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Abstract
Background and Objectives:  Researchers typically use Cohen’s guidelines of Pearson’s r = .10, .30, and .50, and Cohen’s 
d = 0.20, 0.50, and 0.80 to interpret observed effect sizes as small, medium, or large, respectively. However, these guidelines 
were not based on quantitative estimates and are only recommended if field-specific estimates are unknown. This study 
investigated the distribution of effect sizes in both individual differences research and group differences research in geron-
tology to provide estimates of effect sizes in the field.
Research Design and Methods:  Effect sizes (Pearson’s r, Cohen’s d, and Hedges’ g) were extracted from meta-analyses 
published in 10 top-ranked gerontology journals. The 25th, 50th, and 75th percentile ranks were calculated for Pearson’s 
r (individual differences) and Cohen’s d or Hedges’ g (group differences) values as indicators of small, medium, and large 
effects. A priori power analyses were conducted for sample size calculations given the observed effect size estimates.
Results:  Effect sizes of Pearson’s r = .12, .20, and .32 for individual differences research and Hedges’ g = 0.16, 0.38, and 
0.76 for group differences research were interpreted as small, medium, and large effects in gerontology.
Discussion and Implications:  Cohen’s guidelines appear to overestimate effect sizes in gerontology. Researchers are 
encouraged to use Pearson’s r = .10, .20, and .30, and Cohen’s d or Hedges’ g = 0.15, 0.40, and 0.75 to interpret small, me-
dium, and large effects in gerontology, and recruit larger samples.

Keywords:  Effect size, Sample size, Statistical power, Statistical significance
  

It is recommended that researchers report effect sizes 
(Wilkinson & the Task Force on Statistical Inference, 1999) 
as they can provide valuable additional information re-
garding a test result that traditional null hypothesis signifi-
cance testing cannot, such as the magnitude of a difference 
or association. These statistics are commonly presented as 

a standardized mean difference (ie, Cohen’s d or Hedges’ g) 
or as the strength of association (Pearson’s r) between two 
groups or variables. Cohen (1988, 1992) provided guidelines 
for the interpretation of these values: values of 0.20, 0.50, 
and 0.80 for Cohen’s d and Hedges’ g are commonly con-
sidered to be indicative of small, medium, and large effects 

Translational Significance: This study examines statistical power (the probability of observing a true effect) 
and finds that research in the field of Gerontology reveals small effect sizes leading to some studies being 
underpowered to detect true effects. By increasing statistical power in accordance with expectable effect 
sizes, researchers can be confident that true effects are detectable and findings are replicable across studies.
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(.10, .30, and .50, respectively, for Pearson’s r). However, 
these interpretations were not based on formal statistical 
analyses of data, and it is feasible that the distribution of 
effect sizes could vary between fields of research (Hemphill, 
2003). In fact, Cohen (1988, 1992) suggested that a medium 
effect size should be observable to the naked eye, which 
may be unrealistic given the range of research areas that use 
the aforementioned guidelines. Furthermore, Cohen (1988, 
1992) stated that these guidelines should only be used if es-
timates specific to the research area of interest are unknown.

Research examining effect size distributions in various 
fields of research have found considerable variability from 
these estimates, with small, medium, and large effect sizes 
defined as the 25th, 50th, and 75th percentiles of all effect 
size values in each case, respectively. Gignac and Szodorai 
(2016) reported small, medium, and large correlations of 
.11, .19, and .29 in individual differences research in psy-
chology, and Quintana (2017) observed Cohen’s d values 
of 0.26, 0.51, and 0.88 for small, medium, and large effects 
in case–control studies of heart rate variability. In addition, 
Lovakov and Agadullina (2017) reported Hedges’ g values 
of 0.15, 0.38, and 0.69, and Pearson’s r values of .12, .25, 
and .42 in social psychology.

Although effect size distribution is dependent upon out-
come measure and population of interest, the variability of 
the distribution of effect sizes between fields suggests that 
Cohen’s (1988, 1992) guidelines are potentially inappro-
priate, which is likely to lead to inaccurate results from a 
priori power analyses. Statistical power refers to the prob-
ability that a test will reject the null hypothesis (ie, report 
a statistically significant result), assuming there is a true ef-
fect of a given size, and it varies as a function of effect size, 
sample size, and alpha level (typically .05). Power is con-
ventionally set at .80 (Cohen, 1988), which implies that a 
study investigating a true effect will correctly reject the null 
hypothesis 80% of the time and will report a false negative 
(commit a Type II error) in the remaining 20% of cases.

A major issue when designing an informative experi-
ment is choosing a sample size that will ensure sufficient 
statistical power. Sample size selection depends on several 
factors (eg, within-subjects vs. between-subjects study de-
sign), but sample size should ideally be chosen such that the 
test has enough power to detect effect sizes of interest to the 
researcher (Morey & Lakens, 2016). From this, a planned 
study can potentially be underpowered if the study design is 
insensitive to the true effect size (ie, if a researcher conducts 
an a priori power analysis where he/she unknowingly has 
an incorrect estimation of the effect size of interest). For ex-
ample, if a social psychologist expects a medium effect size 
in a study examining differences between two groups (ie, 
using an independent samples t-test), the required sample 
size to achieve power of .80 with alpha of .05 is n = 64 
per group when using Cohen’s (1988) estimate of Cohen’s 
d = 0.50. When using Lovakov and Agadullina’s (2017) es-
timate of Hedge’s g = 0.38, however, 110 participants per 
group are required to achieve power of .80. Assuming the 

lower estimate is correct, a researcher would only achieve 
power of .57 if he/she recruited 64 participants per group, 
per calculations based on Cohen’s estimate. That is, there 
would only be a 57% probability of correctly rejecting 
the null hypothesis, which, in turn, may affect the chances 
of the research being published (Ferguson & Heene, 
2012). In addition, underpowered studies are more likely 
to report an overly inflated effect size (Ioannidis, 2008) 
through questionable research practices such as p-hacking 
(Simmons, Nelson, & Simonsohn, 2011), which can result 
in a greater likelihood of failed attempts to replicate the 
finding (Maxwell, 2004).

Although Cohen’s (1988, 1992) guidelines of effect size 
distributions are used extensively within behavioral sciences, it 
is possible that they may not be entirely appropriate for geron-
tology research. Power analyses and effect size interpretations 
should be based on empirically observed research. Although 
research in other fields has reported some deviance from the 
aforementioned provided estimates (Gignac & Szodorai, 
2016; Lovakov & Agadullina, 2017; Quintana, 2017), these 
data have not been systematically analyzed in gerontology 
(with the exception of Levenson (1980), who analyzed sta-
tistical power in attitude research). By calculating empirically 
derived effect size distributions, gerontological researchers 
can design well-powered studies (Isaacowitz, 2018; Pruchno 
et al., 2015) and gain greater knowledge of their study effects 
that is guided by previous research in the field.

Method
The analyses closely followed those of Quintana (2017) 
and Lovakov and Agadullina (2017). Data, a codebook, 
R code, a full list of the included meta-analyses, and a 
preprint of this study are publicly available on the Open 
Science Framework (https://osf.io/ez367/).

Search Procedure

Any article with “meta” in the title published in the 
journals Journals of Gerontology: Series A, Biological 
Sciences and Medical Sciences, Journal of the American 
Geriatrics Society, The Gerontologist, American Journal 
of Geriatric Psychiatry, Journals of Gerontology: Series B, 
Psychological Sciences and Social Sciences, International 
Journal of Geriatric Psychiatry, BMC Geriatrics, Aging & 
Mental Health, Geriatrics & Gerontology International, 
and Psychology and Aging was initially extracted (n = 379, 
as of 2nd May 2019). These 10 journals were chosen as 
they are the 10 highest-ranked Gerontology journals on 
Clarivate Analytics’ journal citation ranking for 2017.

Inclusion and Exclusion Criteria

Meta-analyses were included if the results reported Cohen’s 
d, Hedges’ g, or Pearson’s r values, and sample size. Any 
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meta-analyses that used other measures of effect size (eg, 
odds ratios), articles that were qualitative reviews (meta-
syntheses) or did not provide data for each individual study 
were removed. In addition, conference abstracts and letters 
to the editor were also excluded. After assessing for eligi-
bility, there were 88 remaining meta-analyses (Figure 1).

Data Analysis

R version 3.6.0 (R Core Team, 2019) was used to conduct 
analyses. The absolute value of the negative effect sizes was 
used, as the goal of this study was to determine the distribu-
tion, rather than direction, of effect sizes. Cohen’s d values 
were converted to Hedges’ g (Lakens, 2013; Formula 4), 
as these values are directly comparable to each other, and 
Hedges’ g accounts for biased estimates of effect size, espe-
cially in small sample sizes (Cumming, 2012).

Individual differences (as measured by Pearson’s r) and 
group differences (measured by Hedges’ g) were analyzed 
separately. In each case, to examine the distribution of 
effect sizes, a range of percentiles was calculated for all 
Pearson’s r effect sizes and all Hedges’ g effect sizes. The 
25th, 50th, and 75th percentiles are relevant to the cur-
rent study as these are the points that Cohen (1988, 1992) 
used as indicators of small, medium, and large effect sizes. 
This also follows the analyses conducted by Gignac and 
Szodorai (2016), Lovakov and Agadullina (2017), and 
Quintana (2017). That is, the 50th percentile is the median 
value, and the 25th and 75 percentiles are rank equidistant 
from the median. Percentiles were also calculated for two 
subsamples of the Hedges’ g effect sizes, where the studies 
were categorized as biomedical or psychosocial, based on 
the research topic of the meta-analysis. Histograms and den-
sity plots of the effect size distributions were also created 
to allow visualization of the data. To visualize any poten-
tial inflation bias, one-directional contour-enhanced funnel 
plots of the data were created, using the metafor R package 
(Viechtbauer, 2010). In these plots, the effect size is plotted 

against standard error with added contours (indicated 
by regions of red and orange) represent important levels 
of statistical significance (Peters, Sutton, Jones, Abrams, 
& Rushton, 2008). If the proportion of studies that falls 
within these contours (ie, .1 > p > .05, shaded orange, and 
.05 > p > .01, shaded red) is overly large, it suggests that 
research in the field may be affected by inflation bias and 
that many reported effect sizes are overestimates of true 
effect sizes, potentially due to sampling error, publication 
bias, and/or p-hacking (Ioannidis, 2008; Simmons et  al., 
2011). Finally, a series of a priori power analyses using the 
pwr R package (Champely, 2016) and the observed data 
were conducted to calculate the sample sizes required for 
future research to achieve various levels of statistical power 
for both individual differences and group differences (in-
cluding the biomedical and psychosocial subsamples). 
The individual differences calculations used the pwr.r.test 
function, and the group differences calculations used the 
pwr.t.test function (two-samples type, assuming equal 
group sizes). All analyses used a two-tailed alpha of .05 and 
calculated the sample sizes required to achieve 60%, 70%, 
80%, and 90% power for small, medium, and large effects 
(25th, 50th, and 75th percentiles of effect sizes).

Results
A total of 4,049 effect sizes were extracted, of which 1,108 
were Pearson’s r values, and 2,941 were Hedges’ g values 
(2,327 were categorized as being obtained from psychoso-
cial research and 614 from biomedical research).

Individual Differences Research

The 25th (small effect), 50th (medium effect), and 75th 
(large effect) percentiles corresponded to Pearson’s r values 
of .12, .20, and .32, respectively (Tables 1 and 2; Figure 
2A). That is, in gerontological individual differences re-
search, the median effect size is Pearson’s r = .20. Although 
the small effect estimate is quite consistent with Cohen’s 
(1988, 1992) guideline of Pearson’s r = .10, the estimated 
medium and large effects are noticeably smaller than 
the guidelines of .30 and .50. In comparison to Cohen’s 
estimates, only 29% of the observed correlations would 
be considered as medium effects or stronger (ie, only 29% 
of correlations reported Pearson’s r ≥ .30), and only 6.9% 
would be considered as strong effects (Pearson’s r ≥ .50).

The median individual differences sample size was 
129 participants. This sample size is large enough to de-
tect a large effect (Pearson’s r = .32; power = .96), but not 
to detect a medium (Pearson’s r  =  .20; power  =  .63) or 
small (Pearson’s r  =  .12; power  =  .27) effect. Only 42% 
(465/1,108) of the studies in the analysis were appropri-
ately powered to detect a medium effect, although based 
on the contour-enhanced funnel plot (Figure 3A), there did 
not appear to be an overrepresentation of just-significant 
(p values between .05 and .01, represented by the red area 

Figure 1.  Meta-analysis inclusion flow chart for effect size distribution 
analysis.
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of the figure) or marginally significant (p values between 
.10 and .05, represented by the orange area of the figure) 
results, suggesting that inflation bias in gerontological in-
dividual differences research is unlikely. Table 3 shows the 
percentages of results in each of the contoured regions of 
the funnel plot. Finally, Table 4 presents sample sizes re-
quired to achieve various levels of statistical power for 
the estimated small, medium, and large effects, using an a 
priori power analysis with α = .05 (two-tailed).

Group Differences Research

In the group differences sample, the 25th, 50th, and 75th 
percentiles corresponded to Hedges’ g values of 0.16, 
0.38, and 0.76, respectively (Tables 1 and 2; Figure 2B), 
which is smaller than Cohen’s (1988, 1992) guidelines of 
0.20, 0.50, and 0.80. Indeed, in comparison to Cohen’s 

recommendation, 40.4% of the observed effect sizes would 
be considered as medium or stronger, and only 23.5% 
would be considered as large. In addition, the biomedical 
(estimates of 0.12, 0.26, and 0.49) and psychosocial (0.17, 
0.43, and 0.84) subsamples differed greatly, and also con-
siderably deviated from Cohen’s guidelines. Figure 4 shows 
a far greater concentration of small effect sizes for the bi-
omedical (skewness  =  3.79, kurtosis  =  23.1) results than 
the psychosocial (skewness = 1.86, kurtosis = 5.22) results, 
which are far more dispersed, albeit still rather positively 
skewed.

The median sample size for case and control groups 
was 30 and 19 participants, respectively. This sample size 
is not large enough to adequately detect a large (g = 0.76; 
power =  .72), medium (g  = 0.38; power =  .25), or small 
(g = 0.16; power = .08) effect (calculated with the pwr.t2n.
test function of the pwr R package, which conducts power 
calculations for groups of unequal sizes). Furthermore, 
only 8% (236/2,941) of the studies in the analysis were 
appropriately powered to detect a medium effect. The 
contour-enhanced funnel plots do not show an overrep-
resentation of effect sizes in the significance contours, for 
group differences research overall (Figure 3B), nor for 
the biomedical (Figure 3C) or psychosocial (Figure 3D) 
subsamples, implying a low likelihood of inflation bias 
(see also Table 3). Table 5 presents sample sizes required to 
achieve various levels of statistical power for the estimated 
small, medium, and large effects, using an a priori power 
analysis with α = .05 (two-tailed), for group differences in 
gerontology overall, as well as for the biomedical and psy-
chosocial subsamples.

Discussion
This study aimed to investigate the distributions of effect 
sizes and observed statistical power in gerontological re-
search. Cohen (1988) proposed guidelines of effect sizes 
for small, medium, and large effects for both individual 
differences (Pearson’s r = .10, .30, and .50, respectively) and 
group differences (Cohen’s d or Hedges’ g = 0.20, 0.50, and 
0.80) research but also stated that these should ultimately 
only be used when no specific information is available re-
garding the likelihood of various effect sizes. The results 
of this study suggest that Cohen’s (1988, 1992) guidelines 
may overestimate average effect sizes in gerontology, which 
can result in sample size calculations and interpretations of 
observed effect sizes that are not necessarily appropriate 
for the field.

This study observed effect sizes of Pearson’s r = .12, .20, 
and .32 (for individual differences research) and Hedges’ 
g = 0.16, 0.38, and 0.76 (for group differences research). 
These values are very consistent with those reported by 
Gignac and Szodorai (2016), who reported effect sizes of 
Pearson’s r  =  .11, .19, and .29 in individual differences 
research in psychology but are slightly lower than those 
reported by Lovakov and Agadullina (2017; Pearson’s 

Table 2.  Comparison of Cohen’s Guidelines and 
Quantitatively Derived Estimates for Effect Sizes

Effect size

 Small Medium Large

Individual differences (Pearson’s r)
Cohen (1988) .10 .30 .50
Current study (k = 1108) .12 .20 .32
Group differences (Hedges’ g)
Cohen (1988) 0.20 0.50 0.80
All studies (k = 2,941) 0.16 0.38 0.76
Biomedical studies (k = 614) 0.12 0.26 0.49
Psychosocial studies (k = 2,327) 0.17 0.43 0.84

Table 1.  Percentiles Associated With Observed Correlations 
(Pearson’s r) and Group Differences (Hedges’ g)

Percentile Pearson’s r Hedges’ g

5 .02 0.02
10 .05 0.05
15 .08 0.08
20 .10 0.12
25 .12 0.16
30 .13 0.19
35 .15 0.23
40 .17 0.28
45 .18 0.33
50 .20 0.38
55 .22 0.44
60 .24 0.51
65 .26 0.57
70 .29 0.66
75 .32 0.76
80 .35 0.88
85 .41 1.02
90 .46 1.20
95 .56 1.59

4� Innovation in Aging, 2019, Vol. 3, No. 4

Copyedited by: Shashi KM



r = .12, .25, and .42 in social psychology). In addition, the 
distribution of group difference effect sizes is very sim-
ilar to those reported by Lovakov and Agadullina (2017; 
Hedges’ g  =  0.15, 0.38, and 0.69), although were lower 
than Quintana’s (2017) estimates obtained in case–control 
studies of heart rate variability (Cohen’s d  =  0.26, 0.51, 
and 0.88), possibly due to the wide range of research topics 
included in this study. Nonetheless, the estimates obtained 
are noticeably lower than Cohen’s (1988, 1992) guidelines. 

As such, it is recommended that effect sizes of Pearson’s 
r =  .10, .20, and .30 and Cohen’s d or Hedges’ g = 0.15, 
0.40, and 0.75 should be used as thresholds to interpret 
small, medium, and large effects in gerontology, respec-
tively. These values have been rounded to the nearest 0.05 
from the calculated percentiles (Table 1) for ease of use. It 
is likely that the observed estimates in this study vary from 
Cohen’s guidelines and previous research in other fields 
(eg, Gignac & Szodorai, 2016; Lovakov & Agadullina, 
2017; Quintana, 2017) for a couple of major reasons. 
First, it is possible that experimental methods used in 

Figure 2.  (A) The distributions of correlations (Pearson’s r). The dashed 
red lines represent the 25th, 50th, and 75th percentiles, which corre-
spond to small (Pearson’s r  =  .12), medium (Pearson’s r  =  .20), and 
large (Pearson’s r = .32) effects. (B) The distributions of Hedges’ g. The 
dashed red lines represent the 25th, 50th, and 75th percentiles, which 
correspond to small (Hedges’ g = 0.16), medium (Hedges’ g = 0.38), and 
large (Hedges’ g = 0.76) effects. The purple lines in each panel represent 
the a priori power achieved by the median sample size of the included 
studies across effect sizes.

Figure 3.  (A) One-sided contour-enhanced funnel plot for individual 
differences research. (B) One-sided contour-enhanced funnel plot for 
group differences research. (C) One-sided contour-enhanced funnel 
plot for group differences research in biomedical gerontology. (D) One-
sided contour-enhanced funnel plot for group differences research in 
psychosocial gerontology.
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gerontology may differ from other fields of research, such 
as how measurements of effects of interest are conducted, 
and potential between-participants variability with regard 
to outcomes of experimental manipulations and/or natu-
ralistic observations in a representative sample of aging 
adults. Second, a wide range of studies from many subfields 
of gerontology were included in the analyses, and it is likely 
that there is variability between these subfields in terms of 
study design (eg, cross-sectional vs. longitudinal design), 
study sample characteristics (eg, age, typically vs. atypically 

aging), and true effect size (average value and homogeneity/
heterogeneity). Indeed, Figure 4 shows considerable varia-
tion between biomedical and psychosocial gerontology re-
search, and it stands to reason that further subfield analyses 
would also display differences in effect size distributions.

In addition, it was found that the median sample size in 
individual differences research (n = 129) only has power of 
.63 to observe a medium effect size (Pearson’s r = .20), and 
only .25 power in group differences research (n = 30 and 19 
in each group, Hedges’ g = 0.38). These findings are both far 
lower than the recommended minimum level of .80 (Cohen, 
1998, 1992) and show that gerontological researchers should 
increase sample sizes in their studies to ensure adequate and 
accurate levels of statistical power. Although this is not a 
problem exclusive to gerontology (eg, Button et  al., 2013; 
Dumas-Mallet, Button, Boraud, Gonon, & Munafò, 2017; 
Quintana, 2017; Szucs & Ioannidis, 2017), it should be a 
major concern and priority to those in the field (Isaacowitz, 
2018; Pruchno et  al., 2015) as low power weakens the 
strength of evidence of a research finding (Brydges & Bielak, 
2019) and the probability that the finding will be successfully 
replicated (Maxwell, 2004). Tables 4 and 5 provide estimates 
for gerontological researchers to use while planning a study 
in the field. For example, if a researcher is conducting an in-
dividual differences study and is aiming for statistical power 
of .80 when expecting a medium effect size (now Pearson’s 
r = .20, rather than .30), he/she should test 193 participants—
far more than the current median sample size of 129.

It should be noted, however, that there are some lim-
itations to this study. First, the study was conducted by 
extracting effect sizes from published meta-analyses. 
Although this is an efficient method of data collection for 
a study of this type, it is likely that a number of effects that 
were not included in a meta-analysis were missed, and it is 
possible that some effects are included more than once, due 

Table 3.  Percentage of Results in Each of the Color Regions of the Funnel Plots

Color region

Funnel plot
White 
(p > .10)

Orange 
(.10 > p > .05)

Red 
(.05 > p > .01)

Gray 
(p < .01)

Individual differences (%) 28.6 6.9 13.8 50.6
Group differences (%) 49.9 6.5 11.2 32.4
Biomedical studies (%) 58.0 7.0 9.6 25.4
Psychosocial studies 47.8 6.4 11.6 34.3

Table 4.  Sample Sizes Required to Achieve Various Levels of Statistical Power in Individual Differences Research

Statistical power

Effect size 60% 70% 80% 90%

Small (Pearson’s r = .12) 339 427 542 725
Medium (Pearson’s r = .20) 121 152 193 258
Large (Pearson’s r = .32) 47 58 74 98

Note. 80% statistical power is the commonly accepted level. Sample sizes were calculated using a significance criterion of α = .05 (two-tailed).

Figure 4.  Density plots illustrating the distribution of Hedges’ g, based 
on study categorization as biomedical (pink) or psychosocial (tur-
quoise). The distributions display the larger average effect size of the 
psychosocial studies.
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to the large number of meta-analyses. However, the overall 
final sample size of 4,049 effect sizes from the 10 top-
ranked gerontology journals is likely to be representative of 
the field as a whole. Relatedly, the results of meta-analyses 
are often inflated due to publication bias (Bakker, van Dijk, 
& Wicherts, 2012), which could imply that the results re-
ported in the current study are overestimates, and therefore 
Cohen’s (1988, 1992) estimates are potentially less appro-
priate for gerontology research. The contour-enhanced 
funnel plots (Figure 4) did not show any overrepresenta-
tion of marginally significant or just-significant effects in 
any case. However, it should be acknowledged that many 
tests for publication bias, including trim-and-fill (Duval & 
Tweedie, 2000), p-curve (Simonsohn, Nelson, & Simmons, 
2014), and p-uniform (van Assen, van Aert, & Wicherts, 
2015) are inaccurate when true effect sizes are heteroge-
neous (van Aert, Wicherts, & van Assen, 2016; Renkewitz 
& Keiner, 2018), as is almost certainly the case in this study 
due to the wide range of meta-analyses included.

In addition, gerontology is a broad field, and there is 
doubtless variation of effect size distributions within the 
field, due to factors such as specific research area, specific 
measures used, and populations of interest (Cohen, 1962; 
Schäfer & Schwarz, 2019). That being said, it could be 
argued that the reported values, however general, are more 
appropriate for gerontological research than the guidelines 
proposed by Cohen (1988, 1992) because they are based on 
published research in the field, rather than general estimates 
across the behavioral sciences. In addition, the splitting of 
the group differences effects into biomedical and psychoso-
cial categories based on the topic of the meta-analysis was 
an attempt to make these distributions more specific, but this 
categorization is open to biases. As such, researchers should 
interpret these results with a degree of caution and could 
consider using the overall group differences values for their 

power calculations and/or effect size interpretations rather 
than the more specific values. Researchers can also access the 
data and code to re-categorize the data as they see fit or to 
create effect size distributions of more specific research areas.

In summary, Cohen’s (1988, 1992) guidelines appear to 
overestimate effect sizes when applied to gerontological re-
search. Researchers in the field can benefit from using these 
empirically derived estimates of Pearson’s r = .12, .20, and 
.32, and Cohen’s d or Hedges’ g = 0.16, 0.38, and 0.76 to 
adequately and accurately power their studies when calcu-
lating sample size before data collection. These estimates 
can also help researchers accurately interpret observed ef-
fect sizes relative to others in the field. By applying these 
observed values to their studies, gerontological researchers 
are more likely to report results that are replicable, and 
therefore, produce robust science.
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