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Abstract: The study of threshold levels of heavy metals in soil is essential for the assessment and
management of soil environmental quality. This study reviewed the influencing factors, the deriva-
tion, and application aspects of heavy metals’ threshold values comprehensively by a combination
of bibliometric analysis and scientific knowledge mapping. A total of 1106 related studies were
comprehensively extracted from the Web of Science database during the period from 2001 to 2020.
The results showed that the publication output has been growing strongly. An analysis on the subject,
journal, country, and institution was carried out to demonstrate the development and evolution of this
research branch during the two decades. According to high-frequency keywords analysis, external
factors (e.g., soil physicochemical properties) and internal factors (e.g., crop genotype) can affect
heavy metal threshold values in the soil–crop system. The current methods mainly include the Point
model (e.g., evaluation factor method), the Probability model (e.g., species sensitivity distribution
method), and the Empirical model (e.g., ecological environment effect method). A threshold study
can be applicable to the risk assessment for soil heavy metal contamination in order to determinate the
soil pollution degree and its spatial and temporal distribution characteristics. Moreover, challenges
and prospects of the study of heavy metal threshold values are proposed, indicating that research
should focus on the relationships between human health risks and the established threshold values of
heavy metals in the soil, long-term field trials and bioavailability of heavy metals for the derivation of
the thresholds, and the establishment of more scientific and rational soil environmental benchmarks.

Keywords: soil; crop; heavy metal; threshold; risk assessment

1. Introduction

Soil contamination has attracted widespread attention globally [1–3]. With the con-
tinuous advancement of urbanization and industrialization, heavy metals are constantly
emitted into the terrestrial environment and accumulate in the soil, posing great threats to
the quality of soil, groundwater, and crops [4–6]. Once heavy metals ware in the food chain,
the health of humans and other organisms could be affected [7–10]. Owing to the potential
toxicity and difficult biodegradation of heavy metals, their content in soil has become of
great concern [9,11,12].

Threshold levels of heavy metals in soil re the maximum heavy metal concentrations
that the soil can possess without destroying ecosystems [13]. The derivation of heavy
metal thresholds in the soil is essential for effectively protecting soil quality, guaranteeing
crop yields and quality, and ensuring human health. It also provides a scientific basis
and an important foundation for ecological risk assessment and the formulation of soil
environmental quality standards. Hence, it plays an indispensable role in soil management.
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The academic community has conducted much research on heavy metal thresholds in the
soil. Some studies focused on various types of heavy metals, including certain common
potentially toxic elements (e.g., cadmium (Cd)) and emerging “high-tech” critical elements
(e.g., lanthanides) [13]. Some studies focused on the migration and transformation of heavy
metals in soil–crop systems rather than on a simple soil system. Previous research mainly
focused on protection for a sustainable use of soil [14], and current research has begun to
examine the quality and safety of agricultural products as well as human health risks [15,16].
Thus, research on the thresholds of heavy metals has been extensive and diverse. However,
most previous research was limited to specific situations for soil risk assessment or to
qualitative analyses of small amounts of literature data. A systematic review based on
big data analysis to demonstrate the development of heavy metal threshold studies is
still lacking.

Bibliometric analysis is a method to summarize historical achievements and develop-
ment trends comprehensively, systematically, and objectively. It can also explore possible
future research directions of the research field with the help of mathematics and statistics,
computer analysis and information visualization technology, combined with the analysis
of the literature [17,18]. Scientific knowledge mapping, which is a scientific and effective
literature research tool for large amounts of literature data to study a certain knowledge
domain, is becoming increasingly popular [19]. It can vividly reveal the dynamic devel-
opment of a certain research field by visualizing its development, research hotspots, and
frontier knowledge [20,21].

In this study, a literature review was combined with a bibliometric analysis and
scientific knowledge mapping to analyze studies on heavy metal threshold levels in soil
published in the last two decades. The influence factors, derivation, and application
aspects of the threshold levels were summarized through high-frequency keywords analysis.
Moreover, the challenges and promising research frontiers of research on heavy metal
thresholds are discussed.

2. Materials and Methods
2.1. Data Collection

Publications were obtained from the online version of the database of Science Citation
Index-Expanded (SCI-E) of the Web of Science (WoS) core collection. Records retrieval
started with a topic search for “soil,” “heavy metal,” and “threshold” in the publication
year range from 2001 to 2020. Some repeated or irrelevant records were removed after
analyzing each record. Finally, a total of 1106 records which met the study requirements
were obtained.

2.2. Methodology of Bibliometric Analysis

CiteSpace, regarded as a useful, efficient scientific visualization tool, was used to
analyze the related literature and construct scientific knowledge maps [22]. It was jointly
developed by Dr. Chaomei Chen and the WISE Laboratory of Dalian University of Tech-
nology and is provided to researchers free of charge. CiteSpace V Software was used in
the study for visualizing and analyzing trends and patterns in the scientific literature. Its
primary source of input data was ISI WoS. It could vividly provide key information which
included the publication output and journal information, country and institution coop-
eration, subject and research hotspot evolution through analysis functions of co-citation,
collaboration and co-occurrence, respectively.

3. Results
3.1. Publication Output Analysis

As shown in Supplementary material Figure S1, the annual number of studies in-
creased steadily from 13 in 2001 to 140 in 2020, demonstrating an almost nine-fold increase
over 20 years. The predominant publication type in this field was Article, accounting
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for 97.92% of the studies (1083 records) [23], followed by other types such as Review
(22 records) and Letter (1 record) [23,24].

3.2. Subject Analysis

Publications in the field of research of heavy metal thresholds in soil were distributed
in 55 unique subject categories. The most productive discipline in this field was Environ-
mental Sciences and Ecology, accounting for 67.18% of the studies (743 records), followed
by Agriculture, Engineering, Water Resources, Toxicology, Geology, Public and Environ-
mental Occupational Health, Chemistry, Plant Sciences, Science Technology, Other Topics,
Geochemistry Geophysics, and Biodiversity Conservation (Table S1).

Figure 1 shows that Environmental Science and Ecology, Environmental Science, Agri-
culture, Soil Science, Water Resources, Agronomy, Plant Science, Chemistry and other
disciplines are basic disciplines in the research on heavy metal thresholds in soil. They have
laid a solid theoretical foundation for research and development in this field. Since 2005,
several disciplines including Engineering, Environmental Engineering, Geology and Geo-
sciences, gradually became the supporting disciplines of research in this field, indicating
that the research was no longer limited to theoretical research but also began to consider
practical applications [25]. In 2011, the subject of “Public, Environmental and Occupational
Health” appeared, which revealed that many studies began to attach importance to the rela-
tionships between the thresholds of heavy metals in soil and human health risks [26]. After
2015, certain disciplines such as “Biodiversity Conservation” and “Green and Sustainable
Science and Technology” gradually became important research disciplines in this research
field, demonstrating that the derivation of heavy metal thresholds in soil no longer only
considered the effects on a single species but had acquired a macro view, considering the
effects on whole ecosystems [27].
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Figure 1. Evolution mapping of disciplines development during 2001–2020. Note: Each node
represents a discipline, and the larger the node indicates the higher the number of articles related to
this discipline. A pivotal point with high betweenness centrality is highlighted with a purple ring,
showing this discipline has a great influence in the cooperation between disciplines.

3.3. Journal, Country, and Institution Analysis

Science of the Total Environment was the journal with the highest number of citations, fol-
lowed by Environmental Pollution, Chemosphere, and Journal of Hazardous Materials (Figure S2).
China, the United States, and Italy were the three most productive countries. Collaborative
relationships between countries were highlighted by colored lines, and a close cooperation
meant that research on heavy metal thresholds in soil was still one of the most important
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issues and challenges worldwide (Figure S3) [22]. The Chinese Academy of Sciences,
Zhejiang University, and the University of the Chinese Academy of Sciences were the top
three institutions in terms of publishing volume, but Ghent University occupied a leading
position in terms of the number of citations (Table S3).

3.4. Keyword Analysis

Keyword analysis was carried out in four research periods (2001–2005, 2006–2010,
2011–2015, and 2016–2020) (Figure 2). Top 50 most cited or occurring words from each
period were selected as keywords, and pathfinder was used for pruning the networks. Fi-
nally, a time zone diagram of high-frequency keywords was generated to illustrate research
hotspots quickly and detect the frontier direction of this research field (Figure 3). From 2001
to 2005, research paid more attention to the theoretical study of the sources and toxicity of
heavy metal pollution in soil [14]. From 2006 to 2010, it was no longer limited to theoreti-
cal research but also began to attach importance to practice and applications [28]. Since
2011, ecological risk assessment became a hot research area, showing that the relationships
between thresholds of heavy metals in soil and ecosystem safety started to receive great
attention [15,16]. In-depth discussions in the following section were conducted based on
the keyword analysis.
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Figure 2. High-frequency keywords from 2001 to 2020. Note: the network is depicted with a series
of tree rings in different colors, and every ring represents one keyword. The blue ring indicates the
oldest keyword, and the orange ring indicates the newest. The links describe a co-occurrence of
these keywords. Furthermore, pivotal points with high betweenness centrality are highlighted with a
purple ring.
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4. Discussion
4.1. Factors Influencing Heavy Metal Thresholds

Heavy metal pollution was often closely related to geogenic sources [29], mine waste
emissions [30,31], urban and industrial wastewater [32], and agricultural practices which
include excessive fertilization [33–36]. Organic or inorganic colloids played important
roles in the migration of heavy metal elements in soil, and environmental physical and
chemical parameters were the main influencing factors of heavy metal activation [37–40].
For example, the lower the pH of the soil, the more available heavy metals were, and the
easier it was for heavy metal elements to enter plants through the soil [41,42]. The threshold
values of Ni increased with the increase of the background value of Ni and clay content [43].
Different rice genotypes showed significantly different heavy metal accumulation levels
in rice grains [44]. To sum up, external factors (such as heavy metal level in the soil, soil
pH, redox potential, soil organic matter, and ionic strength) and internal factors (e.g., crop
genotype) could affect the absorption of heavy metals in soil by crops.

4.2. Derivation of Heavy Metal Thresholds in Soil

From 2001 to 2005, some studies focused on the toxic effects of heavy metals in soil on
different crops to explore models and methods for derivation of the thresholds [45]. For
example, some research proposed that the migration of heavy metals from soil to plants
was a nonlinear process, and Freundlich-type functions were recommended to define heavy
metal thresholds in soil [46]. From 2006 to 2010, bioavailability models calibrated with
chronic toxicity data were gradually used to formulate ecological soil standards (predicted-
no-effect concentration (PNEC) values) for specific soil types, which provided an important
basis for agricultural decision making [47,48]. From 2011 to 2015, research on methods and
models for the derivation of threshold values for different regions and crops gradually
received increasing attention [49,50]. For example, geochemical background concentration
and additional risk level (maximum allowable addition amount) should be considered for
the derivation of heavy metal thresholds [51]. From 2016 to 2020, the development of soil–
crop transfer prediction models for the derivation of thresholds in contaminated farmland
gradually became one of the research hotspots [52–55]. For example, empirical soil–plant
transfer models were combined with the species sensitivity distribution (SSD) method to
identify the bioaccumulation of heavy metals in crops and determine the level of heavy
metal pollution in soil [56]. Overall, derivation methods of heavy metal thresholds in soil
have improved with the development of multiple disciplines. The current methods include
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the Point model (e.g., evaluation factor method), the Probability model (e.g., SSD method),
and the Empirical model (e.g., ecological environment effect method). The advantages and
disadvantages of each method are shown in Table 1.

Table 1. Analysis on the advantages, disadvantages, and uncertainty of the methods for determining
the threshold levels of heavy metals in agricultural land.

Model Representative Method Advantages and Disadvantages References

Point model Evaluation
factor method

Advantages: simple and easy to operate, taking account of
species sensitivity, independent of any theoretical model;
quantitative result description
Disadvantages: selection of evaluation factors depending
on experiences and national policies, single type and
quantity of sensitive species without representativity

[57,58]

Probability
model

Species
sensitivity

distribution (SSD)

Advantages: taking account of differences in species
sensitivity, soil physical and chemical properties,
bioavailability and sources of pollutants, and different
pollution risk levels; quantitative result description
Disadvantages: rarely taking account of the
interrelationship of food chains between species, unable
to provide potential recovery information for the
environment

[58–60]

Empirical model Ecological environment
effect method

Advantages: taking account of the effects of different soil
physical and chemical properties; quantitative result
description
Disadvantages: rarely taking account of species sensitivity

[59,61–63]

4.3. Application of Heavy Metal Thresholds in Soil

Based on threshold studies, risk assessment can determine a soil pollution degree and
spatial and temporal distribution characteristics [64]. It could effectively allow locating
areas containing toxic elements through these risk assessment procedures: setting different
threshold levels for common heavy metals in soil (taking China as an example, four
threshold levels of Cd were established for major edible agricultural products’ safety
(e.g., rice) in consideration of soil physical and chemical properties, i.e., 0.3 mg/kg for
pH ≤ 5.5, 0.4 mg/kg for 5.5 < pH ≤ 6.5, 0.6 mg/kg for 6.5 < pH ≤ 7.5, and 0.8 mg/kg for
pH > 7.5), conducting more targeted investigations on heavy metal pollution characteristics,
selecting appropriate methods, and defining a soil pollution classification. Hence, this
analysis could play an important role in setting soil environmental benchmarks and guiding
follow-up risk control measures. The common soil heavy metal pollution risk assessment
methods can be divided into two categories: index and model methods [65,66]. Index
methods mainly included the single pollution index method [67], the Nemerow index
method [65], the pollution load index method, the environmental risk index method, and
the geoaccumulation index method [68]. Model methods mainly include the enrichment
factor method and the fuzzy comprehensive evaluation method. Another method is
the GIS-based geostatistical legal evaluation method [69]. Index methods are relatively
easy to operate, and model methods are applicable to solving complicated problems.
Research mainly uses certain indicators such as enrichment factor, geoaccumulation index,
Nemerow index, and average enrichment ratio to characterize the pollution degree of an
area [53,70]. The content of heavy metals in crops grown on contaminated soil could also
be experimentally and quantitatively evaluated with the help of the bioaccumulation factor
to identify heavily polluted areas [52,55]. However, these methods could hardly determine
quantitative sources of potentially toxic elements in soil management.
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4.4. Challenges and Prospects

Frequency bursts can indicate that the scientific community has paid or is paying
special attention to the contribution of specific factors, and burst detection can identify burst
keywords as indicators of emerging trends [71]. As shown in Figure 4, the discussion of
the factors influencing heavy metal thresholds in soil will continue in the future, especially
concerning the three aspects of “health risk assessment”, “ecological risk assessment”,
and “apportionment and identification of pollution sources” [72]. The topics of “health
risk” and “health risk assessment” have emerged as research frontiers, with the strongest
strength of frequency bursts corresponding to 10.4624 and 6.8364, respectively, indicating
that this research will be of interest to scientists in the future. Performing a comprehensive
ecological risk assessment plays a remarkable role in formulating scientific, reasonable
heavy metal thresholds in soil, but specific adaptation and accuracy of ecological risk
assessment remain a challenge. Methods and tools for identifying and analyzing sources
of heavy metal pollution still need further research. The current highly complex and
changeable environmental situation and the considerable effects on soil pollution of human
activities make heavy metal pollution sources difficult to identify. this may also be one
of the reasons why the terms “source apportionment” and “source identification” have
become burst keywords.
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4.4.1. Relationships between Human Health Risks and Heavy Metal Thresholds in Soil

Heavy metals in soil can enter the food chain after enrichment in crops, which can
pose a severe threat to human health. Moreover, human beings accumulate heavy metals
also through inhalation of particles in soil and by dermal contact [15]. Under the combined
effects of various exposure pathways, the derivation of heavy metal thresholds in soil
requires multidisciplinary joint research. Therefore, it is worthy to explore how to establish
heavy metal thresholds in soil, ensuring that these contaminants do not cause risks to
human health in the future.

4.4.2. Derivation of Heavy Metal Thresholds Based on Long-Term Field Trials

The current studies mostly use short-term pot experiments or field trials to understand
quantitative relationships regarding heavy metal concentrations in soil–crop systems. Large
spatiotemporal differences in the experimental conditions between pot experiments and
field trials often lead to inconsistent experimental results. Consequently, heavy metal
thresholds in soil often failed to meet the requirements of soil pollution risk assessment,
with relatively poor reliability. Determining quantitative relationships and studying the
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dynamic changes of heavy metal thresholds in long-term field trials may become future
research topics.

4.4.3. Derivation of Heavy Metal Thresholds Based on Their Bioavailability in Soil

At present, methods for determining heavy metal thresholds in farmland soil mainly
consider the total amount of heavy metals as evaluation standards. However, the total
amount of heavy metals cannot fully represent the actual toxic effects on crops and humans.
The pH, organic matter content, and other factors should be considered for the derivation of
heavy metal thresholds, and this requires research innovations. Therefore, the construction
of new derivation methods for thresholds based on the bioavailable state of heavy metals
in the soil may be an important development direction.

4.4.4. Establishment of Soil Environmental Benchmarks

Soil environmental benchmarks based on heavy metal thresholds can scientifically
reflect the risk of heavy metal contamination in soil on related receptors. They can guide
the formulation of soil environmental quality standards and subsequent pollution risk
assessment. However, the current soil environmental benchmarks in many countries are
hard to meet; therefore, there is a need to scientifically formulate soil environmental quality
standards. For example, heavy metal threshold values based on different pH levels and
land-use types were established in the China’s current farmland soil environmental quality
standard (GB15618-2018). This standard can be beneficial to determine different farmland
soil pollution levels preliminarily. However, this standard did not take into account other
factors influencing heavy metal thresholds, such as soil types, soil physical and chemical
properties (such as redox potential, soil organic matter, and ionic strength), and crop
varieties. As a result, it may cause risk assessment results to deviate from reality, which can
lead to “overprotection” or to “inadequate protection” in relation to soil environmental
quality safety. Therefore, establishing more scientific and rational soil environmental
benchmarks regarding heavy metal thresholds in soil may be important research direction.

5. Conclusions

Based on a big data analysis of 1106 studies, the following results on heavy metal
thresholds in soils were obtained: (1) Environmental Sciences and Ecology, Agriculture, and
Engineering were the three main disciplines concerned with heavy metal threshold research.
(2) Journals, countries and institutions with the highest number of articles published were
identified, and the development and evolution of these studies during the two decades were
demonstrated. (3) Systematical analysis of external influencing factors (such as heavy metal
levels in soil, soil pH, redox potential, soil organic matter, and ionic strength) and internal
factors (e.g., crop genotype), of derivation methods (such as point model, probability model,
and empirical model), and of application aspects of heavy metal threshold studies from
2001 to 2020 was carried out. (4) Challenges and future prospects of heavy metal threshold
studies were proposed, indicating that research should focus on the relationships between
human health risks and the established thresholds of heavy metals in soil, the derivation of
thresholds based on the bioavailability of heavy metals and long-term field trials, and the
establishment of more scientific and rational soil environmental benchmarks.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijerph19116561/s1, Figure S1: Annual number of various types
of publications (2001–2020). Note: the bar chart shows the annual number of various types of
publications, and the line chart shows cumulative frequency; Figure S2: Most cited journals. Note:
each node represents a journal, and a brighter node indicates this journal is highly cited; Figure
S3: Development and evolution of the studies in the most productive countries. Note: each node
represents a country, and a larger node indicates a higher number of articles published by this country.
The pivotal point with high betweenness centrality is highlighted with a purple ring, showing that
country has a great influence in the cooperation relationships between countries; Table S1: Twelve
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