaries and for the two amplitudes. (A, C) The SC coefficient

vectors h for the Dsine and Dstack dictionaries, respectively. (B, D) The resulting pdfs, over one octave around f0
= 606.4Hz, for the Dsine and Dstack dictionaries, respectively. Note the difference between the SC coefficients of

the two dictionaries, but the qualitative resemblance between the two pdfs.

doi:10.1371/journal.pcbi.1005338.g008
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due to the particular structure of the atoms in each of the two dictionaries above. Still, in spite

of this structural differences, the h vectors have nonzero coefficients over indices that represent

harmonics of f0. Consequently, the resulting pdfs have qualitatively similar results and the

maximum peaks appear at the same location. Thus, the result is that the SC model predicts the

same pitches for these two cases. Interestingly, the harmonic sieve is designed, in principle, to

be optimal in the case of Dsine (and under certain assumptions, see [19,40]). Even so, it can still

be used for the Dstack dictionary and yield good results. Note that it might be that for the Dstack

dictionary there is a better (in the aforementioned optimal sense) representation for the har-

monic sieve, but we did not pursue this path any further.

In summary, this section emphasizes the notion that choosing a dictionary can improve or

reduce the performance of the model in different aspects. Thus, one emerging interesting

question from the above discussion is which dictionary can be acquired in a biologically com-

pelling manner to match psychoacoustic and physiological measurements best? In this paper,

however, we do not address this issue, but we have chosen to focus on demonstrating that par-

simonious representation of an auditory information can explain relatively high cognitive

tasks, i.e., the percept of a pitch. In what follows we assume a dictionary that is built of a single

tone. Hopefully, the choosing of such a relatively simple dictionary, instead of a more intricate

one, would prove to be clear and emphasize the qualitative abilities of such an approach.

Resolved and Unresolved Harmonics

The harmonics of a periodic signal are spatially distributed along the BM. Because of BM prop-

erties, low harmonics create separate peaks that are translated into distinct excitation patterns

in the activities of the ANs. Since higher harmonics, on the other hand, do not yield such

distinct peaks, these harmonics do not have distinct excitation patterns. Consequently, low

harmonics are referred to as resolved and higher harmonics, approximately at the 5th–10th har-

monics [14], as unresolved. For unresolved stimuli, the temporal aspects of AN response con-

vey more information about the pitch than the spatial aspects of that response. Thus, using

stimuli with resolved and unresolved harmonics is a controlled way to inspect the temporal

processing of a pitch in the auditory system.

Broadly speaking, temporal models, such as the summary autocorrelation function (SACF)

[4], disregard the resolvability of the stimulus. This is because such models account for the in-

teractions between the harmonic components of the periodic signal whether they are resolved

or not [44]. This indifference, however, stands in contrast to psychoacoustic observations

[11,12,14,46].

The current model combines temporal and spatial aspects of the AN response within its

atoms. Thus, it is interesting to examine the model’s response to this class of stimuli. We com-

pare five stimuli of complex tones (Fig 9),

sinðtÞ ¼ g45dB �
Xrþ3

k¼r

sinð2pf0k � tÞ

 !

: ð7Þ

In Eq 7, each stimulus has the same spectral structure, that is, four consecutive harmonics,

but the spectral locations of harmonics vary. Specifically, the spectral location of the first har-

monic in each signal is set by r 2 {1, 6, 10, 17, 22}. Additionally, the fundamental frequency is

configured to f0 = 443 Hz, and the gains (g45 dB) of all stimuli are equivalent to 45 dB SPL.

Fig 9A shows the sparse coefficient vectors h for all five stimuli. Additionally, we compare

the SCs of the two dictionaries, Dsine (lines) and Dstack (dashed lines). Dsine consists of tone-

atoms and Dstack consists of complex tones that contain six harmonics with decreasing
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amplitudes (1 to 1/6). All the atoms are created with 60 dB SPL stimuli. As can be seen, there is

a slight difference between the results, but overall both dictionaries yield the same SCs, pdfs,

and pitch estimations. For that reason, we focused the rest of the analysis on the Dsine results.

In Eq 7, Low values of r represent stimuli with resolved harmonics while larger values

(r> 5) represents stimuli with unresolved harmonics. Observe (Fig 9A) that for most of the

stimuli, the four prominent spectral components of h are successfully reconstructed. Still,

Fig 9. Resolved vs. unresolved representation of harmonic cues. (A) The solutions hk, k 2 [1, 5], for the

stimuli of Eq 7. We compare the SCs of the two dictionaries, Dsine (lines) and Dstack (dashed lines). Dsine

consists of tone-atoms and Dstack consists of complex tones that contain six harmonics with decreasing

amplitudes (1 to 1/6). All stimuli contain four harmonics of the same fundamental frequency, f0 = 433 Hz, but

at different spectral locations (r 2 {1, 6, 10, 17, 22}). The x-axis is normalized by f0 for convenience. The

correlation between the SC solutions and the stimuli’ spectral components (Eq 7) are apparent. Note that

signals with low-frequency components (such as h1) have more prominent nonzero coefficients than those of

the higher harmonics (e.g., h5). A closer look at h5 (the inset) shows that only two of the four harmonics are

successfully reconstructed (the 23 and 24 tones of the 22–25 harmonics). (B) Pitch probabilities (pdfs) for the

five complex tones for the Dsine (see text). The right figure shows all fp frequencies and the left one views

fewer octaves around f0. The numbers above the curves state the four prominent peaks of the pdfs, from the

highest (1) to the fourth lower peak. Observe that all five solutions peak at the first harmonic, that is, the model

predicts the same 433 Hz pitch for all stimuli. Additionally, most of the other plausible pitches, i.e., other

peaks, are usually located at harmonic ratios of f0, that is, they represent octave equivalence options. It is also

instructive to note the fLOCUS frequencies in the right figure of (B). These peaks indicate the additional

possibility of perceiving the pitches at the locus of the stimuli spectral energy and not of f0 [1]. All simulations

were performed with Slaney’s model and with a sound level of 45 dB SPL.

doi:10.1371/journal.pcbi.1005338.g009
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there is an apparent degradation (from resolved to unresolved stimuli) in the amplitude of the

coefficient terms. For resolved stimuli, e.g., the 1st–4th harmonics stimulus (r = 1), the h vector

holds prominent terms equivalent to the frequency components of the input signal. As r

increases, the estimated terms in h decrease; for example, in the 22nd–25th harmonics stimulus

(r = 22), the vector h only contains two out of the four equivalent frequency components of

the input signal (Fig 9A, inset). This degradation is due to the reduced ability of the AN popu-

lation to phase-lock with high frequency stimuli. Thus, the match between the atoms and the

stimuli is less accurate, which results in smaller SC coefficients.

Fig 9B shows the corresponding pdfs of each of the five stimuli. The right panel shows the

entire pdf while the left panel focuses on the vicinity of the fundamental f0 = 443 Hz. The num-

bers in the figure indicate the arrangement in a descending order of the peak heights, starting

from the highest peak (peak number 1). For all stimuli, the maximum of each density function

was obtained at the fundamental frequency. It is instructive to note that for each of the stimuli,

other local maxima, indicating other pitch possibilities, are allocated at harmonic ratios of f0.

For example, in the case of the lowest harmonic complex (r = 1), maximum peaks in the pdf

are also available at the f0/4, f0/2, and 2f0. These other options represent the octave equivalence

of the perceived pitch. Usually, humans perceive these options to be the same pitch, or to have

the same pitch chroma. Hence, in psychoacoustic measurements, this mixing between octaves

is generally not considered as an error [41–43] (specifically, see SI in [41]).

In Fig 10 we compare the pdfs of the two complex tones of Fig 9. The stimulus that contains

the 1–4 harmonics is shown in blue while the stimulus that contains the 22–25 harmonics is in

green. This comparison is done over one octave to avoid the other pitch equivalence solutions

(which are approximately at the same height of the 1st peak). By inspection (Fig 10A), the ratio

between the 1st and the 2nd peaks is higher for the resolved stimulus (blue line) compared to

that of the unresolved stimulus (green line). We chose to denote this difference in the ratios

as the salience of the stimuli. Fig 10B shows a comparison of additional stimuli with different

fundamental frequencies; each one is a complex tone that contains four consecutive tones.

The colors of the circles match the stimuli colors of Fig 9. Note that the salience of all stimuli

decline with the increase of the location of the first harmonic, i.e., as the harmonics transcend

from resolved to unresolved. Finally, stimuli with high harmonics also have additional peaks

around the locus of the harmonic components (see the fLOCUS peaks in Fig 9B). These phe-

nomena are consistent with known physiological data [9].

To conclude, despite the model’s seemingly spatially-based nature, it can derive the pitch of

unresolved harmonics to some extent. Unlike purely temporal models, however, it penalizes

these stimuli in relation to resolved ones. Note that this penalty is a consequence of the

cochlear properties and not of the SC module. Specifically, this penalty was not introduced

artificially into the model—it is an implicit property of the atoms and stems directly from the

properties of the cochlear model.

Pitch Shift of Inharmonic Equally Spaced Tones

Perceived pitches are usually considered within the context of periodic signals. For example,

the perceived pitch of a complex tone is its fundamental frequency, f0, whether it exists in the

complex or not. Consider the following harmonic series

sinðtÞ ¼ g �
X

k2½k0 ;k1 �
sinð2pðf0k þ DfÞ � tÞ

� �
; ð8Þ

For Δf = 0, human subjects usually perceive the pitch of sin(t) as f0, the fundamental frequency

of the harmonic signal [47]. This is true even for cases when f0 is not present in the signal, i.e., k0
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> 1. For increased Δf> 0, the expression in Eq 8 is no longer harmonic. Nonetheless, previous

psychoacoustic experiments have revealed that human subjects do manage to perceive pitches

with these shifted stimuli, and the detected pitches are approximately shifted on a linear scale rel-

ative to the fundamental frequency [9,40,47–49]. These kind of stimuli are important because

they demonstrate that pitch detection does not follow the stimulus’ envelope, which does not

change in this case (this is not true for stimuli with unresolved harmonics); nor does it follow

the spacing between frequency components of a stimulus [1]. Thus, the phenomenon of pitch

shift was used as a counter example for models that exploit the temporal envelope of a stimulus

or other of its temporal features, such as zero crossing, peaks, etc. [18].

Fig 10. Salience of complex tones. (A) A Comparison between the two probability functions of the complex

tones from Fig 9: the blue line is the pdf of the complex harmonic tone with the 1–4 harmonics, and the green

line is the pdf of the fifth stimulus, which comprises 22–25 harmonics. The x-axis is limited to one octave in

order to compare the pitch’s relative heights and without considering the octave equivalence of consecutive

harmonics. The blue and green arrows show the 1st and the 2nd largest peaks of the two curves, respectively.

Computing the ratio for each curve between the 1st and the 2nd peaks yields a measure of the pitch’s salience;

a larger ratio indicates a more prominent percept of tha pitch. (B) Calculating the ratio between the 1st and 2nd

peaks for harmonic tones with four consecutive tones at different harmonic numbers. The x-axis indicates the

location of the first harmonic in each stimulus, and the y-axis shows the ratio between the 1st and the 2nd

peaks (as demonstrated in (A)). Colored circles indicate the relevant stimuli that are shown in Fig 9.

doi:10.1371/journal.pcbi.1005338.g010
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Fig 11A–11D shows the model’s solutions of the sparse coefficient vectors, h, for different

shifted signals (Eq 8). In these simulations, the input signal, sin(t), has four frequency compo-

nents that are set to k 2 [4,7], and the (missing) fundamental frequency is set to f0 = 200 Hz. In

this example, setting Δf = 0 creates a stimulus sin(t) that is a complex harmonic series of f0 =

200 Hz. For a shift of Δf = 40 Hz, the stimulus is no longer a complex tone of f0 = 200 Hz, and

a shift of Δf = 100 Hz changes the stimulus to be a complex tone of f0 = 100 Hz (with the [9, 11,

13, 15] harmonics). Finally, for a frequency shift of Δf = 200 Hz, the input signal is once again

a complex tone of the fundamental f0 = 200 Hz, but this time with the [5, 6, 7, 8] harmonics.

Following these observations, we would expect the model to exhibit this ambiguity by the fre-

quency shift Δf, and to alternate its predictions between the frequencies of f0, 0.5f0, 2f0, etc.

We performed 500 simulations of sin(t) (Eq 8) with f0 = 200 Hz. Each signal contains the

first six harmonics (i.e., k 2 [1, 6]), and each is simulated with a different Δf. Fig 11E shows the

estimated frequency f̂ 0 as a function of the lower harmonic component fL in the input signal.

For each of the stimuli, the corresponding pdfs are calculated, and the four highest peaks are

indicated. We chose to include the four prominent peaks of each pdf to show the ambiguities

of these signals. The estimated pitches are clustered in lines as a function of the lower fre-

quency fL, consistent with the known “first effect of pitch shift” [47]. One can also see that as

the shift Δf increases, the slopes of the estimated lines slightly decrease, in accordance with the

known psychoacoustic phenomenon [47].

To conclude, the current model qualitatively reproduces the known psychoacoustic phe-

nomenon of pitch shift, even though these aperiodic signals are not part of the model’s dictio-

nary. This implies that the current model: generalizes to complex new stimuli; it does not

depend on the stimulus temporal envelope for cues; and it does not use the spacing between

the stimulus harmonics to estimate pitch.

Transposed Tones

Transposed tones (TTs) were first introduced to explore the relative sensitivity of the auditory

system for binaural timing stimuli [50]. Oxenham et al. [13] used these signals to check the

relation between the tonotopic organization in the cochlea and the perception of pitch. The

motivation of using these signals is to introduce low-frequency temporal structures into the

basal part of the cochlea that usually processes high frequencies. TTs are produced by the mod-

ulation of half-wave rectified sine waves with carrier waves. Due to the limited synchronization

and low-pass properties of the basilar membrane, the outer hair cells, and the ANs, the fine

details of the carrier waves would be negligible. Thus, the results are half-wave rectified sine

waves of low frequency (f0) in high CFs regions (> 4 kHz). In this manner, there is a separation

between spatial locations and fine temporal structures along the cochlea.

Measurements carried out by Oxenham et al. [13] showed that subjects could not estimate

the fundamental frequency of the TT stimuli. This inability means that the spatial arrangement

of CFs along the cochlea is essential for the perception of pitch. Oxenham et al. have also

shown that the summary autocorrelation function (SACF), a well-known temporal model, is

indifferent to TTs and thus to the tonotopic organization in the cochlea. When applying TTs

to the analysis of the SACF, the model does manage to extract the correct fundamental fre-

quencies, in contrast to the aforementioned psychoacoustic evidence.

In the case of the proposed model, each region along the cochlea is characterized by its local

spatiotemporal activities. These localized patterns are embedded in the atoms for each CF.

Hence, we predicted that the SC model would not be able to separate between spatial and tem-

poral processing. Fig 12 shows the processing of TT stimuli by the SC model. We first
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considered three TTs with the fundamentals f0 = 230 Hz, 250 Hz, and 270 Hz. The expression

Fig 11. Pitch shift of equally spaced harmonics. (A-D) The vectors h for complex harmonic stimuli that

contain the four harmonics of 4–7 (Eq 8). The x-axis denotes fd normalized by the fundamental frequency, f0 =

200Hz. The four figures show the stimulus in Eq 8 for the cases of Δf = 0 Hz, 40 Hz, 100 Hz, and 200 Hz,

respectively. The zero shift case represents a regular complex harmonic signal. The 40 Hz shift is no longer a

complex tone of 200 Hz. The third option (C) is a harmonic complex of 100 Hz (with the harmonics 9, 11, 13,

and 15). Finally, the Δf = 200 Hz shift results again in a complex harmonics of f0 = 200 Hz but this time with the

5–8 harmonics. (E) The peaks of the probability functions, pdf(fp), for 500 uniformly shifted stimuli. Each

stimulus is given by Eq 8, i.e., each signal includes the first four terms (1–4) of the fundamental f0 = 200Hz,

plus an incremental frequency shift of Δf. The x-axis denotes the frequency of the lowest harmonic component

of the input stimulus (f0 + Δf) normalized by f0 for visual clarity. The y-axis denotes the estimated pitch. To

demonstrate the ambiguity of this process, we included the first four largest peaks of each of the resulted pdfs.

We focused the view along the 100 Hz, 200 Hz, and 400 Hz in the y-axis; all other regions are mostly empty.

Note the linear shifts in the pitch estimations and the changing of these slopes as a function of Δf [47].

doi:10.1371/journal.pcbi.1005338.g011
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for each of these TTs is given by

sTTðtÞ ¼ g30dB �
X

k2½1;3�
�skðtÞ � sinð2pfc;k � tÞ: ð9Þ

Fig 12. Transposing low-frequency tones into high-frequency regions of the cochlea. (A) An example

of three sparse coefficient vectors, h, for the three frequencies f0 = 229 Hz, 249 Hz, and 269.7 Hz. The resulting

h vectors have the same nonzero indices, i.e., these stimuli cannot be differentiated based on their sparse

representations. (B) The pdfs of the three TTs are noisy and inconclusive, as expected. (C) Predictions of 100

epochs; only the 1st peak in the pdf is considered. There are two distinct types of stimuli: (i) pure tones (blue),

and (ii) TTs (red). Both stimuli are simulated with incremental fundamental frequencies of f0 2 [100 Hz, 500 Hz].

Each stimulus is normalized relative to the fundamental f0. The model could estimate the f0 of the pure tones

with a high degree of accuracy but could not predict those of the TTs at all (compare with [13]).

doi:10.1371/journal.pcbi.1005338.g012
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In this equation, �skðtÞ is a low-pass filtered version of a rectified sine wave (see Methods),

and each of these tones is modulated by the three carriers: fc,1 = 4 kHz, fc,2 = 6.35 kHz, and

fc,3 = 10.08 kHz. Fig 12A shows the results of the sparse coefficient vectors (h) for the above

three TT stimuli. It is apparent that the three sparse representations occupy the same indices,

i.e., the same frequencies fd in h. Therefore, the SC model cannot distinguish between these sti-

muli based on their sparse representations. And indeed, the pdfs of these sparse vectors are

inconclusive (Fig 12B).

Next, we simulated a batch of 100 epochs (Fig 12C). Each epoch contained the TT of Eq 9,

and each had an incremented fundamental frequency taken from the interval f0 2 [100 Hz,

500 Hz] (red bars in Fig 12C). We repeated the simulation also for pure tones (blue bars in Fig

12C) and compared the two by normalizing the measurements with the respective f0. The

results are consistent with the findings of Oxenham et al., that is, the SC model could not esti-

mate the f0 for the TT stimuli successfully.

Iterated Rippled Noise

Delaying a signal of broadband white noise and adding it back to the original one creates a sig-

nal known as rippled noise. When this process of delaying and adding is repeated, a signal

known as iterated rippled noise (IRN) is created. These signals contain temporal regularities

in the time domain and spectral peaks at the reciprocal of the delayed time in the spectrum

domain. Due to the nature of these signals, human listeners report perceiving two sensations:

a tonal part that amounts to the pitch of the reciprocal of the delay (d ms) and an additional

noisy sensation [51,52]. Repeating the iteration process results in a more prominent sensation

of the tonal pitch [53].

Adding the delayed noisy signal back to the original one with a gain of one (delay-add)

yields a signal with spectral peaks that are located at the reciprocal of the delay time d. But add-

ing the delayed signal with a gain of minus one (delay-subtract) yields a signal with peaks in

the power spectrum that are shifted by 1/2d, as if the delay-subtract signal is an odd-harmonic

complex of half the frequency of the delay-add version. Delay-add stimulus raises a sensation

of pitches of 1/d Hz, whereas delay-subtract is usually perceived to be more ambiguous and

yields pitches that are slightly higher or lower than 1/d Hz [53].

Simulations of delay-add and delay-subtract stimuli with the delays of d = 2, 4, and 5 ms,

are shown in Fig 13. These signals are created as follows: for a white noise, x(t), the iterated sig-

nal sn(t) is created by

siðtÞ ¼ si� 1ðtÞ þ g � si� 1ðt � dÞ

s0ðtÞ ¼ xðtÞ
; ð10Þ

for i = 1,. . .,nitr, and nitr is the number of iterations (e.g., 1, 2, or 10). All simulations were done

using Carney’s model (Zilany et al. [27–29]) with stimuli levels of 70dB SPL; the dictionary

contained 1000 sine-atom groups and each group has 10 time-shifts (phases) in it (g = 10,

Eq 3).

In the first row (Fig 13A–13C), which contains the delay-add cases, a clear peak appears at

the reciprocal of the delay, 1/d, as expected. As the number of repetitions increases, so does the

prediction quality of the model, i.e., more estimations are concentrated around 1/d Hz. In Fig

13D–13F we show the delay-subtract cases for the same delays. In these simulations (Fig 13E

and 13F), the inferred pitches are located around the reciprocal of the delays, as expected. But

we would also expect the measurements to peak at approximately 1/d±10%, which does not

happen.

A New Approach to Model Pitch Perception Using Sparse Coding

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005338 January 18, 2017 22 / 36



Musical Notes

Music in the Western culture is based on a musical scale that relates periodic (or quasiperi-

odic) sounds to their fundamental frequencies. Thus, musical instruments that are based on

this musical scale produce harmonic sounds based on these fundamental frequencies. As such,

different instruments have different spectral coloring (i.e., timbre), but human listeners can

perceive and compare the fundamental frequencies between the instruments [54]. This ability

is due to the pitch perception property of clustering periodic (or quasiperiodic) sounds into

classes, i.e., musical notes.

In this section, we checked the SC model with recorded musical notes [55]. For this, we

used a dictionary with 1000 atoms, each of which had ten different phases (g = 10, Eq 3). Each

recorded stimulus was divided into Tsteps = 100 time steps that were analyzed separately. Fig

14A shows the FT of a recorded violin note of A5 (880 Hz) played with a bow (arco). At each

time step Tsteps, Eq 3 is solved separately to obtain ~h 2 RgM. Next, the coefficients of each group

are summed together to get the SC vector h 2 RM. The matrix Hg 2 RM�Tsteps is the aggregation

of all h 2 RM over Tsteps = 100 steps (Fig 14B). Each of the columns of Hg (the SC vectors) are

then processed by the harmonic sieve unit to produce the probability of that time step. The col-

lection of all these pdf is given by the matrix Pg 2 RM�Tsteps (Fig 14C). Finally, to have one single

Fig 13. Iterated rippled noise for different time delays and repetitions. The figures show the results of 500 simulations

for each case of IRN stimulus. Each subplot along the columns show the delays of d = 5, 4, and 2 ms that correspond to the

fundamental frequencies of 200, 250, and 500 Hz, respectively. The subplots in the first row show the delay-add simulations,

and the lower row shows the delay-subtract simulations. The results are derived from the first peaks of the resulting pdfs, and

all estimations are taken from an interval of one octave around the appropriate fundamental frequency [42]. Simulations are

done using Carney’s model (Zilany et al. [27–29]) with stimuli of 70 dB SPL. The dictionary contained 1000 groups of sine-

atoms with distinct CFs and 10 phases in each group (g = 10, Eq 3).The blue dots indicate rippled noise (one repetition), red

points correspond to IRN with 2 repetitions, and yellow dots are for the 10 repetitions. (A-C) The delay-add simulations show

distinct peaks around the 1/d frequencies. (D-F) The delay-subtract simulations show accumulation of the inferred pitches at

frequencies equal to or greater than 1/d±10%, but the results for this case are noisy and inaccurate relative to psychoacoustic

measurements.

doi:10.1371/journal.pcbi.1005338.g013
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probability for each stimulus, the matrix Pg is averaged over the time domain and normalized

appropriately (Fig 14D). As in previous cases, the pitch of the signal is defined as the maximum

point in this pdf.

We repeated this procedure with recorded notes of a flute, a violin, and a piano (Fig 15). All

results are shown on a chromatic scale. Each dot in Fig 15 is the estimated pitch of a recorded

instrument; the colored text indicates the played note.

Discussion

We showed that a model based on the sparse coding of the spatiotemporal pattern of auditory

nerve responses is consistent with many pitch perception phenomena. The model represents

Fig 14. Analyzing a recorded stimulus of a violin. (A) The Fourier transform of the recorded signal. This is a note of A5 (880 Hz) played by

a bow (arco). The 880 Hz and its harmonics are clearly seen. (B) Each time step Tsteps of the stimulus is processed separately. The results

are collected to form the columns of the matricx Hg. (C) Each of the SC vectors (columns) of Hg are processed by the harmonic sieve

separately to produce the pitch probability of that time step (Pg). (D) To compare between simulations, we average over the time steps to

extract the most prominent pitch of the signal. The result is the usual pdf vector, and the estimated pitch is set to the maximum of this pdf.

doi:10.1371/journal.pcbi.1005338.g014
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input stimuli as sparse linear combinations of atoms, where each atom is derived from the AN

population response to a pure tone.

Since the perception of pitch can be elicited by a variety of different stimuli [31], we tested

the model on various such categories. We demonstrated that the sparse representation arising

from a given stimulus at different sound levels could be linked to the spectral components of

that stimulus, giving rise to a level-invariant representation of a pitch. Resolved and unresolved

stimuli lead to a different pitch estimate in the model, with the difference stemming directly

from cochlear properties. Inharmonic stimuli were used to show that the model can generalize

to new stimuli while relying neither on the spacing between harmonics nor the temporal enve-

lope of the stimulus. Next, we demonstrate that the use of the ANs spatiotemporal patterns as

atoms force a tonotopic structure into the model. Consequently, it cannot estimate transposed

tones (TTs), in accordance with known psychoacoustic measurements [13]. We showed that

the model complies with IRN stimuli, and it is also able to process the recorded sounds of

musical notes.

The focus of this paper was the application of sparse coding to the problem of pitch percep-

tion. The particular choice of the supporting elements used here (i.e., cochlear model, pitch

estimation unit, and LASSO) are somewhat arbitrary. First, we chose standard, biologically

inspired, cochlear models [26–29]. Second, we implemented the sparse coding (SC) algorithm

by a known algorithm with available implementations, the LASSO [32]. Other plausible

choices are presented in the literature, such as matching pursuit algorithms [25,56] (see [57]

for different implementation in the auditory system). Third, the final pitch-estimation phase

was implemented as an instance of the commonly used [58] harmonic sieve (via pattern-

matching models). This construction enables an algorithm-level view [59] of the topic at hand.

Fig 15. Results for musical notes on a chromatic scale. We analyzed three musical instruments: a flute, a

violin, and a piano for different notes. The results are shown on a chromatic musical scale (equal-tempered).

The colored labels along the colored dots specify the notes played in specific recordings. All of the recordings

were downloaded from [55]. Although not exact, the model does manage to assign most of the measurements

to the right note (pitch).

doi:10.1371/journal.pcbi.1005338.g015
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The SC Model and Related Models for Pitch

The SC model presented here combines both spatial and temporal aspects of the AN popula-

tion response. On the one hand, the SC model is based on atoms that have limited spatial sup-

port, namely, the nonzero section along the BM that is given by the equivalent rectangular

bandwidth of the cochlea [60]. On the other hand, each atom also includes temporal informa-

tion about the activities of the AN fibers at that spatial location.

The current model is structured in a similar manner to pattern-matching models [5,16,18].

The Fourier-like spectrum analyzer that extracts the resolved harmonic components of a given

stimulus [18] is modified to include both the cochlea and the SC modules. Both models use

templates to associate an estimated pitch with presented stimuli [58,61]. Despite these similari-

ties, there is a fundamental difference between pattern-matching models and the current one.

The atoms (templates) used in this study contain both spatial and temporal activities (Fig 3).

Consequently, although the patterns of the AN population activities may be spectrally unre-

solved, there is still enough spatiotemporal information for identifying the different harmonics

(Fig 9). Additionally, the SC does not rely on synthetic bases such as the sine and cosine of the

Fourier transform (FT) but actual AN activities. Of course, these bases are also unresolved for

high tones which means that the model exhibits less salience with unresolved stimuli, again, in

line with psychoacoustic experiments [13]. Note that since the SC model implicitly inherits

this property for high tones from the known attributes of the cochlear model, there is no need

to add this feature into the model explicitly.

Historically, models of pitches were linked to harmonic analysis theories. Thus, it is instruc-

tive to note the mathematical connection between the SC model and the FT. Indeed, for the

particular case of deprecating the dictionary matrix D into a square matrix, and setting λ = 0,

the optimal solution for any periodic signal x of Eq 2 is given by the FT. In this case, the opti-

mal solution is for h to be the coefficients of the FT and D its matrix [62]. In the SC case, apply-

ing λ 6¼ 0 enables the use of biologically oriented, non-orthogonal, and redundant dictionaries

[63]. In this sense, the current proposed model can be seen as an extension of classic pattern-

matching models.

How does the SC model compare with temporal ones? Traditional temporal models, the

most prominent of which are based on the summary autocorrelation function (SACF), also

exploit temporal features from the AN population responses [2,3,10,64]. However, there are

several open issues with these type of models. First, SACF models need to have long tapped

delay lines for the correlation module, i.e., about 40ms and maybe more if noise is accounted

for [15,65]. Currently, however, there is no physiological evidence to support such structures

[9,31]. In contrast, the SC model exploits local spatiotemporal features without the need for

long tapped delay lines. For that reason and to keep the model biologically plausible, we chose

to use only short time segments of 5ms (see [66]). Different temporal interval durations were

also tested. For shorter time intervals, e.g., 2ms, the SC model acts as a place-rate model; i.e., it

managed to estimate only low resolved signals by their spatial activities along the BM. Longer

time intervals also improved the model predictions for unresolved stimuli, up to a maximal

estimation of about 10ms. Another issue associated with temporal models is that they treat

resolved and unresolved frequencies in a similar manner in contrast to known psychoacoustic

measurements [11,12,14,46]. This may imply that tonotopic organization is not necessary for

auditory processing, but, again, physiological evidence suggests otherwise [13]. Tonotopic

organization is preserved in the auditory system up to the auditory cortex for all mammals

[67–70], and current evidence suggests that pitch processing is also sensitive to it [9,14].

Recently, Laudanski et al. [71] proposed a structural theory of pitch that considers both the

spatial and the temporal aspects of the AN population response. Within this framework, the
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perception of pitch is derived from correlated activity in pairs of points in the spatiotemporal

representation of AN activities. These two points are not necessarily located along the tempo-

ral activity of the same AN fiber (pure temporal processing), nor between different AN fibers

at a particular time (pure spatial processing).

Both the structural theory and the proposed SC model are strongly related. In the SC model

we incorporate the so-called cross-channel delays of the structural theory in the spatiotemporal

patterns of the atoms. Specifically, cross-channel delays of a stimulus are compared to other

cross-channel delays of the model that are embedded in the atoms. We think, however, that

approaching the problem of pitch estimation from the SC aspect offers considerable benefits.

First, the SC approach provides a mathematical framework that generalizes to other modalities

whereas the structural theory approach offers a more specific pointwise approach [23]. Second,

cross-channel delays of the structural theory can be simply acquired under the SC method by

using predesigned atoms (as shown in this paper) or unsupervised training of atoms (see

[36,72–74] to name just a few). These techniques were already tested, including within the

auditory system [57], with great success. Thus, the SC framework can explain different possible

options for such cross-channel correlations.

Other theories and models that exploit the spatial, the temporal, or both, include: the spatial

cross-correlation theory of Loeb et al. [75]; de Cheveigne’s solution for the problem of tapped

delay lines in temporal theories [65]; Carney’s model of phase-opponency [76], Shamma

et al.’s lateral-inhibition and cross-correlation-matrix model [77–79], and the MASD of Cedo-

lin et al. [80]. Note, however, that, these models consider only a small subset of the whole two-

dimensional spatiotemporal structure created by the AN fibers. For example, Loeb et al. pro-

posed comparing two locations along the BM that vibrate with the same phase, that is, a spatial

comparison without the time domain. De Cheveigne proposed to compensate phase shifts

between adjacent cochlear filters, i.e., extracting temporal lags and discarding the spatial in-

formation; and Cedolin et al. proposed a model that is based on spatial derivation between

cochlear filters with a temporal summation, namely, accounting for the differences between

two adjacent cochlear filters and averaging over the time domain. Additionally, these models

account well for resolved stimuli but not for unresolved ones [71].

The Pitch Estimation Module

The use of the harmonic sieve can be considered from different perspectives. First, from the

probabilistic point of view it can be seen as an implementation of a likelihood function: the

probability of a particular pitch given a set of (parsimonious) coefficients h. This approach

originates from the pattern-matching theory, and since the proposed model can be seen as an

extension to the pattern-matching models, the same theoretical and experimental motivations

also apply here. For example, following Goldstein et al. [16], we chose the templates of the har-

monic sieve to be Gaussian functions [16,40,58,81]. It might be that for different dictionaries,

e.g., dictionaries that contain harmonic stacks, there are better options, but we were not con-

cern with optimizing this feature in this paper.

Second, from the physiological perspective, the harmonic sieve can be thought of as a sim-

ple feedforward neural network. In such instance, a set of Gaussian templates of one tone

(one row in the matrix G) can be seen as a neuron with a modulated selectivity curve, i.e., a

neuron that responds to a particular tone and its successive octaves. For examples of such

implementations, see [61,82]. Finally, the harmonic sieve can be considered as a simple (i.e.,

linear) readout function that extracts the perceived pitch from the activities of the spatiotem-

poral receptive fields and introduces it in a manner that enables an easy comparison with psy-

choacoustic data.
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Third, from the biological perspective, it had been shown [83] that harmonic templates of

this sort can emerge naturally from basic processing in the auditory periphery. Specifically,

Shamma et al. demonstrated that the fundamental features include: frequency analysis, fast

changing delays at the CFs, phase-locking, and half-wave rectification. All of these properties

part of the cochlear models that we used.

The Dictionary

In this paper, we checked two types of dictionary families: the first is created by sine stimuli

while the second is created by stimuli of harmonic tones (i.e., harmonic stacks). These dictio-

nary types were constructed and tested for various amplitude levels. Choosing a dictionary can

influence the congruity of the SC model’s results with psychoacoustic measurements: the sen-

sitivity of the model to resolved and unresolved stimuli, the response to low and high stimuli

levels, etc. All these features emerge from the cochlear properties that are encapsulated within

the atoms. Thus, an important question is which dictionary can be acquired in a biologically

compelling manner and will best match psychoacoustic measurements? We intend to investi-

gate this interesting question further in a future paper. However, in this paper we focused on

the main premise—that parsimonious representation of auditory information can explain rela-

tively high cognitive tasks, such as that of the percept of a pitch.

Accordingly, we chose to work, for the most part, with a simple dictionary of pure tones.

Indeed, pure sinusoidal stimuli are rare in our natural acoustic surroundings [84] and there is

no guarantee that the auditory system has access to such components at all. However, note

that there is a subtle difference between plausible stimuli for a (hypothetical) training process

and the outcome of this process, the atoms themselves. This is an important distinction

because it implies that it is reasonable to assume that a learning process over natural-like sti-

muli, for example, vowels and consonants, can yield local spatiotemporal atoms and not neces-

sarily stack-like atoms. Moreover, there is circumstantial physiological evidence to support

similar spatiotemporal structures along different areas in the auditory system. For example,

Norman-Haignere et al. [85] researched specific regions in the anterior auditory cortex that

strongly react to resolved harmonic tones, and, to a lesser extent, to unresolved ones. Addi-

tionally, Carney et al. found, in the anteroventral cochlear nucleus [66], cells that have distinct

spatiotemporal tuning patterns in response to pure tones.

Acquiring a dictionary directly from the AN population response is not the necessarily the

only implementation nor is it the optimal one. A different approach that has been successfully

applied and has many variants [24,34–37] is to perform an unsupervised training from a ran-

domly selected stimulus set that represents sampled statistics of the input domain. These unsu-

pervised learning algorithms create dictionaries that are oriented to specific kind of inputs, for

example, natural sounds [73]. Subsequently, they usually generate dictionaries that lead to

sparser and more accurate results. It is thus important to realize that the proposed SC tech-

nique is not limited to a particular set of atoms (see for example Ch. 12 in [25]).

Plausible Implementations by Artificial Neural Networks

Throughout this paper, we tried to keep the discussion at the representational level[59].

Accordingly, we did not introduce a plausible neural network mechanism to concentrate on

what we saw as the central theme of the current paper—the generalized principle of using

sparse representation also for high perception tasks—such as the estimation of pitches. We felt

sufficiently confident to follow such a path because the current literature already includes sev-

eral plausible neural network implementations of sparse coding [86–90] Another important

point is that we did not introduce a state-of-the-art solution but a qualitative one. For this
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reason, the current model operates on stimuli with fixed time intervals. One relatively simple

and standard technique to alleviate this restriction is by running the same model in consecu-

tive times (for example, [73]).

About the Normalization of the AN Response

In the current paper, we normalized all AN population activities. By normalization we mean

that we divided each AN simulated result by its maximum response. The normalization that

we propose stems from the assumption that relevant information about the pitch is related to

the overall spatiotemporal structures of the AN population responses and not their absolute

instantaneous rate level. The problem of keeping the estimation of the pitch invariant to the

stimulus’ level is due to other deformations and nonlinearities in the AN responses: saturation

in the activity of the AN fibers; change in the locations of peaks of ANs population activities;

or the relative phases between the different AN fibers [31,45]. It is important to stress that this

normalization neither changes nor corrects these effects.

It is worthwhile noting that normalization has been observed across the central neural sys-

tem in general and in the auditory system in particular [91,92]. This stems from the fact the

different modalities need to process a large dynamic range of stimuli, whether it is brightness

in the visual sensors or a change of few orders of magnitude in the level of the sound stimulus.

Conclusion

We showed that sparse coding principles that were successfully applied to other modalities can

explain pitch perception. This general approach of a parsimonious representation of the sensory

information is the main premise of this paper and this finding resonates with ideas of a canoni-

cal computation by the nervous system [23,74,93–98]. Specifically, sparse representation of

information can explain neural activity in the visual cortex [24,34,95,99]; the olfactory system of

insects [100,101]; and findings in the mammalian auditory cortex [102–105] (however, see

[106]). Hopefully, this paper is one small step in searching for such a generalized theory.

Methods

The Cochlear Model

We used two types of cochlear models: (i) Slaney’s MATLAB auditory toolbox [26] and (ii) the

more moderate model of Zilany et al. [27–29]. We used Slaney’s model for most of the simula-

tions in this paper because it is relatively accurate and computationally fast for moderate

sound levels. This model, however, does not account for the high amplitude level nonlineari-

ties of the cochlea; for this phenomenon we used Zilany’s et al. model (Figs 5 and 6). In

Zilany’s model, the parameters were set as: (1) the outer and inner hair cells were taken to be

in healthy condition; (2) the fractional Gaussian noise that is related to the spike rate generated

by each AN was approximated in order to save computation time; (3) the model was originally

built to match the AN population response of the cat, but we used the built-in option to tune it

to the human cochlea [60]; and (4), only high spontaneous rate AN fibers were used.

For both cochlear models, the input stimulus and the simulation of the AN fibers were per-

formed with a sampling rate of FS = 100k Hz; both had the same number of AN fibers (N = 200).

The simulations of the AN population responses were performed as follows: a 15ms stimulus,

sinðtÞ 2 RTa , is constructed and the AN population response is calculated using the chosen model.

Finally, the number of samples is Ta = 15ms�FS (rounded to an integer if necessary).

The output of the cochlear model is a matrix of time-samples over the number of AN fibers,

i.e., Ta × N. This matrix is then truncated to contain only the last 5ms samples, i.e., SAN(t,fCF) 2
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RT×N and T = 5ms�FS. Lastly, SAN(t,fCF) is normalized by its maximum value (0 < |SAN(t,fCF)|<

1). Since the model of Zilany et al. has upper and lower bounds on possible simulated CFs,

between 125Hz to 20k Hz, all simulations were performed within this frequency interval.

Finally, following the usual SPL format, the stimulus levels are introduced into the cochlea in

pascal units normalized by the threshold of hearing, i.e., gPa ¼ 20m � 10gdB=20.

The Sparse Coding Model

Each of the atoms dj 2 RT�N×1, j 2 [1, M], in D are taken as the AN population response to a

pure tone. Each dj is the vector form of the respective AN population response matrix, i.e., the

vectorized form. The vectorization is performed using MATLAB’s convention of stacking the

matrix’s columns one after the other.

The dictionary matrix D = [d1,. . .,dM] 2 RT�N×gM contains M = 1000 atoms for each group

g. The groups are collection of atoms with the same CFs but with different phases (Eq 3). Note

that D is a rectangular (N�T�M), highly redundant, matrix. The number of atoms was set

arbitrarily by trial-and-error. From our experience, fewer atoms (e.g., M = 250), also yielded

reasonable results.

In this paper we chose to implement the SC (Eq 2) by means of the least absolute shrinkage

and selection (LASSO) algorithm [32]. We did so because it has a simple implementation, has

a relatively acceptable running time, and usually yields good results.

The implementation of the LASSO involves an iterative solution derived by gradient

descent. Specifically, the vector h is the solution of the following iterated equation:

hkþ1 ¼ soft hk þ
1

a
DTðvAN � DhkÞ;

l

2a

� �

: ð11Þ

In this equation, vAN is the vectorized form of the AN population response SAN(t,fCF)

(after vectorization and normalization), and the operator soft(x,T) = sign(x)max{0,|x| − T} is

defined for each entry in the vector x. The algorithm runs until a convergent criterion is met

or until a pre-set number of iterations is exceeded. For the algorithm to converge, the parame-

ter α should maintain a certain condition (α�max eig(DTD)). For the simulations in this

paper we used the LASSO implementation within MATLAB Inc. [107]. We also created a

tweaked version of this algorithm, but there was no substantial difference between the two

implementations.

The Pitch Estimation Unit

The pitch estimation unit is a variant of the known harmonic sieve [58] implementation. It

denotes the likelihood of a particular pitch given the sparse coefficient vector h 2 RM. We

implemented it as a multiplication between ~h 2 RP and the matrix G 2 RP×P (Eq 4) in which

P = 15M, interpolating from the M values of h.

Each row in G corresponds to a candidate pitch fp 2 [125Hz,20kHz] and is composed of a

set of Gaussian weights at successive harmonics for this particular pitch, i.e.,

Gi;j ¼
X

k

exp �
ðfj � nkfiÞ

2s2
i

2
 !

: ð12Þ

The index i is taken from 1 to b(20k−125)/σpc. Thus, if the sparse vector h has a coefficient

that relates to the harmonics of the fi pitch, multiplying by the matrix G would emphasize

(give high score) to that entry in the pdf. Otherwise, if h does not contain harmonics that relate

to the fi pitch, the result would be a low score in the pdf. The standard deviations of each of the
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Gaussian curves in G is a function of fi,

si ¼ 0:2 � ERBðfiÞ ¼ 0:2 � 24:7ð4:37 fi þ 1Þ: ð13Þ

In this equation, ERB stands for the equivalent rectangular bandwidth of Glasberg and

Moore [60]. We tried different variations of σi, including piecewise curves, all with relatively

similar qualitative results. The main constraint was to avoid overlap between the Gaussian dis-

tributions and to keep adjacent Gaussian curves wide enough to account for noise in the pitch

cues in ~h. Finally, using this scheme we only had to calculate the matrix G once, making the

algorithm relatively efficient and fast.

Effect of Different Dictionaries

The dictionary Dsine 2 RT�N×M is constructed with stimuli of one tone. It has N = 300 CF chan-

nels and M = 1500 atoms, each formed by a tone stimuli of uniformly selected amplitudes over

the interval of 30dB to 70dB SPL (gsine*unif(30dB,70dB)),

ssineðtÞ ¼ gsine � sinð2p � f 0k � tÞ ð14Þ

The dictionary Dstack has 200 CF channels and 1000 atoms. Each of these atoms contains a

stimulus of six consecutive harmonics (1st-6th); these harmonics have linearly decreasing

amplitudes (from 1 to 1/6),

sstackðtÞ ¼
X6

k¼1

gstack
k
� sinð2p � f 0k � tÞ:

All of the Dstack atoms are formed by gstack = 40dB SPL level stimuli. All simulations were

made using Carney’s model (Zilany’s et al.[27–29]) to account for these high amplitude levels.

In order to avoid aliasing in the spatiotemporal domain, the maximum frequency in Dstack is

the maximum frequency (20k Hz) divided by the number of harmonics (6).

Transposed Tones

The transposed tone stimuli in this paper are modulated rectified tones with three carrier

waves: fc,1 = 4k Hz, fc,2 = 6.35k Hz, and fc,3 = 10.08k Hz (Eq 9). The modulated tone is given by

�skðtÞ ¼ ½sinð2pf0 � tÞ�
þ
� hLP;kðtÞ: ð15Þ

In this equation, the rectification operator is given as [x]+ = max(0,x). The operation � is a

convolution, and hLP,k(t) is a four-order Butterworth low-pass filter (see Oxenham et al. paper

[13] for more details). The cutoff frequencies of the low-pass filter is taken as 0.2fc,k for each of

the three modulated frequencies (k = {1,2,3}).

Iterated Rippled Noise

Following Yost et al. [42], all the stimuli have amplitude levels of 70dB SPL. To account for this

amplitude level, all simulations were performed using Carney’s model (Zilany et al. [27–29]).

To account for the random phases of the stimuli we used g = 10 groups (Eq 3). The same simu-

lations with a dictionary that contains no groups, g = 1 and ϕg = 0, have been slightly noisier

but qualitatively the same. Each of the six cases shown in Fig 13 is a histogram of 500 simula-

tions. All the repetition cases are normalized respectively. The maximum peaks of the pdfs are

selected within an interval of one octave around the pitch frequency, 1/d. All simulations are

performed using the same dictionary; this dictionary contains atoms that are 5ms long and
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have one tone at a level of 45dB SPL. Finally, all stimuli are filtered by a low-pass with a fre-

quency band of 4k Hz [42].

Musical Notes

We used a dictionary with 1000 sine-atoms of length 5ms. Each such sine-atom composed a

group of 10 different phases (g = 10, Eq 3). For these simulations, we used Slaney’s MATLAB

toolbox [108] as the cochlear model (much faster); the cochlea had 300 CF channels. We used

Eq 2 for each of the Tsteps = 100 timesteps separately. Each of the SC coefficient vectors ~h 2
RgM was averaged and normalized appropriately into h 2 RM (each group separately). The col-

lection of all these vectors, for all Tsteps, formed the matrix Hg 2 RM�Tsteps .

Each of these SC vectors (the columns of Hg) are then processed by the harmonic sieve to

produce the probability of pitch Pg 2 RM�Tsteps at each time step (Fig 14C). Finally, to have one

single probability for each stimulus, the matrix Pg is averaged over the time domain and nor-

malized appropriately (Fig 14D). As in previous cases, the pitch of the signal is defined as the

maximum point in this pdf.

All measurements were downloaded from the University of Iowa, electronic music studio,

from the musical instrument samples page [55].
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