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Abstract
Machine learning methods hold promise for personalized care in psychiatry, demonstrating the potential to tailor
treatment decisions and stratify patients into clinically meaningful taxonomies. Subsequently, publication counts
applying machine learning methods have risen, with different data modalities, mathematically distinct models, and
samples of varying size being used to train and test models with the promise of clinical translation. Consequently, and
in part due to the preliminary nature of such works, many studies have reported largely varying degrees of accuracy,
raising concerns over systematic overestimation and methodological inconsistencies. Furthermore, a lack of
procedural evaluation guidelines for non-expert medical professionals and funding bodies leaves many in the field
with no means to systematically evaluate the claims, maturity, and clinical readiness of a project. Given the potential of
machine learning methods to transform patient care, albeit, contingent on the rigor of employed methods and their
dissemination, we deem it necessary to provide a review of current methods, recommendations, and future directions
for applied machine learning in psychiatry. In this review we will cover issues of best practice for model training and
evaluation, sources of systematic error and overestimation, model explainability vs. trust, the clinical implementation of
AI systems, and finally, future directions for our field.

Introduction
Accurate prediction of intervention response and illness

trajectories remains an elusive problem for modern psy-
chiatry, with contemporary practitioners still relying on a
‘wait and see’ approach for the treatment of psychiatric
disorders1. This problem has likely arisen due to an
interplay of biopsychosocial factors2 and statistical mod-
eling decisions3. From a biopsychosocial perspective, the
high degree of comorbidity between psychiatric condi-
tions4,5, the lack of diagnostic biomarkers to delineate
between disorders and illness trajectories6,7, the shared
genetic origins of clinically disparate traits8, and the
imprecision of symptom measures9,10 has likely

contributed to the complexity and lack of accuracy in
clinical decision making.
Methodologically, psychiatry has commonly focused on

statistical inference over prediction3,11. Inferential statis-
tics have afforded the testing of theory driven hypotheses,
population inference, and the formulation of grounded
theory and mechanism to better understand the aetiology
of psychiatric traits3,11. However, both psychiatry and
neuroscience have found themselves with significant
translation problems. Even in the face of new discoveries
and paradigm shifts in the understanding of disorders, the
clinical practice of psychiatry and discovery of interven-
tions that outperform placebo has been slow12.
Given this complexity, clinicians commonly assume

diagnostic homogeneity, where all patients who present
with e.g., symptoms of low mood, lack of energy, and
negative thoughts are considered to have the same broad
diagnosis of major depressive disorder (MDD)1. However,
studies using machine learning methodologies (ML) have
begun to identify subtypes of psychiatric disorders with
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differing symptomology13, illness trajectories14,15, and
drug response profiles16. Adding another layer of com-
plexity are the individual differences inherent in these
disorders17. Ignoring this individuality and modeling at
the group level fails to represent the heterogeneity of
clinical populations18. Rather than assuming that all
patients are accurately represented by measures of central
tendency from case control studies, one solution is to
utilize modeling techniques that can parse patient
heterogeneity19.
ML models are capable of this task, by learning indivi-

dual patient characteristics, they can make successive
individual (i.e., single subject) predictions. For example,
using a ML model trained on multisite data from the
STAR*D consortium, Chekroud et al.16, were able to
predict remission from MDD after a 12-week course of
Citalopram therapy with an accuracy of 64.6%. The model
was then externally validated in the escitalopram and
escitalopram-bupropion treatment group of COMED,
attaining accuracies 59.6% and 59.7%, respectively. Given
a report of ~49.3% accuracy for clinician prognostication
on the same outcome in the STAR*D cohort16, this is a
clinically meaningful increase in prognostic certainty.
This study is an exemplar of applied ML in psychiatry.
The dataset had a large number of observations allowing
for the learning of unique patient characteristics. Model
selection was tailored to the available data and rigorously
cross-validated across sites using pipeline architecture. It
was multisite, affording geographic generalizability and a
large clinical scope. Finally, code for the trained model
was made available on request, allowing for transparency
and dissemination of the studies methods.
Prior to and since this publication, many more ML works

have been published using different data modalities, mod-
els, sample sizes, and most interestingly, have reported
largely varying degrees of accuracy20. Given this variability,
concerns have been raised questioning the veracity of
findings in our field and hinted at sources of systematic
overestimation20,21. Adding further complication, large
multisite datasets are the exception, not the rule, commonly
have more predictors than observations, are generally
imbalanced, and have low signal to noise ratios. Given these
circumstances, concerns have been raised that ML may face
the same reproducibility crisis as that experienced by group
level analyses in recent years22–24. However, when proper
methodology has been employed, ML works have been
shown to prognosticate significantly better than chance on
unseen data15, generalize across data collection sites14, and
outperform clinician prognostication16,25.
Given the potential of ML models to transform patient

care, albeit, contingent on the rigor of employed methods,
we deem it necessary to provide a best practice overview
for applied ML in psychiatry. In this guide we will cover
issues of best practice for model training and evaluation,

sources of systematic error and overestimation, model
explainability vs. trust, the clinical implementation of AI
systems, and finally, future directions for our field.

Model training and evaluation
Sample size and systematic overestimation
An array of model training and testing schemes exist in

ML. The choice of which depends on the size of a dataset
and a practitioner’s computational resources. This brings
us to our first encounter with the question of sample size
in psychiatric ML. How big should a dataset be before a
practitioner decides to use an ML strategy? The ignorance
of this question and application of ML to small datasets
has given rise to an important concern: Particularly, ML
studies using larger samples have commonly shown
weaker performance than studies using smaller samples26.
This observation has led to questions regarding the
validity and reliability of preliminary small N ML studies
in psychiatry21. To measure the degree of these effects,
Neuhaus and Popescu20,26 collated studies across condi-
tions; including schizophrenia (total observation N=
5563), MDD (N= 2042), and attention deficit hyper-
activity disorder (ADHD, N= 8084), finding an inverse
relationship between sample size and balanced accuracy
(schizophrenia, r=−0.34, p= 0.012; MDD, r=−0.32, p
= 0.053; and ADHD, r=−0.43, p = 0.044)20. As we
would expect model performance to increase with more
data, these findings suggest an underlying problem within
our field.
One explanation proposed by Schnack and Kahn21 is

that patient characteristics in smaller samples tend to be
more homogenous. In the case of small N, participants
may be more likely to be recruited from the same data
collection site and of a similar age (for example, in the
case of a university recruited convenience sample). In
addition, stringent recruitment criterion may be easily
met, resulting in a well-defined phenotype that is not truly
representative of the parent population of interest. As
sample size increases, the geographic, demographic, and
phenotypic diversity of a sample will increase also,
resulting in decreased model performance, yet, increased
generalizability and model scope (see from proof-of-
concept studies to clinical application below). Theoreti-
cally, future works may be able to circumvent this trade-
off by subtyping patients into well-defined and clinically
meaningful clusters, thus, models could be trained for
specific patient subtypes, maintaining phenotypic homo-
geneity as sample size increases. These considerations
underline the importance of further research into patient
subtyping in conjunction with supervised ML methods. In
addition to the issue of sample homogeneity, the sample
size needed to train an ML model is also contingent on
the strength of the underlying signal between input fea-
tures and an outcome of interest, as well as the complexity
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of the underlying mapping function (the mathematical
function used to derive a line or curve between data-
points). As these two factors can vary greatly between
research questions and datasets, there can—in principle—
be no general rule of thumb to estimate the sample size
required for analyses. Beyond these sample size and het-
erogeneity constraints, the choice of cross-validation
scheme also bears influence on the variability and bias
of accuracy estimates. In the following sections, we will
address the methods available for preliminary ML works
and their common use cases.

Leave one out cross-validation
Due to sample size constraints, leave one out cross-

validation (LOOCV) has become a popular strategy for
model performance evaluation in applied psychiatric ML.
With this strategy, a model is trained on all available
observations minus one (n− 1). Following, the trained
model is tested on the one held-out observation. This
process is repeated until all available observations have
been used for testing. Final model performance is then
averaged across the held-out samples and an accuracy
estimate is derived. However, previous work has demon-
strated the variance properties of LOOCV, suggesting that
although this method utilizes all available data, an
appealing property given limited N, it consequently leads
to unstable and biased estimates due to the high degree of
correlation between samples27. Therefore, repeated ran-
dom splits are preferred, showing less bias and varia-
bility27,28. Notwithstanding, further complications will
arise when we conduct multiple transformations on our
data and optimize a models hyperparameters. If we were
to use LOOCV, yet, conduct transformations within the
same cross-validation scheme, we may optimistically bias
our model evaluations by using the same test set (n− 1)
to select parameters and evaluate the model29. In this
instance, we need a method that allows us to take
advantage of all our data for both model selection and
evaluation whilst avoiding any circularity bias. In these
situations, each transformation needs to be completed in
a nesting procedure.

Nested cross-validation
As the name implies, nested cross-validation allows for

the nesting of multiple cross validations. First, an inner
cross-validation loop is used to conduct data transfor-
mations and/or hyperparameter optimization. This loop is
akin to a train/validation partition. Following, this loop is
nested inside an outer cross-validation loop that assesses
the transformed data and optimized model on different
test sets to those used in the inner loop. This outer loop is
akin to a validation/test partition and allows for the
approximation of the selected models performance.

Once this architecture is defined, the appropriate
number of cross-validation iterations need to be set.
Previous work by Kohavi has investigated this topic in
detail28. For model selection, he found that 10-fold cross-
validation best balanced the bias/variance trade-off. In
addition, repeated runs of the 10-fold cycle were recom-
mended to avoid opportune splits that may lead to overly
optimistic estimates. Three to five repeats are commonly
used. Finally, given the balance between computational
cost and the bias/variance trade-off, it is common to use
another 10-fold cycle in the outer cross-validation loop to
assess the final model’s performance. See Fig. 1 for
visualization of this structure. It is important to note that,
no “optimal” number of repeats can be made as this will
likely depend on the complexity of the model, the size and
amount of signal in a sample, and the resulting stability of
the final cross-validation estimates. If, for example, var-
iance is high between cross-validation folds, more repeats
should converge on a less variable mean estimate and
reduce dependency on spurious data partitions. On the
contrary, if the variance of estimates is low between folds,
a high number of repeats will be of less use and increase
computational cost. However, whether repeated runs
actually achieve this intended variance reduction has been
contested30. Nonetheless, in small samples it may
decrease the effects of favorable cross-validation splits
without compromising test set sizes in a k-fold scheme.
While this method provides a means to conduct mul-

tiple transformations and estimate parameters without
overtly double dipping into a dataset, it is possible that a
nested scheme may generate test sets that are overly
similar to training sets, as well as similar training sets
across cross-validation folds29,31. In theory, this could also
lead to systematic overestimation. One alternative, in the
case of small N is to keep data transformations and
hyperparameter optimization to a minimum27. In the case
of many features, only a few subsets could be tested in the
inner loop whilst hyperparameters for the model could be
left at default to decrease the risk of double dipping. For
an example of this method in Python, see the following
documentation32.

Train/test/validate
In the case of a sufficiently large sample, the problem of

train/validate/test set overlap in a nested scheme can be
avoided by using an entirely separate test partition to the
train/validate partitions used for model selection. For
example, if a balanced sample of N= 500 is available, N=
300 could be partitioned for training and validation, whilst
N= 200 could be held out for final testing. In this case,
both sample size over/under estimation and partition
overlap could be minimized. Commonly, partitions will be
stratified by the outcome label for prediction. Transfor-
mations and model parameters will be learnt in the train/
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Fig. 1 Visualization of a nested cross-validation scheme. All steps from 2a–2c should be conducted inside a pipeline, inside the inner cross-
validation loop

Cearns et al. Translational Psychiatry           (2019) 9:271 Page 4 of 12



validation partitions and analyzed in the remaining
test partition. For deployment of this method in the
Python programming language, see the following
documentation33.

Leave group out cross-validation
What about when a sample is multisite, and each data

collection site has its own unique characteristics? Further,
what if outcome distributions vary across these sites? One
site, a treatment center, may have primarily collected a
convenience sample of patients, whilst another may have
predominantly focused on controls. When we tune a
models hyperparameters, how do we avoid tuning them
directly to these differences that may proxy for disparities
in outcome distributions or processing equipment? Here,
the solution is leave-group out cross-validation, also
known as Monte Carlo or leave site out cross-
validation34,35. In this situation we need to assess whe-
ther a model trained on a particular data collection site,
will generalize to other sites. To achieve this, we hold out
samples according to a third-party array of integer groups
that represent each site. These integer codes can then be
used to encode site specific cross-validation folds and
assess the generalizability of model performance. This
approach ensures that all samples in the cross-validation
folds come from sites that are not represented at all in the
paired training folds. In situations where consortia/mul-
tisite data is used, this method is required. For deploy-
ment of this method in the Python programming
language, see the following documentation36.

Data leakage
While the use of proper cross-validation schemes and

minimum sample sizes helps reduce estimate variability
and systematic overestimation, another overlooked source
of error comes in the form of data leakage. The effects of
leakage on estimates are profound yet appear to be rarely
discussed in the psychiatric ML literature. Named one of
the top 10 data mining mistakes37, leakage refers to the
introduction of information about the outcome label (e.g.,
case/control) that would otherwise not be available to
learn from. A trivial example of data leakage would be
either selecting features or imputing missing values on an
entire dataset before partitioning it into train/validate/test
folds. Here, feature distribution information from the
validate/test folds would be leaked into the train set,
hyperparameters would be tuned to these distributions,
and inevitably, test set outcomes would be predicted with
a high degree of accuracy. For an in-depth appraisal of this
problem and solutions, see Kaufman37.
This problem can be easily avoided through careful

selection of features (only selecting features that would
truly be available at time of analysis) and the partitioning
of cross-validation folds prior to data transformations.

However, as sample size is often constrained in psychia-
tric cohorts, as discussed above, automated k-fold and
nested schemes are commonly used instead of a-priori
train/validate/test partitions. As multiple k-fold runs are
conducted, it is not as simple as learning transformations
on a train partition and then predicting them into vali-
dation/test partitions. Here, data leakage risk increases
substantially, yet can still be avoided through the use of
pipeline architecture.

Pipeline architecture
A machine learning pipeline can be thought of as an

object that sequentially chains together a list of transfor-
mers and a final estimator into one object. This sequential
chaining has three advantages. First, a practitioner only
has to call ‘fit’ and ‘predict’ once on a set of data, rather
than at each transformation. Secondly, hyperparameters
from each estimator can be tuned in unison. Finally,
pipelines help avoid the leakage of statistics by guaran-
teeing that the same samples are used to train the trans-
formers and the final classifier. It is easy to overlook the
importance of this final step. As datasets are commonly
repositioned for ML analysis, the a-priori pre-processing
of data sets is common. As demonstrated above, if a
transformation as simple as imputation is completed on a
dataset in its entirety, this is enough to leak statistics and
cause optimistic bias.
To demonstrate the correct use of pipeline architecture

in the Python programming language and quantify the
magnitude of data leakage effects, we have provided an
example Python script in the references38. In this exam-
ple, we randomly generate a balanced large P small N
dataset containing 3000 features and 500 observations. To
emulate the low signal to noise ratio commonly inherent
in psychiatric cohorts, only 10 of the 3000 features are
related to the binary outcome vector y ¼ f1; 0g. To
demonstrate data leakage effects, we first mean center the
dataset and select a subset of features using regularized
logistic regression (LASSO)39 on the full dataset. Fol-
lowing, we train and test a linear SVM with default
parameters using 10-fold cross-validation, attaining a test
set AUC of 99.89. Next, we conduct the same procedure,
now implementing each transformation within a sklearn
pipeline to ensure the use of the same cross-validation
folds over each transformation. Now, we attain a test AUC
of 50.23. Here, we see that when a pipeline is not used, the
model overfits to leaked statistics and appears to be a near
perfect classifier. However, when we use a pipeline, con-
duct transformations in the same folds, and only learn
from the true signal in the features, predictive accuracy is
no better than chance.
Given that at current, the open sourcing of code for peer

review is not requested by journals, and the ease of which
these mistakes can be made by those newer to the field, it
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is possible that beyond just sample size effects, many of
the highly optimistic studies (� 90%) may be due to data
leakage. To counteract this problem, we recommend that
journals require code reviews in the peer review process.
In addition, the open sourcing of code should be
encouraged. Beyond the aforementioned sample size
estimation biases, such minor transgressions in code
structure may go some way to explain the large degree of
variability currently observed in the literature. Finally,
permutation tests should be conducted regardless of
cross-validation strategy deployed. This way, the null-
distribution and statistical significance of a classifier can
be obtained40.

From proof-of-concept studies to clinical application
While consortia efforts and open sourced models are

becoming more prevalent, publication numbers of studies
at all points along the project maturity continuum con-
tinue to rise. Of utmost importance, ensuring methodo-
logical rigor and conceptual maturity of these publications
is essential. However, beyond best practice recommen-
dations like those provided above, the current lack of
practical guidelines to systematically evaluate ML quality
and maturity makes it difficult for researchers, stake-
holders, journals, and funding agencies to objectively
gauge the quality and current clinical utility of an ML
model or publication. In addition, the lack of evaluation
guidelines risks an overly optimistic or an unduly skep-
tical perception of findings—both in the scientific com-
munity and the public eye. Therefore, we propose a
practical set of guidelines for the assessment of clinical
utility and maturity for ML models in psychiatry. Based
on the conceptual framework of AI Transparency31, we
have derived a straightforward “checklist” with which to
quantify a project’s maturity ranging from the initial
proof-of-concept stage through to the clinical application
stage. Specifically, the checklist comprises six categories in
which an ML project is evaluated. In each category, scores
range from “proof-of-concept stage” (0) to “ready for
clinical application” (2).
The first category—generalization—refers to model

performance in previously unseen data and has been
outlined in detail above. It constitutes the most rudi-
mentary performance measure of an ML model. While
employing cross-validation techniques (score 0) avoids
data leakage and provides a principled estimate of gen-
eralization performance, it is important to note that
(nested) cross-validation should be used for initial model
evaluation and hyperparameter optimization only. At
current, the results of most machine learning studies in
psychiatry might well have arisen from small test-sets as is
typical for cross-validation. In contrast, using a large,
independent test set (score 1) yields a more stable, reliable
estimate of future performance. Finally, using a large,

external test set (score 2), i.e., a test set to which the
creators of the initial model did not have access at training
time, and which was drawn independently from the
training set, is optimal. To this end, online model repo-
sitories (e.g., www.photon-ai.com/repo) provide valuable
infrastructure which greatly simplifies external validation
in practice. Here, a research group can make available a
trained model, and have it tested on independent data,
providing an opportunity to assess the geographic,
demographic, and phenotypic generalizability of a pub-
lished model. In addition, incremental learning can be
used to train certain ML models, allowing a research
group to further train a pre-trained model with their own
data, affording cross institution collaboration without the
need for data sharing (for more information, see the
partial fit method in sklearn41).
The second category—model scope—refers to the group

of individuals about whom the model can make reason-
able predictions. If a convenience sample (score 0) is used
for training and testing, we cannot expect the model to
perform well on different samples. If the sample is
representative for a site or local subpopulation (score 1),
we can expect it to perform as intended at this site
without any guarantees with regard to other sites or
subpopulations. Only testing on a representative sample
of the target population (score 2) ensures reliable per-
formance estimates that translate into clinical practice.
From this point of view, the current use of exclusion
criteria appears highly problematic. While perfectly rea-
sonable if we seek to test hypotheses to gain insight into
mechanisms or advance theory, excluding patients with
e.g., certain comorbidities inevitably entails that our
model’s utility for this patient group cannot be estimated,
thereby severely hampering its applicability in clinical
practice.
The third category—incremental utility—refers to the

added value a machine learning model confers as com-
pared to current practice42. While most studies do not
assess incremental utility (score 0), showing higher effi-
ciency or effectiveness with regard to the current state-of-
the-art (score 1) is essential. If a model or project cannot
show or does not intend to do this, little in the way of
clinical translation can be expected. Thus, the essential
goal should always be that a project reaches a stage in
which it outperforms current state-of-the-art in real-life
workflow (score 2). Although experimental approaches
such as randomized controlled trials seem optimally sui-
ted to show incremental utility, they are rarely used in
medical ML research today. This concept also highlights a
misalignment of expectations with regards to model
performance. A commonly held view is that a model
needs to be highly accurate to be of clinical use. However,
if a model can outperform its opportunity cost, that is,
current state of the art clinical practice free of decision
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support systems, then patient utility can be maximized at
scale. As previously mentioned, clinician rated accuracy to
predict remission in the STAR-D cohort was ~49.3%,
whilst that of a weak to moderately accurate AI model
ranged between 59.6% to 64.6% accuracy. Whilst far from
perfect, a clinically meaningful increase in prognostic
certainty was attained. Therefore, the absolute accuracy of
a classifier should not serve as an indicator of clinical
utility, but the relative increase in prognostication com-
pared to current state of the art practice.
Using this simple checklist, we can now evaluate a

project or publication with regard to its position on the
continuum spanning from “proof-of-concept stage” to
“ready for clinical application”. Note that the three cate-
gories outlined above build upon each other in the sense
that a model with bad generalization cannot have a broad
model scope. Likewise, to show incremental utility, a
model must generalize well and have reasonable model
scope. Thus, insufficient scores in one category cannot be
compensated by higher scores in any other category. See
Fig. 2 for an illustration of this general workflow.
Once an ML model reaches the level we term “ready for

clinical application”, other considerations regarding post-
deployment evaluation, security, and algorithmic bias
come into focus31. While often crucially important, their
impact depends heavily on the context in which the model
is used. If, for example, we could be sure that the model
draws on measures of causal mechanisms, we can assume
that the relationship will not change over time, rendering
post-deployment evaluation less important. Also, an ML
model deployed in a consumer application for smart-
phones might require much higher security (e.g., regard-
ing adversarial attacks and data security, i.e., hacking of
smartphone input data leading to erroneous model out-
puts and therapeutic decisions) than is necessary in a
closed hardware-based device used in the clinic only.
Finally, as ML models are not programmed, but trained,
they will mimic systematic biases inherent in their train-
ing data. This potential algorithmic bias must be carefully
investigated. While it can often be eradicated by retrain-
ing without the variables causing the bias, we need to be
aware of a bias to be able to remove it. Thus, human
involvement is crucial at this point (for an in-depth dis-
cussion, see ref. 43).
Importantly, these guidelines are intended to gauge ML

model maturity with regard to clinical application only. It
should explicitly not be applied to ML research projects
developing methods and proof-of-concept studies. Jud-
ging those with the checklist outlined here would inevi-
tably result in low scores and might therefore stifle even
the most promising of methodological developments. It is
this creativity and ingenuity, however, that allows the field
to move at such breathtaking speed. If researchers claim
to develop a clinically useful tool—as is done in the

introductions and discussion sections of countless pub-
lications and funding proposals, even if nothing but classic
statistical group inference or the simplest of ML models
are planned—we can judge project planning, as well as
subsequent results using this approach to delineate pro-
jects aiming for ML with high clinical utility from studies
seeking insight into mechanisms or proof-of-concept
studies. The ability of journals and funding agencies, as
well as the general public to evaluate the aims and quality
of research projects in this manner is crucial for all
translational efforts in psychiatry.

Understanding ML models
In the wake of ever-more powerful machine learning

applications emerging across a range of industries, the
question of explainability—i.e., understanding which
(patterns of) variables lead to which model predictions—
has increasingly come into focus. Identifying the (pattern
of) variables driving predictions is of obvious scientific
interest. Extracting these relevant variables in an ML
study would provide theoretic insights similar to classical
(usually univariate) statistical inference while retaining
predictive performance. In addition, if the relevant vari-
ables could be extracted, equally well-performing models
could be trained with only a small subset of variables,
saving resources on all levels from data acquisition to
processing and storage.
With regard to clinical evaluation as outlined in the

previous section, quantifying the effect of variables can
also be beneficial in at least three ways: First—with regard
to model utility—identifying relevant variables might help
to detect trivial and erroneous models. For example,
Lapuschkin et al.44 used Layer-wise Relevance Propaga-
tion (LRP)45 to show that an ML model trained to detect
certain objects in photographs (in this case horses) in fact
used nothing but the text of a tag present on all images of
horses in the training data. If this tag was inserted into
other photographs, the images would be classified as
horses independent of their actual content. In addition,
identifying relevant variables might enable domain
experts to judge whether the associations on which the
model relies are likely to remain stable. Second—with
regard to model fairness—knowledge of the relevant
variables may help to identify algorithmic bias. If, for
example, gender and age are identified as the most rele-
vant variables in a model built to identify suitable job
applicants, this bias could be explicitly addressed. Third—
with regard to model security—identifying the relevant
variables provides information on where the model could
be most easily attacked. This, in turn, might help to
immunize the model.
Given that (almost all) ML models are by no means

“black boxes”, but apply a transparent and deterministic,
albeit often rather complex rule to make predictions, a
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large number of algorithms aiming to help us understand
this rule, i.e., to identify relevant variables, have been
developed (for a general introduction, see ref. 46). While it
is beyond the scope of this article to review the numerous
families of such algorithms, they usually quantify the
contribution of each individual variable used in a pre-
diction. This can be done, for example, in a straightfor-
ward manner by systematically obscuring certain sets of
variables in novel data and analyzing the resulting
decrease in performance. Another group of approaches

investigates the trained ML model itself. Examples of this
include simple weight-maps for Support Vector
Machines, decision tree-based importance scores in tree-
based models, as well as more complex approaches, such
as visualizing the process of layer-wise data transforma-
tion in neural networks, including LRP45, or more gen-
erally applicable approaches e.g., based on Game
Theory47. While the wealth of research in this area has
vastly increased the toolbox available for model inter-
pretation in recent years, it also indicates that no

Fig. 2 Illustration of the full best practice workflow from pipeline construction through to project maturity assessment. Dependent on the
sample, crossvalidationscheme, and measurement of incremental utility compared to current clinical practice, a project can fall into 3 distinct phases
of project maturity dictating its readiness for clinical use
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complete solution has been found. In fact, different
approaches may lead to different variables being
identified.
However, the problems with ML model explainability

run much deeper: On the one hand, all algorithms which
identify variables driving model prediction require human
interpretation. Given the multivariate nature of ML
models, this renders such an interpretation extremely
difficult for even the simplest of (linear) models. On the
other hand, the insight into model utility, fairness, and
security we can gain is not only very limited but can
usually be accomplished much better by straightforward
model evaluation. For example, while quantifying variable
relevance might indicate that problematic variables (such
as gender or age) are driving predictions, explicitly
excluding these variables in the first place is much more
effective. However, it is possible that seemingly bias free
variables may be confounded even after the exclusion of
problematic ones. Further analyses may be required to
elucidate such hidden confounds prior to selecting vari-
ables for model consideration. Further work in this area is
required and ongoing.
While we believe that complete transparency regarding

the previously outlined checklist to be essential and
facilitated by practices such as variable assessment for bias
and the sharing of code, data, and trained models for
scientific reproducibility, we deem the disclosure of “the
algorithm” itself (specifically, the mathematical under-
pinnings of the ML model) to be of no use. In fact, even
knowing every single one of the hundreds of millions of
parameter values in a given ML model would fail to
provide even a spec of practically useful insight into the
inner workings of a trained model. While we could re-
create every decision, we would have no additional way to
investigate its quality—much less assess its real-world
impact. The disclosure of detailed information regarding
generalization, model scope, and risk profiles, however,
ensures utmost transparency.

Future goals
Automatized ML development and optimization
The success of ML model development in practice

crucially relies on machine learning experts to preprocess
data (including e.g., imputation and cleaning), select and
construct appropriate features (feature engineering; often
with the help of domain experts), select an appropriate
model family (e.g., neural networks or random forests
etc.), optimize model hyperparameters (e.g., learning
rate), and evaluate the model with regard to general-
ization, model scope, and risk profiles (including incre-
mental utility, fairness, and security as outlined above).
The complexity of this generic ML development pipeline,
as well as the necessity to avoid data leakage and ensure
proper evaluation can be challenging even for experienced

researchers. Indeed, many studies forego optimizing the
ML model development pipeline entirely. Indeed Arbab-
shirani et al.48 showed in a recent review of ML studies in
the area of neuroimaging that 73% of studies employed a
single machine (namely the Support Vector Machine) and
almost no study optimized hyperparameters even for that
single machine. This is particularly disconcerting as the
No Free Lunch Theorem49 in ML clearly indicates that,
without further knowledge of the process generating our
data, no ML algorithm will, overall, perform better than
any other. Even without any mathematical considerations,
it is quite obvious that employing a single machine makes
it extremely likely that another ML pipeline, algorithm, or
setting thereof might have performed better. However, it
may be possible that there are re-occurring data struc-
tures for which particular algorithms, pipelines, and
hyperparameter values are optimal (e.g., default SVM
parameters for variance normalized neuroimaging
datasets27).
Against this background, we see increasing efforts to

automatize the entire ML development process, from data
preprocessing and feature engineering to model selection
and hyperparameter optimization. Examples for this
include auto-sklearn50 (a package focused on Bayesian
hyperparameter optimization and machine selection),
PHOTON (www.photon-ai.com; an ML framework
enabling cross-platform ML pipeline construction, opti-
mization, and evaluation), and Auto Keras51 (an open-
source package based on TensorFlow for neural network
architecture search). We expect this trend to accelerate in
the years to come, automatizing most if not all ML model
development steps. This, however, will increase the need
for proper model evaluation and full AI Transparency as
outlined above.

Learning complex models from small samples
While exceptionally successful in many areas, ML

model training may require large amounts of data as
models comprise at least as many free parameters as there
are variables measured52. For complex models (e.g., Deep
Learning), the number of parameters may easily increase
to tens of millions of parameters53. Training such large
models with “only” hundreds or even thousands of sam-
ples may induce so-called overfitting—a situation in
which the large number of free parameters allows the
model to essentially “memorize” all of the training data,
leading to perfect performance on the training set, but
extremely bad generalization to new, real-world data.
While generally effective, the numerous countermeasures
employed lower the complexity of what a model can learn,
potentially rendering it unable to capture true associa-
tions in the data54–56. Thus, model performance is
severely limited by the number of patients available,
especially whenever high dimensional data sources such
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as neuroimaging data are of interest (commonly known as
large P small N problems)48. Acquiring hundreds of
thousands of patient samples, however, is usually not
feasible—especially in psychiatry where comprehensive
phenotype data is often crucial.
The fundamental problem of model training on small

datasets has recently been addressed in other areas with
great success: First, using data augmentation—i.e., per-
turbing existing data to create new samples—as a math-
ematically principled means to artificially enlarge training
set size, enables the generation of an arbitrarily large
number of training samples using stochastic and image
processing methodology custom-tailored for imaging
data57,58 (including e.g., image synthesis, sample pairing
techniques etc.; Fig. 3a). Second, transfer learning has
been used to transform variables into a lower dimensional
representation based on what has been learnt from other
data sets59–61. In neuroimaging, for example, we could
leverage a cross-domain transfer learning approach by
extracting basic visual features of a pre-trained image
classification algorithm (i.e., a Convolutional Neural
Network, CNN) trained on 1.2 million natural images
(Imagenet57, Fig. 3b). In the same vein, employing intra-
domain transfer learning, we can extract general statistical
properties from large datasets of healthy controls using
state-of-the-art Generative Adversarial Neural Networks
(GAN, Fig. 3c). Such GANs can, for example, represent
the MRI data on a lower-dimensional manifold and enable
the generation of an arbitrary number of MRI images
from this distribution. While highly effective, these tech-
niques have thus far not been systematically applied in
psychiatry.

From ML models to clinical decision support systems
At current, applied ML in psychiatry shows promise yet is

still in its early days. Once best practice is attained and
proof-of-concept studies have been conducted, forward
testing will be necessary to demonstrate prognostic stabi-
lity, incremental utility, and real-world estimates of per-
formance in the same context as they will be clinically
deployed. In such a forward test, a clinician could make
their prediction and clinical decision (e.g., will a patient
enter remission if they prescribe a certain drug? If so,
prescribe drug). In parallel, a trained model could also
make its prediction, with both the model and clinician
assessed at a 12-week endpoint. However, given the inter-
personal nature of psychiatric care, it is unlikely that even if
ML models prove to outperform clinician prognostication,
they will ever solely drive the clinical decision-making
process. Therefore, the testing of AI decision support sys-
tems alongside clinicians will likely provide a more realistic
approximation of what to expect in terms of socially
accepted clinical use. In this third study arm, a clinician
could make a prediction and decision not only based off of
their own clinical expertize, but the binary prediction of an
ML model, as well as its predicted probabilities62. Here, the
synergy between a clinician and an AI decision support
system could be measured. In this case, not only the binary
prediction but the probabilistic estimates are of importance.
Therefore, model calibration should also be carefully con-
sidered (see Niculescu-Mizil & R. Caruana63 and the
sklearn documentation64). If the collaboration of the clin-
ician and the AI system significantly outperform clinician
prognostication alone, the model could then move towards
clinical deployment.

Fig. 3 Illustration of workflows for the different techniques exemplified using Magnetic Resonance Imaging (MRI) data. a Data
augmentation approach using stochastic and image processing methodology. b Cross-domain Transfer Learning applying low-level filters learnt by a
Convolutional Neural Network (CNN) from the Imagenet database. c Intra-domain Transfer Learning deriving a statistical embedding from a large
database of MRI images employing a Generative Adversarial Network (GAN)
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Psychiatry and beyond
Whilst the current overview has focused on the appli-

cation of ML to psychiatric phenotypes, these recom-
mendations will generalize to most areas of applied ML in
medicine. However, as psychiatric disorders are defined
based on deviations of phenotypic characteristics—not
causal biological models—a disorder can be highly het-
erogeneous with regard to its biological underpinnings.
Therefore, diagnostic labels in psychiatry likely contain
noise not seen in other medical disciplines. This presents
a set of unique challenges that are distinct to psychiatry,
with implications for model selection, accuracy, reliability,
reproducibility, and ceiling effects on model performance.
In areas that do not face these challenges, for example,
oncology, specific problems discussed, e.g., sample sized
based systematic overestimation and overfitting risks may
be less prevalent. Therefore, domain application should
always be considered. Moving forward, only by parsing
this heterogeneity in psychiatric phenotypes will we be
able to lay the groundwork for more targeted models and
improved patient care65,66.

Conclusion
In this overview, we have suggested and discussed best-

practice guidelines with the intention that they may help
stakeholders, journals, and funding agencies to obtain a
more realistic view of (1) what can be expected of a
planned research project in terms of clinical utility, (2)
how much closer a particular finding has brought us to
clinical application, and (3) what remains to be done
before we can expect improvements in daily practice. In
addition, understanding how to develop, train, and eval-
uate ML models and publications might help researchers
new to the field of ML in psychiatry to better plan and
monitor their ML projects, creating robust best-practice
procedures in the mid-term. In the long-run, we hope that
these guidelines can help to channel funding, as well as
media attention towards the most promising develop-
ments regarding improved patient care, circumventing
the evident dangers of the current hype around machine
learning and artificial intelligence.
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