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Abstract: Covalent organic frameworks are porous crystalline compounds made up of organic
material bonded together by strong reversible covalent bonds (these are novel types of materials
which have the processability of extended or repeated structures with high performance, like those
of thermosets and thermoplastics that produce high surface coverage). These have a long-term
effect on an arrangement’s geometry and permeability. These compounds are entirely made up of
light elements like H, B, C, N, O and Si. Pharmaceuticals and personal care products (PPCPs) have
emerged as a new threatened species. A hazardous substance known as an “emerging toxin,” such as
naproxen, is one that has been established or is generated in sufficient amounts in an environment,
creating permanent damage to organisms. COF-S7, OAPS and 2-methylanthraquionone(2-MeAQ),
and COF-S12, OAPS and terephthalaldehyde (TPA) were effectively synthesized by condensation
(solvothermal) via a Schiff base reaction (R1R2C=NR′), with a molar ratio of 1:8 for OAPS to linker (L1
and L2), at a temperature of 125 ◦C and 100 ◦C for COF-S7 and COF-S12, respectively. The compounds
obtained were assessed using several spectroscopy techniques, which revealed azomethine C=N
bonds, aromatic carbon environments via solid 13C and 29Si NMR, the morphological structure and
porosity, and the thermostability of these materials. The remedied effluent was investigated, and a
substantial execution was noted in the removal ability of the naproxen over synthesized materials,
such as 70% and 86% at a contact time of 210 min and 270 min, respectively, at a constant dose of
0.05 g and pH 7. The maximum adsorption abilities of the substances were found to be 35 mg/g and
42 mg/g. The pH result implies that there is stable exclusion with a rise in pH to 9. At pH 9, the
drop significance was attained for COF-S7 with the exception of COF-S12, which was detected at
pH 11, due to the negative Foster charge, consequent to the repulsion among the synthesized COFs
and naproxen solution. From the isotherms acquired (Langmuir and Freundlich), the substances
displayed a higher value (close to 1) of correlation coefficient (R2), which showed that the substances
fit into the Freundlich isotherm (heterogenous process), and the value of heterogeneity process (n)
achieved (less than 1) specifies that the adsorption is a chemical process. Analysis of the as-prepared
composites revealed remarkable reusability in the elimination of naproxen by adsorption. Due to
its convenience of synthesis, significant adsorption effectiveness, and remarkable reusability, the
as-synthesized COFs are expected to be able to be used as potential adsorbents for eliminating AIDs
from water.

Keywords: covalent organic frameworks; naproxen; octa(phenyl)silesquioxane; anti-inflammatory
drugs; adsorption
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1. Introduction

Covalent organic frameworks (COFs) facilitate the exact incorporation of organic struc-
tural components into predesignable hollow scaffolds through topological design [1–4].
COFs with distinct roles, including semiconduction [5], emission [6], catalysis [7], proton
conduction [8] and energy conversion and storage [9], have been produced as a result of ad-
vances in topology diagrams and synthetic processes during the previous few years [10–15].
Pharmaceuticals and personal care products (PPCPs) have sparked interest around the
entire globe due to their widespread utilization [16,17] in regular living and potentially
extended half-lives [18]. Multiple PPCPs, for instance, have lately been discovered in
groundwater, contaminated water, potable water [19,20], and even waterbodies containing
vegetation and fish [21,22]. As a result, PPCPs are regarded as a new category of water
contaminant [23,24]. Anti-inflammatory drugs (AIDs) are amongst the most commonly
prescribed medications [25,26]. Due to their analgesic, anti-inflammatory, and antipyretic
properties, these medications are used to cure illnesses in living organisms [27]. Owing to
their strong hydrophilicities and water persistence, AIDs can remain in the aqueous solu-
tion for a long time [26]. Furthermore, AIDs are highly resistant to biotic deterioration [28],
making them the medicines most commonly found in aquatic environments.

PPCPs like naproxen (NAP) and ketoprofen (KTP) have been removed from water us-
ing a variety of methods [29,30], include photodegradation [25], photo transformation [31],
and advanced oxidation processes [32], and ozonation [33]. Because of its operational
simplicity and economic feasibility, as well as the lack of secondary pollutants created,
adsorption may be the most promising technology for removing medicines from water [34].
Numerous materials were used to remove AIDs such as NAP from water, comprising soil
or clay [35], carbonaceous compounds like activated carbon (AC) and bone char [36–38],
nanoporous substances [39,40], metal organic frameworks (MOFs) [41,42], and covalent
organic frameworks [43–46]. COFs have displayed considerable promise in the field of en-
vironmental clean-up [47–50] The homogeneous mesoporous architectures of COFs enable
the rapid penetration of tiny adsorbates into their core as adsorbent materials. Furthermore,
graphene-based materials (GnO/MOFs) have been successfully used to remediate pharma-
ceutically polluted wastewater [47]. COF substances have also been developed to tidy up
environmental pollutants. However, neither synthetic or pharmacological adsorption of
water has been reported thus far in POSS/COF compounds. As a result, more research is
required to examine the synergic activity of POSS COFs (COF-S12) regarding adsorption
for POSS/COF compounds to be used in pharmaceutical adsorption.

In this study, POSS COF-S7 and COF-S12 materials were prepared and used for the
adsorption of AIDs (NAP) from water in attempt to comprehend the adsorption behavior
and evaluate their efficacy as prospective adsorbents for the removal of AIDs. The nano-
materials demonstrated exceptional adsorption properties toward the adsorbates (NAP).
The mechanisms of adsorption, pH influence, adsorption kinetics, and isotherms are all
explored. The overall architecture of the antibiotic naproxen is depicted in Scheme 1.
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Scheme 1. The kinetics of naproxen removal in COFs.

2. Materials and Methods

All chemicals and reagents were purchased commercially from Sigma-Aldrich
(St. Louis, MO, USA) and used without further purification: octa(phenyl)silesquioxane
(OPS), benzene-1,4-dicarboxaldehyde (terephthalaldehyde), fuming nitric acid, tetrahydro-
furan (THF), hydrazine hydrate, hexane, ethylacetate, mesitylene, 1,4-dioxane, methanol,
ethanol, acetic acid, iron (III) chloride hexahydrate, magnesium sulphate (anhydrous),
charcoal powder Pd/C, and celite. The synthesis of octa(nitrophenyl)silesquioxane (ONPS)
and, with a small modification, octa(amino phenyl)silesquioxane (OAPS), was carried out,
and ONPS was synthesized accordingly [51–54].

2.1. Synthesis of Octa(nitrophenyl)silesquioxane (ONPS)

A 5 g (4.84 mmol) quantity of OPS was applied to a small (30 mL) portion of fuming
nitric acid with stirring at 0 ◦C; once the implementation was completed, the mixture was
then stirred for approximately 30 min and then for 20 h at ambient temperature. The mixture
was poured onto 250 g of ice bag and filtered via glass wool. It accumulated a slightly
yellow precipitate, was treated with water (around 100 mL, five times until the pH was
approximately 6) and then washed with ethanol (100 mL, three times). The powder collected
was dried in an oven at about 80 ◦C to eliminate the remaining moisture. This yielded
about 4 g (80%) of powder.

2.2. Synthesis of Octa(amino phenyl)silesquioxane (OAPS)

Octa (amino phenyl) silesquioxane (OAPS) was synthesized with a slight modification
of the method reported in the literature [51,54]. In a 250 mL 3 necked round-bottom
container fitted with a mechanical stirrer and a condenser, 3 g of ONPS (2.60 mmol), 120 mg
of FeCl3·6H2O, and 2 g of active charcoal powder were charged. The flask was then
supplemented with distilled THF (40 mL). The solution was stirred and heated to 60 ◦C
in a N2 atmosphere. Hydrazine hydrate (13 mL) was added dropwise into the solution.
The reaction proceeded for 5 h, and then the mixture was ventilated and purified through
celite. The filtrate was merged with 25 mL of ethyl acetate and rinsed three times with H2O.
The organic layer was dehydrated over MgSO4 and poured into 250 mL of hexane. The
precipitate produced was accumulated by filtration. The substance was redissolved in a
mixture of 15 mL THF and 25 mL ethyl acetate and reprecipitated into 250 mL of hexane.
The collected powder was vacuum-dried for 24 h. This yielded about 40% off-white powder.
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2.3. Synthesis of COF-S7

COF-S7 was synthesized by a solvothermal process with the combination of octa
(amino phenyl) silesquioxane and 2-MeAQ. In a 7 mL vial, OAPS (0.10 mmol, 115 mg) was
charged with 2 mL N,N′-dimethylacetamide (DMAc). In different vials, the organic linker
2-methylanthraquionone (C15H10O2), (0.15 mmol, 266 mg) was charged with 3 mL DMAc.
Both solutions were sonicated for 45 min to obtain a homogeneous solution, then 3–5 drops
of 6 M acetic acid was supplemented and placed in a screw-capped glass vial in an oven at
120 ◦C for 3 days, under N2. The material was washed with 10 mL ethanol five times and
dried for 24 h with a vacuum desiccator to produce a brown needle-like crystal powder
which was dried for 24 h. This yielded about 40% off-white powder.

2.4. Synthesis of COF-S12

The synthesis of POSS COF-S12 was carried out by solvothermal reaction of octa
(amino phenyl) silesquioxane (OAPS) and terephthalaldehyde (TPA). Typically, in a 7 mL
vial, OAPS (0.08 mmol, 92 mg) was charged with 2 mL of mesitylene. In different vials, the
organic linker (TPA) (C8H6 O2), (0.15 mmol, 80 mg) was charged with 3 mL of mesitylene
and 2 mL of 1,4-dioxane. Both solutions were sonicated for 30 min, then 2–3 drops of 6 M
acetic acid were added and the mixture placed in a capped glass vial in an oven at 100 ◦C
for 3 days, under N2. The substance was cleansed with 10 mL hexane/ethanol five times
and dried for 24 h under a vacuum desiccator to produce a fine reddish-brown powder.

2.5. Characterization of the COF Materials

The PXRD information was obtained using a PW 3040/60 MPD X’Pert Pro PAN
analytical XRD machine from The Netherlands that used CuKα radiation. The screening
was obtained using about 3 to 40 o at 2θ and the wavelength used was weighted with
CuKα radiation = 1.5418. These X-rays were generated by a cathode ray, screened to
provide a monochromator, collimated to concentrate them, and focused towards the object.
All the models, including cell parameters and atomic sites, were produced using the
Materials Studio software package, using the Materials Visualizer module. The linker
units were primarily located with their centroid at the vertex spots obtained from the
Reticular Chemistry Structure Resource (RCSR). The RCSR database was founded in order
to postulate a universal system for the nomenclature, classification, identification, and
retrieval of topological assemblies and now functions as a system for the identification of
crystal nets of interest. This database has been instrumental in terms of both designing new
crystalline resources as well as identifying previously documented ones. Accordingly, all
the models were constructed in the tetragonal system, with the layers lying on the ab plane.
The space groups with the most possible symmetry were preferred. An active minimization
was accomplished to improve the geometry of the building units, utilizing the universal
force field employed in the Forcite module of Materials Studio. During this procedure,
the unit cell parameters for each model were also optimized. The COF-S7 and COF-S12
models’ respective powder patterns were generated and matched to the experimental
designs to establish the best agreement. They were used to refine the unit-cell parameters
by accomplishment full-profile-pattern (Pawley) refinements against the experimental
powder designs [50].

In the FT-IR spectrum, the spectrophotometer emits infrared beams at the sample and
measures the wavelengths absorbed by the sample. Infrared light could pass through the
material since it was sufficiently small. The objects can be assessed by comparing spectra
from the infrared spectral database. Scanning electron microscopy is used to analyze
surface morphology, topographical composition, and crystallographic data. A scanning
electron microscope (SEM) examines a material with a beam of electrons to produce a
magnified image of the object [55–58]. The SEM study-sample technique demands that the
materials are small enough to fit in the tester stage as the ambient conditions and strong
electron beam energy should be confined. Using conductive adhesive, the materials are
then mounted tightly onto a sample holder. The analysis was achieved with different
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magnifications using a JEOL JSM-6400 scanning electron microscope (JEOL, Tokyo, Japan).
The TGA analysis in this study was conducted using a Mettler Toledo TGA/STDA851
thermal analyzer (Columbus, OH, USA). Prior to analysis, the sample was deposited in an
aluminum pan that was punctured. The material was heated to temperatures ranging from
50 to 800 ◦C, at a rate of 10 ◦C/min, and at a pressure of less than 200 cm/nitrogen gas flow.
For the NMR spectroscopy, the substance was placed in a magnetic field, and the NMR
signal was produced by the excitation of nucleus specimens with electromagnetic radiation,
which is monitored by responsive radio frequencies. The intramolecular magnetic force
around an atom in a molecule modifies the resonance frequency, allowing access to the
electronic framework and distinct functional units of the structure.

2.6. Adsorption Experiments

Naproxen (50 mg L−1) sequential attenuations were prepared by dissolution in a
90:10 v/v water-methanol solvent. By offering an essential volume of 0.1 M NaOH aq.
solution, the pH level was adapted to 7.0 (taking into account the typical pH of river
and rain water [42]. By sequential dilution, NAP solutions at the essential concentrations
(5–50 mgL−1) was formed from the stock solution. The absorption spectrum of the solution
was observed using a UV spectrometer (UV-1650, Shimadzu, Kyoto, Japan) at 272 nm to
obtain the concentrations of NAP. Prior to the adsorption, the adsorbent was dehydrated at
100 ◦C for 12 h in a vacuum oven to disperse water. The adsorbent (5.0 mg) was poured
to the adsorbate mixture (25 mL, pH 7.0), and the solution was stirred at 25 ◦C for 1–5 h
in magnetic stirrer at a consistent rate (250 rpm). After the adsorption investigations,
the mixture was filtered through a polytetrafluoroethylene syringe filter (hydrophobic,
1 mL). UV spectrophotometry examination was used to quantify the remnant proportion
of adsorbates in the solution. The influence of the solution’s pH on NAP adsorption on
COFs were further investigated by applying volumes of 0.1 M HCl (or NaOH) solution
to the solution. The reproducibility was tested by applying 20 mg of the utilized COFs to
ethanol (25 mL), agitating them for 24 h, then isolating them to restore the adsorbents [45].
To totally eradicate the adsorbed NAP, the regenerating procedure was executed five times.
Afterwards, the regenerated substance was filtered and dried for 24 h at 100 ◦C.

3. Results and Discussion

We designed two new COFs with a 2-methylanthraquionone and terephthalaldehyde
as organic units for COF-S7 and COF-S12, respectively. Both COFs were synthesized by a
solvothermal process (Scheme 2).
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Scheme 2. Nitration of (a) yields (b), and reduction to produce (c). Condensation of (c,d) and (c,e)
lead to the production of (molecular units) which will join together the tetrahedral building blocks D
and E to produce the diamond like structures of POSS COF-S7 (f) and COF-S12, (g) single framework
(space filling, C brown, O red, N blue, and Si yellow). Hydrogens were omitted for clarity.
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In order to confirm that the phases observed from PXRD measurements for COF-S7
and COF-S12, simulated powder patterns were calculated from these models and compared
with the experimentally observed data (Figure 1).
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Figure 1. PXRD spectra of as-synthesized and simulated (a) COF-S7 and (b) COF-S12.

Figure 1 shows the PXRD spectra of as-synthesized COF-S7 and COF-S12 materials,
which exhibit notable strong peaks at 2θ degrees and less than 10 (<10). COF-S7 had notable
peaks at 8.1, 10.0, 10.6, 16.1 and 20.9◦, which corresponded to hump-ordered (112), (200),
(202), (3–12) and (107) reflections, respectively. Interestingly, COF-S12 plane reflections
were also observed to be hump-ordered to (002), (112), (211), (220), (213), (321), (400), (224)
and (215), which correspond to 2θ angles of 5.5, 7.8, 8.8, 10.9, 11.5, 12.7, 13.6, 15.1 and 16.1◦.

COF-S7 possesses brown needle-like crystal in the tetragonal I-4 space group with unit
cell parameters a = 17.632, b = 117.632, and c = 33.692, 90◦, and volume unit cell 10,475.1 Å3.
Similarly, COF-S12 is a fine pale-yellowish crystalline powder with a tetragonal space
group I-4/mmm, unit cell parameters a = 27.001, b = 27.001, and c = 31.140, and γ = 90◦,
and a unit cell volume of 22,703 Å3. The scopes from the intensity of the calculated and
as-synthesized COFs could be attributed to the non-full connectivity among the central
compound (OAPS) and the linkers; therefore, the occurrence of the materials from the
incomplete reaction might be present in the crystalline materials acquired.

Chemical stability of the synthesized COF-S7 and COF-S12 materials were explored in
various solvents, including methanol, ethanol, acetone, hexane, acetonitrile, chloroform,
dichloromethane and tetrahydrofuran (Figure 2). This was done to remove the synthesized
solvents used (DMAc and mesitylene/1,4-dioxane) in an attempt to obtain an optimal
solvent for the activation.

Furthermore, the structural reliability of the materials was investigated by FTIR, CP
MAS NMR solid 13C and 29Si techniques. The FTIR spectrum for the ONPS showed that
the two sharp peaks at 1344 and 1537 cm−1 were attributable, respectively, to symmetry
and asymmetry υN=O. However, after reduction with hydrazine hydrate, which acted as a
reducing agent, as indicated in the FTIR spectrum of OAPS, both strong absorption peaks
collapsed, proving that the reduction reaction was achieved. In the OAPS spectrum, new
broad peaks were observed at 3352 and 3224 cm−1, which were ascribed to primary imine
νN–H stretching (Figure 3). A similar study was conducted in which the symmetry and
asymmetry υN=O were detected at 1350 cm-1 and 1529 cm−1, respectively. Furthermore,
νN–H bond stretching were also revealed at 3369 cm−1 and 3220 cm−1, respectively [51].
Equally, in the ONPS compound, a Si–O–Si bond was observed at 1092 cm−1 and a slight
decrease was also identified at 1074 cm−1 in the OAPS FTIR spectrum. This research was in
agreement with that by [51,54], who established that the ONPS and OAPS Si–O–Si bonds
occurred at 1119 cm−1 and 1100 cm−1, respectively.
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COF-S7 and COF-S12 exhibited theυC=N stretching of amine functions (υC=N = 1593 cm−1

and 1585 cm−1, respectively (Figure 1)). Similar studies are in conformity with this [48–50].
Noticeably, the Si–O–Si spectrum in COF-S7 and COF-S12 was observed at the 1104 cm−1

and 1086 cm−1 absorption bands. Similar reported research by [51] is in agreement
with this.

The NMR spectrum and 1H NMR spectra of ONPS and OAPS were examined in
deuterium acetone (acetone-d6), Figure 4. In the 1H NMR spectrum of OAPS, the aromatic
hydrogens of OAPS were observed to display a strong chemical shift (7.47–6.34 ppm) due to
the electron-donor abilities of the substituents (NH2) on phenyl rings; those for the amino
protons were in the range of 4.0–5.0 ppm, which is in a ratio of 2:1. A previous study by [52]
is in agreement with this. Due to the electro-withdrawing effects of nitro groups (NO2) on
the phenyl ring of the ONPS, the signals relating to aromatic hydrogen protons were found
in the range of ONPS at lower chemical shift (8.7–7.8 ppm). Numerous aromatic signals
were obtained in the ONPS band, notably triplet signals at (8.67 ppm) that were noticed to
be protons between the nitro (NO2) and siloxy (Si–O–Si) groups in the meta isomer. Related
research analyses were supported, in which the ONPS signals were characterized at a range
of 8.7–7.8 ppm, while the range of OAPS was also discovered at a scale of 7.8–6.2 ppm and
7.8–6.0 ppm, respectively [51,54].
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The polyhedron oligosilsesquioxane structural systems were preserved during the
synthesis, as revealed by 13C NMR solid-state spectra for OAPS. At the end of the synthesis,
signals from the trends assigned with ONPS were totally replaced by a new OAPS array
peak position in the higher range of 118.0–152.9 ppm, indicating that the procedure was
achieved (Figure 5). Four distinct aromatic carbon environment peaks were observed
at 118.05, 132.39, 147.27 and 152.93 ppm, respectively. This demonstrates that the cage
architecture of polyhedral oligosilsesquioxane remains stable during processing. Research
by [53–55] displayed a similar trend.
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The integrity of the oligomeric silesquioxane enclosure structure in the synthesis
was also verified using a 29Si solid-state NMR spectrum for OAPS. The acquired results
clearly demonstrated that the cage architecture of the polyhedral silesquioxane is preserved
during synthesis, as shown in Figure 3, with OAPS signal locations of −79 and −69.6 ppm,
respectively. This is consistent with recorded scientific investigations conducted using a
traditional technique and a Pd/C catalyst [51,54,56].

13C NMR spectra of COF-S7 and COF-S12 were used to confirm the presence of
various carbon environments in the synthesized materials (Figure 6). Aromatic carbons
(phenyl rings) for the OAPS cluster and other linkers present in the synthesis of the
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nanomaterials were attributed to the overlapping patterns in the spectra at chemical shifts
ranging from 112.6–139.3 ppm. The various resonating regions for COF-S7 and COF-S12
were investigated at the signals 126.02–145.3, and 117.5–139.3 ppm, respectively. Due
to the impact of the aromatic linkers, the relevant chemical shifts were slightly altered
to lower chemical shifts when the signals of OAPS and COFs were assessed. A related
analysis performed by Hoffman and colleagues is in agreement with this [57]. Moreover,
the chemical shifts of the azomethine carbons (C=N) at distinct vibration ranging from
161.9–165.3 ppm were disclosed by the synthesized COFs. In COF-S7 and COF-S12, the
C=N signals were observed at 161.9 and 165.3 ppm, respectively. Consistent readings
have been documented by [57,58]. Moreover, COF-S7 confirmed the signal at 23.6 ppm,
indicating that the alpha aromatic methyl carbon group of the 2-methylanthraquionone
linkage is responsible.
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Furthermore, 13C CP MAS solid-state NMR showed a resonance of aromatic υC=N
bond environments at 161.92 ppm and 165.39 ppm, respectively. Meanwhile, COF-S7
affirmed the signal at 23.6 ppm which was attributed to the alpha aromatic methyl carbon
group (R–CH3) of the 2-methylanthraquionone linker. Moreover, the aromatic υC=C
resonance was spotted for OAPS and TPA in the range 117.5–139.3 ppm. By comparing
the signals the OAPS and COFs produced, the corresponding chemical shifts were slightly
shifted to lower chemical shifts owing to the influence of the aromatic linkers.

The presence of silicon in cubic silesquioxane was revealed by solid-state 29Si MAS
CP-NMR, which was used to evaluate the synthesis of the novel materials. As shown in
Figure 6, the evidence gathered demonstrated the efficacy in the synthesis. For COF-S7 and
COF-S12, magic-angle spinning provided a single signal with chemical shifts of −81.02 and
−79.06 ppm, respectively. The Si8 vertices were found throughout the COF architectures
as a result of these findings. The cubic silesquioxane vertices from the precursor material
(OAPS) were all oriented in a certain direction, which allowed for the observation of a
single chemical shift. Even after the synthesis of COFs, the analysis validated the cage
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architectures’ stiffness and regularity. This finding corresponds with other investigations
on the synthesis of COF materials containing silicone [59,60].

TGA examinations of as-synthesized COF-S7 and COF-S12 compounds were assessed
at temperatures ranging from 50 to 800 ◦C min−1 and a thermal rate of 10 ◦C min−1

under oxygen as in Figure 7. COF-S7 indicated a continuous weight loss in the ranges of
50–145 ◦C and 145–276 ◦C, which could be due to the elimination of water molecules and
highly coordinated solvent, which were connected to weight losses of 14.83 and 21.35 wt%,
respectively. As a result, full thermal decomposition is achieved at temperature of about
300–350 ◦C and at 54.8%. Interestingly, COF-S12 demonstrated an exceptional thermal
stability up to 300–400 ◦C before collapse of the framework, consequential in a mass loss of
44.2 wt%. The product declined in weight from 50–150 ◦C, with a weight loss of 16.17 wt%
assigned to the loss of water molecules, and further deteriorated from 150–260 ◦C, with a
weight loss of 21.2 wt% related to strong solvent removal. The related literature is consistent
with these findings [61–64], with a percentage loss of roughly 54.8 wt% when the structure
disintegrates. (Figure 7).
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The synthesized compounds obtained displayed the morphological components of the
materials via FESEM images in which COF-S7 revealed itself to be even and highly sphere-
shaped with a diameter of 100 nm and a rough surface micro-grain porosity crystal-size ar-
rangement as shown in Figure 8. This is comparable with the results of [65], who produced
a QD-doped COFs@MIP containing 1,3,5-triformylphloroglucinol (TP) and phenylenedi-
amine (Pa). Similarly, COF-S12 revealed a nanocrystal porosity with a uniform homo-
geneous cubic morphology and diameters of 1µm and 100 nm, respectively. The same
architecture size was observed in a study [60], in which a SiCOF-5 was produced by
condensation by reticulating dianionic hexacoordinate [SiO6]2− nodes.

Energy-dispersive X-ray (EDX) analysis confirmed the stoichiometric quantity as well
as the morphological structure of the components present in the synthesized materials as
shown in Figure 9. The elemental constituents (%) displayed atomic peaks that proved
the presence of the elements (C, N, O and Si) in percentages, which further confirmed the
synthesis of the new COFs. COF-S7 exhibited all of the predicted elements, with 55.98,
13.51, 22.27 and 5.25 in atomic % and 66.65, 7.06, 12.10 and 14.16 in weight % for C, N, O
and Si, respectively. Similarly, COF-S12 indicated uniform atomic % and weight % values
of 57.25, 12.31, 24.99 and 5.45, and 56.03, 7.68, 13.17 and 23.11, respectively.
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The as-synthesized nanomaterials were used for the measurement of the isotherm
at 77 K from 0 to 1 bar (1 bar = Po), which indicated that all the COFs showed a Type
IV isotherm, which is characteristic of mesoporous materials with pore sizes of lower
than 50 nm. The hysteresis loops are known as capillary condensation, which occurs
in mesopores with a regulated uptake of high P/PO lower than 1. Furthermore, the
nanoparticles from the adsorption isotherm indicated Type H3 hysteresis loops (Figure 10)
in the range of 0.5–0.9 relative pressure P/PO which implies an extensive dispersal in pore
size [66]. A Type IV with a hysteresis loop was observed in a comparable study, which was
designated by a rapid absorption under low relative pressures at P/PO 0.01 followed by a
second step in 0.05 P/PO 0.20, which is suggestive of a mesoporous structure [67].
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The COF-S7 and COF-S12 displayed a BET surface area of 3.44 and 20.73 m2 g−1,
respectively (Table 1). Considering this low surface area, adsorption is likely owing to
the surface tension that occurs during the activation of the COFs, as the low boiling point
solvent utilized is likely to retain robust hydrogen bonding to the vertices of COFs. These
diluents will produce sufficient capillary force, resulting in partial or complete disruption
of COF scaffolds, or very poor N2 absorption and negligible surface area, which could
be due to pore network obstruction by huge pieces [67,68]. This could be due to the
strong polarity and hydrogen capacity of the alcohol group (OH), which makes COF
activation challenging.

Table 1. Summary of the surface area and pore-opening data of COF-S7 and COF-S12.

Compound COF-S7 COF-S12

Experimental surface area m2/g
Theoretical pore opening

3.44 20.73

Large/Å 14.02
Small/Å 14.00 23.31

Experimental pore opening
(4VA/BET)

Large/Å
Small/Å

Experimental pore opening
(4VA/BET)
Adsorption 3.05 0.60
Desorption 160.65 71.69

Average pore width (4V/A)
Adsorption/Å 51.53 50.90
Desorption/Å 51.43 50.74

The removal efficiency and adsorption capacity of naproxen (NAP) (Figure 11) for
the synthesized COF-S7 and COF-S12, respectively, showed a significant rise as early as
25 min in. After about 3 h, COF-S7 showed a consistent and gradual improvement in
absorption, with naproxen exclusion reaching about 50% after 2 h. COF-S12, on the other
hand, had a remarkable removal performance at 25 min, achieving over 50% reduction.
This finding was found to be consistent with previous studies [45,69] in which a MOF was
produced with a graphene oxide composite (GnO/MIL-101) for naproxen and ketoprofen
adsorption elimination. Nevertheless, it was observed that COF-S12 absorbed considerable
quantities of NAP, when no specific adsorption mechanism, such as van der Waals force,
is available, and surface area is widely considered as one of the most basic features in
adsorption [70]. Moreover, COF-S7 and COF-S12 adsorption capacities (qe) showed a



Nanomaterials 2022, 12, 2491 13 of 18

maximum experimental adsorption ability (qmax) of 35 and 42, and a computed ability
(qmax) of 11.71 and 24.60, respectively. Table 2 summarizes the maximum adsorption
capability (qmax) and calculated capability (qmax) of the adsorbents.
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Table 2. Isotherm constants for naproxen adsorption in COFs.

Adsorbents COF-S7 COF-S12

Experimental (qmax) 35 42
Calculated (qmax) 11.710 24.600

Langmuir KL (L/mg) −0.474 −0.154
R2 0.788 0.811

Freundlich n −0.970 −0.391
1/n −1.030 −2.556

KF (mg/g) (1/mg) 1/n 6.642 2.259
R2 0.941 0.947

The pH effects on the adsorption of naproxen on COF-S7 and COF-S12 were inves-
tigated within a pH range of 4–12. As illustrated in Figure 11, the qt (after 210 min) of
COF-S7 for naproxen gradually declined with an upsurge in pH under the conditions
investigated. However, COF-S12 exhibited a slow decline with an upsurge in pH, with a
rate equilibrium time (qt) of 270 min. With the exception of COF-S12, the findings obtained
for the as-synthesized COF-S7 showed that there is steady exclusion as the pH rises to
9. The drop value was attained at pH 9 due to the additional negative charge caused by
repulsion between the generated COFs and the naproxen solution.

The electrostatic interface, or π–π interactions, which are commonly used to depict the
adsorption of numerous organic molecules such as phthalic acid, 2,4-dichlorophenoxyacetic
acid, and p-arsanilic acid, may be seen as a reliable rationale in known adsorption pro-
cesses [71,72], due to the electrostatic repulsion of the anionic form of NAP and the de-
protonated hydroxyl group (pKa = 4.2) incorporated in the nanomaterials [73]. The qt
levels ought to fit less at a pH > 4.2 if electrostatic correlation is the prime mechanism.
Despite the fact that the qt rates deteriorated with pH, NAP was adsorbed in extensive
magnitudes at pH > 4.2. as formerly affirmed [73,74]. As a consequence, a mechanism
other than electrostatic exchange is suitable to describe NAP adsorption.

Depending on the presence of many active groups, H-bonding could be a viable ad-
sorption mechanism for liquid-phase adsorption, particularly for water treatment [69,75,76].
The qt variables were employed to control the path of H-bonding between NAP and the as-
synthesized COFs throughout a wide pH range. NAP dwells in a deprotonated state in the
pH scale studied (pKa = 4.2) due to its pKa value. As a consequence, NAP should be used
as the H-bond acceptor, and COFs produced as the H-bond donor. Interestingly, owing



Nanomaterials 2022, 12, 2491 14 of 18

to further deprotonation of the hydroxyl group (pKa 10.0), the qt in COF-S7 nanoparticle
decreased significantly at pH 10.0 [74]. It is worth noticing that the number of hydroxyl
groups in COF-S12 was expressively better than in other bonding locations. COF-S12
adsorbed less NAP than COF-S7 at pH 11 or higher values. This is probably due to the full
deprotonation of the hydroxy assembly in COF-S12 to produce –O− at pH 10, resulting
in repulsive interaction between –O− and the COO− group of NAP. In effect, COF-S12
displayed a lesser NAP qt than COF-S7 (at pH 11). Consequently, H-bonding (H-bond
donor: COF-S12, H-bond acceptor: NAP) can illuminate the experiential adsorption of
NAP throughout an extensive pH range. A related drift of naproxen removal efficacy at
higher pH values was established in preceding findings [45,69].

The dose correlation coefficient R2 values of COF-S7 and COF-S12, as shown in
Figure 12a,b, has verified the Freundlich adsorption isotherm as being favorable in de-
termining the efficacy of the as-synthesized materials for the removal of naproxen. The
adsorption level of connection among adsorption and solution concentration is also de-
pendent on the adsorption intensity, n. As a result, these materials were shown to be a
chemically favorable approach, with adsorption strengths less than 1 (n < 1). Table 2 shows
the values of n, 1/n, KF, KL and R2 for the current analysis.
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Reusability is one of the most important criteria in the commercialization of adsor-
bents since it is directly related to the adsorption procedure’s outlay efficacy. Therefore,
the regeneration of COF-S7 and COF-S12 was investigated after washing the used ad-
sorbent with ethanol. Desorption is anticipated to restore the new adsorbent’s ability.
The regeneration evaluation was observed in five adsorption/desorption cycles [46,77] as
demonstrated in Figure 13. With a rise in the number of recycles, COF-S7 recorded the least
loss in adsorption cycles, at 71.2 percent. In comparison, COF-S12 exhibited an enhanced
performance (82.8%), with no significant decline in adsorption efficacy as the number of
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recycles increased, indicating that the material may be regenerated multiple times without
significant adsorption degradation. This result was in agreement with the research recorded
by [69]. Reflecting their facile synthesis, significant adsorption efficiency, and commendable
regeneration, the as-synthesized materials are anticipated to be a prospect adsorbent for
eliminating AIDs from water.
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4. Conclusions

The COFs synthesized demonstrated eight connected octahedral nets from the eight
nitrogen atoms from the OAPS assembly. Interestingly, the materials synthesized displayed
a new topology with a 2D underlayer arrangement that was not predictable before using
the Reticular Chemistry Structure Resource (RCSR). A UV/spectroscopy system was used
to study the adsorption of naproxen on various adsorbents. A significant number of
adsorbates were eliminated after 270 min. Likewise, the degree of correlation (R2) level
suggested that the adsorption paradigm was compatible with the Freundlich isotherm
model (with a higher value of R2 in the Freundlich model as compared to the Langmuir
model). This also means that for the materials synthesized, the model of adsorption
intensities (n) favored the chemical process, as we have confirmed (n < 1). As a result of
this extensive assembling and adsorption recyclability study, POSS COFs may be employed
with impressive results in the future for the adsorption treatment of pharmaceutical waste.
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