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Flaviviruses, as critically important pathogens, are still major public health problems all
over the world. For instance, the evolution of ZIKV led to large-scale outbreaks in the Yap
island in 2007. DENV was considered by the World Health Organization (WHO) as one of
the 10 threats to global health in 2019. Enveloped viruses hijack a variety of host factors to
complete its replication cycle. Phosphatidylserine (PS) receptor, AXL, is considered to be
a candidate receptor for flavivirus invasion. In this review, we discuss the molecular
structure of ZIKV and DENV, and how they interact with AXL to successfully invade host
cells. A more comprehensive understanding of the molecular mechanisms of flavivirus-
AXL interaction will provide crucial insights into the virus infection process and the
development of anti-flavivirus therapeutics.
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INTRODUCTION

The Flaviviridae family includes three viral genera, namely Flavivirus, Pestivirus, and Hepatitis C
virus, with a total of more than 70 viruses. Zika virus (ZIKV) and dengue virus (DENV) which are
critically important pathogens belong to the Flavivirus genus.

DENV, the most prevalent arbovirus in the world, is widely popular in tropical and subtropical
countries (Uno and Ross, 2018). It has four different antigenic serotypes (DENV1–4), which can
cause dengue fever after the bite of an infected mosquito, with a global estimate of around 3.6 billion
people and 40% of the world at risk for infection each year (Bhatt et al., 2013). With the process of
urbanization, human migration, climate change, and damage to vegetation, the cases of DENV have
increased by 30-fold (Chretien et al., 2015). Although Dengue is not a newly emerging disease, its
clinical manifestations are constantly changing in recent years (Calderon-Pelaez et al., 2019). DENV
can cause a wide spectrum of clinical manifestations, from asymptomatic and mild fever to fatal
DENV shock syndrome (Diamond and Pierson, 2015). Although a high probability of manifesting
itself as a self-limiting illness in the first infection, the antibody-dependent enhancement (ADE)
effect increases the morbidity and mortality in the second infection with different serological viruses
(Frei et al., 2018). Due to the lack of specific therapeutic drugs, the development of a vaccine against
DENV is imminent.

ZIKV, an ancient virus, was originally discovered in the blood of a rhesus macaque in Uganda in
1947 and was subsequently isolated from Aedesmosquitoes (Ming et al., 2016). It was not until 2007
that ZIKV caused an outbreak in the Pacific Ocean and began to spread throughout the Latin
Americas in 2015, did we realize its harm to public health and regard it as an international public
health emergency (PHEIC) (Musso et al., 2019). Unlike other flaviviruses, ZIKV which is the only
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virus known to be teratogenic can cause fetal infection through
vertical transmission, leading to congenital ZIKV syndrome
(Ngono and Shresta, 2018; Weaver et al., 2018). Besides, ZIKV
can cause severe Guillain-Barre syndrome (a post-infectious
autoimmune poly-Neuropathy, GBS) and testicular atrophy in
adult males (Uraki et al., 2017; Ngono and Shresta, 2018). The
presence of virus particles in the testes (Sertoli cells, Leydig cells,
and spermatogonia), semen, and sperm may have the potential
for sexual transmission (Deng et al., 2020).

TAM proteins, including Tyro3, AXL, and Mer, are cell
surface receptor tyrosine kinases (RTKs) (Graham et al., 2014).
In 1991, Lai identified 13 novel genes including TAM based on
the homology of RTK and classified AXL, Tyro3, and Mer as a
unique subgroup (Lai and Lemke, 1991). TAM proteins need to
bind with ligands to exert physiological functions. Currently,
growth-arrest-specific 6 (Gas6) is known to bind and activate
three receptors, while proteins S (Pros1) is a ligand only for
Tyro3 and Mer (Stitt et al., 1995; Mark et al., 1996). The only
ligand, Gas6, binds to AXL and transmits various signals from
the extracellular matrix to the cytoplasm to regulate many
physiological processes. These physiological activities include
clearance of apoptotic cells (Ravichandran, 2010; Fourgeaud
et al., 2016), regulation of the innate immune response
(Rothlin et al., 2007; Trahtemberg and Mevorach, 2017), drug
resistance and metastasis of many cancers (Zhang et al., 2012;
Akalu et al., 2017), and prominently, the infection of enveloped
viruses (Shimojima et al., 2007; Meertens et al., 2012; Savidis
et al., 2016). Thus, flavivirus, as a type of enveloped virus, how to
invade cells through AXL is the major topic of discussion in
this review.
MOLECULAR BIOLOGY OF DENV
AND ZIKV

ZIKV and DENV are enveloped RNA viruses, with positive-
sense and single-stranded RNA genome of ~11kb in length. The
genome contains a methylated cap at its 5’ end but no polyA tail
at its 3’ end (Barrows et al., 2018). The viral genome consists of
three parts: the 5’ and 3’ non-translated regions (UTR), and the
translated region (also known as open reading frame, ORF) (Rice
et al., 1985; Lindenbach and Rice, 2003). The two structures in
the 3’UTR that can inhibit the 5’ to 3’exonuclease Xrn1 are
important for the formation of the subgenomic flaviviral RNA
(sfRNA). Because of their ability for exonuclease-resistant, they
play an important role in disrupting the innate immunity
responses of hosts and promoting viral replication (Chapman
et al., 2014; Akiyama et al., 2016; Zhang et al., 2020). The ORF is
translated into a polyprotein, which is proteolytically processed
by both host and virus proteins to form the final mature virus
particles. The translated products contain three structural
proteins (capsid, C; premembrane, prM; and envelope, E) and
seven non-structural proteins (NS1, NS2A, NS2B, NS3, NS4A,
NS4B, and NS5) (Lindenbach and Rice, 2003) (Figure 1). The
cleavage of C and prM proteins is mainly caused by the viral
protease NS3 and the cell signal peptidase from the cytoplasm
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 2
and the endoplasmic reticulum(ER) lumen, subsequently,
releasing the mature C protein into the cytoplasm, while
another small molecule immature C protein is left in the ER
lumen (Lobigs, 1993; Amberg and Rice, 1999). prM-E and E-NS1
are only cleaved by cell signal peptidase (Markoff, 1989; Barrows
et al., 2018; Yun and Lee, 2018). However, the prM is just a
precursor protein, which forms spike-like non-infectious
particles with C and E proteins in ER (Perera and Kuhn,
2008). Under low pH conditions, prM will be cleaved into M
protein by furin protease in the trans-Golgi network and form
mature virus particles (Mukhopadhyay et al., 2005). Once
cleaved, the pr protein will still bind to the E-dimer,
preventing premature viral membrane fusion with the host cell
until the infectious viral particles are released (Yu et al., 2008).

The structure of virus particles plays an important role in the
process of invading host. The viral entry into target cells depends
on PS contacts with its cognate receptors, such as TIM and TAM
(Morizono et al., 2011; Meertens et al., 2012; Niu et al., 2018), so
it is necessary to understand the structural proteins of viral
particles. Mature DENV virus particles are icosahedral
symmetrical spherical bodies with a diameter of about 50 nm.
The surface of the virus is a glycoprotein coat made of 180 copies
of E protein and M protein (Kuhn et al., 2002). It is generally
considered that E protein is divided into three regions: E-DI
required for the rearrangement of E protein structure, E-DII
involved in the pH-mediated fusion with the host cell membrane,
and ED-III contains the receptor-binding region. Besides, DI
bridges DII and DIII (Rey et al., 1995). The structure of ZIKV is
roughly similar to other flaviviruses. But some subtle differences
in structural proteins may explain the different cellular tropism
and pathogenicity of ZIKV. In fact, DENV has two glycosylation
sites at Asn67 and Asn154, while ZIKV has only one
glycosylation site at Asn154 within the glycoprotein (Mondotte
et al., 2007; Zhang et al., 2013a). The loss of N154-glycosylation
modifications can reduce the transmission capacity of
flaviviruses in mouse and mosquito models (Fontes-Garfias
et al., 2017; Wen et al., 2018).

Phosphatidylserine is the most abundant negatively charged
phospholipid in eukaryotic membranes. In healthy cells, almost
100% of PS is confined inside the bilayer, facing the cytoplasmic
leaflets. When cells are apoptotic, macrophages recognize PS
exposed on the cell surface and clear apoptotic cells (Nagata,
2018; Lemke, 2019). Flavivirus particles budding from ER which
is the source of PS in its envelope. The PS exposed on the surface
of the viral envelope can mask the virus as apoptotic bodies,
tricking the cells into engulfing virus particles (Moller-Tank and
Maury, 2014). Although the virus can expose PS during
infection, it is still unknown how the membrane flips inside
out and the PS can be expressed on the surface of virion envelope
(Maginnis, 2018).
BIOLOGY OF AXL

AXL, also known as UFO, was discovered from two patients with
chronic myeloid leukemia in 1988 (O’Bryan et al., 1991). The
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human AXL gene which encodes 20 exons is ubiquitously
expressed in various human organs, including brain, heart,
liver, kidney, testis, uterus, and skeletal muscle (Shen et al.,
2020) (Figure 2).
STRUCTURE OF AXL

AXL is a transmembrane receptor with a size of 100∼140 kd,
which contains an extracellular (N-terminal) domain and an
intracellular(C-terminal) tyrosine kinase domain (Korshunov,
2012). The intracellular domain is a tyrosine kinase domain with
autophosphorylation properties. The extracellular domain
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
contains two immunoglobulin-like (Ig) repeats and two
fibronectin (FN) type III motifs, which have the characteristics
of adhesion molecules and tyrosine kinase activity and can bind
to its ligand (Gas6) (Myers et al., 2019). The characteristics of Ig-
like and FN type III extracellular domains classify AXL (along
with Tyro3 and Mer) as TAM family of RTKs.

The signal peptide of AXL is located within exon1, which can
guide the transfer of newly synthesized AXL to the cell
membrane. The exons 2–5 of AXL form two Ig-like domains,
which are used to bind the sex hormone-binding globulin
(SHBG) region of Gas6. The affinity between Gas6 and AXL is
3–10 times higher than Mer and Tyro3 (Shen et al., 2020). In the
AXL-Gas6 complex, both of the Ig-like domains of AXL are
A

B

C

FIGURE 1 | Genomic organization of Flavivirus. (A) The genome is divided into UTR and ORF. (B) The ORF encodes three structural proteins, seven non-structural
proteins, and a signal peptide 2K with 17 amino acids. (C) Polyprotein membrane topology. The black arrows indicate the cleavage site of the viral protease NS3/
NS2B. The red arrows denote the cleavage site of the host signal peptidase. The green arrow indicates the cleavage of prM to M and pr. The blue arrow denotes
the cleavage site of an unknown host protease.
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simultaneously connected to the first laminin G-like domain in
Gas6 (Sasaki et al., 2006). This special and ingenious
combination prevents the incorrect combination of Gas6-Gas6
or AXL-AXL. The FNIII domains located in exons 6–9 provide
the basis for AXL adhesion. It has been shown that the
transmembrane domain near exon10 and exon11 can be
cleaved by proteases to produce soluble AXL fragments
(Weinger et al., 2009). Interestingly, in human non-small cell
lung cancer cells (HCC827), a-secretase (ADAM10) can cleave
the full-length AXL (AXL-FL) and release the extracellular
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
domain into the blood termed soluble Axl (sAxl). These
soluble extracellular domains shed from the full-length AXL
still retain the ability to bind to Gas6. The structure composed of
transmembrane domain and intracellular domain (AXL-CTF)
can also be cleaved by g-secretase. After being cleaved, AXL
intracellular domain (AXL-ICD), which contains a nuclear
localization sequence (NLS) located at exon12, is released from
the plasma membrane and transferred to the cytoplasm and
nucleus (Lu et al., 2017). Exons13–20 are intracellular domains
with catalytic protein tyrosine kinases (Figure 3A).
FIGURE 2 | Schematic diagram of AXL expression in human tissues (this figure is adapted from the data of “THE HUMAN PROTEIN ATLAS” website. For specific
data, please refer to https://www.proteinatlas.org/ENSG00000167601-AXL/tissue).
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AXL LIGAND: GAS6

Vitamin K-dependent protein Gas6, the only ligand known for
AXL, was first discovered in embryonic mouse NIH 3T3 cells (van
der Meer et al., 2014). Under conditions of serum-
starved NIH 3T3 cells, Gas6, which shares approximately 43% of
the amino acid sequence with protein S, is one of the up-regulated
“growth arrest-specific” genes (Schneider et al., 1988; Law et al.,
2018). Unlike the thrombin-sensitive cleavage site between the Gla
and EGF-like domains of protein S, the region in Gas6 is not
susceptible to be cleaved by the serine proteases (van der Meer et al.,
2014). The N-terminus is Gla domain, a protein containing g-
carboxylated glutamic acid residues. In a vitamin K-dependent
reaction, its glutamic acid residues are carboxylated at the free g-
hydroxyl position which greatly increases the ability to bind Ca2+.
Therefore, Gla can undergo the calcium-dependent structural
transformation, and thus can bind to phosphatidylserine (PS)
residues with high affinity (Tanabe et al., 1997; Rajotte et al.,
2008; Tsou et al., 2014). Following the Gla domain are a loop
region (a disulfide bridge) and four epidermal growth factor (EGF)-
like domains. EGF-like repeats consist of b-sheets containing six
conserved cysteine residues to form three intra-domain disulfide
bonds (Rothlin et al., 2015). Besides, each EGF-like domain contains
a consensus sequence for the b-hydroxylation of Asp and Asn
residues, whose existence of this structure is related to the high
affinity of Ca2+ (Wu et al., 2017). The C-terminal of Gas6 is a sex
hormone-binding globulin-like structure (SHBG) composed of two
laminin G (LG)-like domains. LG is a matrix protein that can
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
interact with receptors on the cell surface (Manfioletti et al., 1993;
Wu et al., 2017) (Figure 3B). By observing the crystal structure of
the minimal AXL-Gas6 complex, the lg1 and lg2 domains of AXL
are connected in an antiparallel arrangement of the edge b strands
to form a continuous b-sheet cross-molecular junction.

Other experiments show that the combination of AXL and Gas6
is divided into two steps. First, LG1 and the two lg-like domains are
combined with high affinity, and then lateral diffusion of such 1:1
complexes leading to the formation of a dimeric signaling complex.
At the main binding site, both AXL and Gas6 contain several
charged residues forming part of the polar b-sheet surface.
However, Pros1 does not have these charged residues, which may
be the reason for its inability to bind to AXL (Hafizi and Dahlback,
2006; Sasaki et al., 2006; Linger et al., 2008).

In addition to the common AXL/Gas6 activation pathway,
AXL can also form Gas6-independent heterodimers with other
molecules (TYRO3, Mer, and epidermal growth factor receptor)
to initiate intracellular signaling when AXL is overexpressed or
under oxidative stress (Myers et al., 2016; Ray et al., 2017). These
atypical activation pathways also illustrate the complexity of
AXL activation.
AXL SIGNALING PATHWAYS

After AXL is activated, the intracellular tyrosine residues are
autophosphorylated and dephosphorylated, and effector
molecules or adaptor proteins containing SH2, PTB, or other
A

B

C

FIGURE 3 | Structures of AXL and Gas6, and AXL signaling pathways. (A, B) Molecular structures of AXL (A) and Gas6 (B). (C) AXL binds to the ligand Gas6, and
then the tyrosine kinase domain is activated, mediating cascade reactions such as cell survival, proliferation, migration, invasion, immune suppression, and
cytoskeleton dynamics.
March 2021 | Volume 11 | Article 575346
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phosphotyrosine-binding domains are recruited to these
phosphotyrosine residues (Gay et al., 2017). Four tyrosine
residues (Y703, Y779, Y821, and Y866) are considered as
phosphorylation sites. These residues are involved in binding
AXL with subunits of phosphatidylinositol 3-kinase (PI3K),
growth factor receptor-bound protein 2 (Grb2), and Src
tyrosine kinase (SRC) (Wium et al., 2018; Zhu et al., 2019). In
a cell type-dependent context, AXL-activated downstream
cascade signaling pathways such as the Grb2/Ras/Raf/MEK/
ERK, PI3K/Akt, and SRC signaling pathways can mediate
survival, proliferation, migration, invasion, immune
suppression, and cytoskeleton dynamics. Gas6/AXL signaling
promotes the growth and survival of multiple cell types by
activating the MAPK/ERK and PI3K signaling pathways
(Antony and Huang, 2017). The MAPK/ERK cascade is usually
involved in proliferation, while PI3K signaling pathway is
involved in cell survival. In leukemia cell lines, early
experiments showed that AXL mediated cell proliferation via
activation of Grb2, Ras, Raf1, MEK-1, and ERK1/2 pathways
(Fridell et al., 1996). Stimulation of mitogen-activated protein
(MAP) kinase (p38) by AXL is partly due to its ability to bind to
the adaptor protein Grb2. Studies on GnRH neurons showed
that AXL guided these cells to migrate from olfactory plaques to
the forebrain via PI3K, Ras, Rac, p38 MAPK, and Hsp25
signaling pathways, leading to actin reorganization (Allen
et al., 2002; Nielsen-Preiss et al., 2007). Large numbers of
experiments proved that the activation of AXL and PI3K/Akt
was related to multiple downstream cascade reactions
converging on protecting cells from apoptosis. Akt not only
activates ribosomal protein S6 kinase (S6K) but also
phosphorylates a pro-apoptotic protein, BCL2-associated
agonist of cell death (Bad) (Goruppi et al., 1997; Goruppi
et al., 1999; Lee et al., 2002). In addition, Gas6/AXL signaling
also increases the expression of antiapoptotic proteins, mediates
phosphorylation of NFkB, and inhibits proapoptotic proteins
such as caspase 3 (Goruppi et al., 1999; Demarchi et al., 2001;
Hasanbasic et al., 2004). Both of AXL and Gas6 involved in cell
survival are indispensable. AXL without Gas6 cannot be
activated and induce downstream cascade reactions, whereas,
Gas6 stimulated AXL−/− mice fibroblasts did not increase cell
survival rate (Bellosta et al., 1997). However, C1-TEN is
considered as a negative regulator of AXL-mediated PI3K/AKT
signaling to reduce cell survival (Hafizi et al., 2005).

In addition, Nck2 is involved in linking AXL with other
signaling complexes. The interaction of AXL and Nck2 can
connect AXL to a ternary complex consisting of the
particularly interesting new cysteine-histidine-rich protein
(PINCH) and integrin-linked kinase (ILK), which is a major
component of signaling platforms at focal adhesions, thereby
enabling AXL to regulate cytoskeleton dynamics (McCarty, 1998;
Lal et al., 2009; Verma et al., 2011). In inflammatory breast
cancer cell lines, depletion of AXL-stabilizing protein TIG1
reduces the expression of Matrix metalloproteinase 9 (MMP9),
which has been identified as an essential regulator for the AXL-
mediated invasion (Tai et al., 2008; Koorstra et al., 2009; Han
et al., 2013; Wang et al., 2013). Similarly, Src-family kinase
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
activity is related to Gas6-mediated proliferation, survival, and
neuronal migration (Goruppi et al., 1997; Nielsen-Preiss et al.,
2007; Laurance et al., 2014). In human breast cancer epithelial
cells, SLUG and SNAIL increase the expression of AXL, which
indicates that AXL, as an important factor of the epithelial-
mesenchymal transition (EMT) process, is involved in metastasis
in cancer cells (Gjerdrum et al., 2010; Feneyrolles et al., 2014;
Kong et al., 2020) (Figure 3C).

Different with its roles in proliferation, migration, and cell
survival, studies of macrophages and dendritic cells (DCs)
showed that AXL was pleiotropic inhibitor of the innate
immune response to pathogens (Rothlin et al., 2007). Because
of outbreaks of ZIKV and DENV, the roles of AXL in the process
of flavivirus infections have become more and more clear.
PS RECEPTOR AXL INTERACTS WITH
ZIKV AND DENV

Most research about AXL focused on cancer and cell survival. It
was not until 2007 that Rothlin discovered AXL and other TAM
families could be used as inhibitors of innate immune responses,
which opened the beginning of future research on AXL in
flavivirus (Rothlin et al., 2007). In 2012, Meertens discovered
AXL and other PS receptors can mediate DENV entry (Meertens
et al., 2012) (Figure 4A). DENV used Gas6 to bridge AXL and
PS, thereby promoting its replication (Zone I). The presence of
the ligand Gas6 was indispensable for virus attachment.
Pretreatment of DENV with ANX5 (a PS-binding protein) or
mutation of the Gas6 binding site in AXL can effectively inhibit
viral infection (Zone I and III). Interestingly, the deletion of the
AXL intracellular domain or mutation of the ATP binding site
did not change the internalization of DENV (Zone II step2) but
affected the late replication of the virus to produce the progeny
virus (Zone II step3, 4). This indicated that the intracellular
kinase region of AXL was essential for infection of DENV but
dispensable for viral entry. However, this article failed to
elaborate on its deeper mechanism. Subsequently, by
constructing a pseudotyped virus, Bhattacharyya discovered
that enveloped viruses suppressed innate immune responses by
activating TAM receptors, which may explain that why AXL
intracellular domain deletion or ATP binding site mutant cannot
promote DENV replication (Bhattacharyya et al., 2013).

Compared with DENV, ZIKV seems to have a higher affinity
with AXL. A large number of experiments in vitro have proved
that AXL is a candidate receptor for ZIKV. When sucking blood,
Aedes mosquito deposits ZIKV in the epidermis and dermis of
the bitten host. As the first barrier of innate immunity, multiple
cells (including immature dendritic cells and epidermal
keratinocytes) are permissive to ZIKV infection, and these cells
highly expresses AXL (Hamel et al., 2015; Laureti et al., 2018).
Besides the skin, AXL is expressed in various organs such as the
brain, eyes, and reproductive organs (see Figure 2 for details).
ZIKV has shown strong neurotropism especially neural
progenitor cells (NPCs), causing extensive neuropathy.
Samples from mid-neurogenesis have shown that ZIKV has a
March 2021 | Volume 11 | Article 575346
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high infection rate in ventricular zone (VZ) and subventricular
zone (SVZ) (Retallack et al., 2016; Meertens et al., 2017).
Interestingly, at mid-neurogenesis, AXL is expressed in a
highly reproducible pattern throughout the cortex, with strong
expression bordering the lateral ventricle and in the outer
subventricular zone, which is consistent with ZIKV infection
tropism zone (Nowakowski et al., 2016). Furthermore, AXL is
overexpressed in multiple developing human brain cells
(including astrocytes, microglia, and radial glial cells), these
cells are highly susceptible to ZIKV infection (Faizan et al.,
2016; Laureti et al., 2018). Additionally, ZIKV can antagonize
type I IFN signaling via up-regulating the expression of SOCS1
in a STAT1/STAT2-dependent manner (Chen et al., 2018)
(Figure 4B). Several studies have shown that type I IFN
signaling which is suppressed by various channels in ZIKV-
infected cells plays an important role in antagonizing ZIKV
infection (Grant et al., 2016; Kumar et al., 2016; Bowen et al.,
2017). When the cells are stimulated by pathogenic invasion, the
signaling of the defense system, such as Toll-like receptor (TLR)
signaling pathways, leads to the outbreak of inflammatory
cytokines. Cytokine signaling also drives up-regulation of AXL
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7
receptor expression, resulting in the induction of expression of
suppressor of cytokine signaling (SOCS1 and SOCS3), thereby
widely inhibiting the cascade of TLR and cytokine receptors
(Lemke and Rothlin, 2008; Lemke, 2013).

In addition to the transmission of mosquito bites, sexual and
vertical transmission may potentially increase the spread of
ZIKV. In male mice, AXL is expressed in the testes and
epididymides, but not in the prostate and seminal vesicles (Ma
et al., 2016). Mouse model shows that ZIKV can cross the blood-
testis barrier to replicate in the testes and epididymides and
causes chronic inflammation and severe damage. In contrast, the
prostate and seminal vesicles are protected from infection, which
is consistent with the distribution of AXL (Ma et al., 2016). In
vitro experiments also further confirm that AXL promotes ZIKV
entry into human Sertoli cells (SC) and promotes its replication
by antagonizing the interferon pathway (Kumar et al., 2018;
Strange et al., 2019). But the results of AXL promoting ZIKV
entry seems to be contradictory, which may be related to
different host cells or different ZIKV strains (Ojha et al., 2019).
During pregnancy, AXL varies substantially across donors,
gestational age, and differentiation state, compared to another
A B

DC

FIGURE 4 | AXL promotes ZIKV and DENV replication. (A) Full-length AXL promote DENV replication. ANX5 competitively binds PS, blocking the binding of DENV
to Gas6 (zone I). AXLK567A and AXLDCyt promote the binding and internalization of DENV (Zone II step2) but are unable to enhance DV infection (Zone II step3 and 4).
Mutation of the Gas6 binding site in AXL can effectively inhibit DENV-Gas6 complex binding to AXL (zone III). (B) The feedback inhibition of the innate immune
response to ZIKV. ZIKV-Gas6 complex activates AXL and up-regulates SOCS1 expression in a STAT1/STAT2-dependent manner (blue) to inhibit TLR signaling
pathways and cytokine signaling (red). (C) ZIKV and DENV produced by insect cells or mammalian cells cross the placental barrier to infect HUVECs through AXL.
(D) The chemical structure of the AXL inhibitors that have been reported to block ZIKV and DENV infections.
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cofactor of ZIKV, T-cell immunoglobulin and mucin domain 1
(TIM-1), which is expressed consistently and uniformly (Tabata
et al., 2016). In contrast, inhibition of AXL modestly reduces the
infection of ZIKV, suggesting its secondary contribution in
placental cells (Hamel et al., 2015; Fleming, 2016; Liu et al.,
2016; Tabata et al., 2016). Because of differences in expression,
the role of AXL during the ZIKV crossing the placental barrier is
still uncertain. However, in human umbilical vein endothelial
cells (HUVECs) with abundant AXL expression, the expression
of other cofactors (DC-SIGN, L-SIGN, and TIM1) is poor,
indicating that AXL is essential for ZIKV to infect HUVECs.
Both ZIKV produced by insect cells and mammalian cells can use
AXL to invade HUVECs and mediate productive infections.
Nevertheless, only DENV or West Nile virus (WNV) produced
by insect cells, not mammalian cells, can utilize AXL (Richard
et al., 2017) (Figure 4C). This may explain why ZIKV can cross
the placental barrier and cause vertical transmission while
DENV and WNV do not have this ability. At present, it is still
unclear as to why this phenomenon occurs. The possible reason
is different lipid structure of mosquito cells and lower
temperature used for virus production could affect virus
assembly and expose more PS to bind Gas6. However, WNV
virions produced at 37°C retain a closed smooth conformation.
The flavivirus E protein structures exist as a dynamic and
heterogeneous population. Greater membrane exposure could
be achieved on ZIKV than on DENV or WNV if its structural
proteins facilitate increased dynamic motion.
DOES ZIKV REALLY NEED AXL

Although many studies have shown that AXL is a potential receptor
for ZIKV infection, other studies have provided conflicting results.
After AXL−/− mice are infected with ZIKV, high levels of ZIKV
infection are still present in the testes and epididymis, which
suggests that AXL is likely dispensable for ZIKV pathogenesis in
the male reproductive tract (Govero et al., 2016). Hastings
inoculated ZIKV on pregnant WT or AXL−/− mice and found no
difference in ZIKV RNA levels in the brains and spleens of pregnant
WT and AXL−/− mice. At the same time, there is no significant
difference in the brain and placental tissue of fetal WT and AXL−/−

mice (Hastings et al., 2017). These results prove that AXL is not
essential for the vertical propagation of ZIKV. In a study of ZIKV
tropic cells (NPCs), depletion of AXL fails to protect human neural
progenitor cells and cerebral organoids from the infection of ZIKV
(Wells et al., 2016). Other mousemodels also show that pancreatitis,
conjunctivitis, and eye infections caused by ZIKV infection are not
related to AXL (Miner et al., 2016; Wang et al., 2017). To avoid
errors caused by the differences between human AXL and murine
AXL, Hela cells (AXL has been knocked out with CRISPR-Cas9 in
advance) stably expressing murine AXL could restore the infection
of ZIKV (Hastings et al., 2017). These findings call into a question
about whether ZIKV really needs AXL in the process of infecting
hosts. Another study suggests that AXL can cause microglial
apoptosis in the brain of mice infected with ZIKV and mediate
IL-1b expression, although it is not required for replication of ZIKV
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 8
in vivo (Hastings et al., 2019). Although there are diametrically
opposite results in vivo and in vitro, it cannot be easily denied that
AXL is a candidate receptor for ZIKV. Instead, it illustrates the
complex mechanism of AXL in the flavivirus replication process.

Combining these results, we speculate the mechanisms why
AXL−/− mice can still be infected by ZIKV. a) Human AXL and
murine AXL are different, although murine AXL can restore the
sensitivity of human AXL-deficient cells to ZIKV. However, inmice,
murine AXL has different effects on ZIKV infection, such as
mediating the expression of interleukins and the apoptosis of
nerve cells (Hastings et al., 2019). Interestingly, GBS caused by
acute ZIKV infection may be associated with infection or
autoimmune-mediated death of neuronal or glial cell. ZIKV-
infected Ifnar−/− mice are characterized by acute and severe
neuropathology and hindlimb paralysis. Both of them are likely
related to AXL-mediated apoptosis of microglia (Li et al., 2016;
Thiery et al., 2016; Krauer et al., 2017; Hastings et al., 2019). b)
There are other receptors in the human cells hijacked by ZIKV. For
instance, Tyro3, another protein of the TAM family, has also been
shown to be one of the potential receptor for ZIKV and DENV
(Meertens et al., 2012; Hamel et al., 2015; Onorati et al., 2016).
Unilateral gene abolition of AXL cannot prevent the invasion of
ZIKV due to receptors functional redundancy. While some other
cells (such as HUVECs), due to the poor expression of other
functional receptors, the abolition of AXL strongly inhibits ZIKV
invasion (Brindley et al., 2011; Richard et al., 2017). c) There are
other ZIKV receptor proteins expressed in mice but not in human
cells. Because of the differences in species and the complexity of
virus replication, the key target receptor for ZIKV infection in mice
is not AXL but other molecules such as TIM1, DC-SIGN L-SIGN,
or some unknown proteins. This requires multigene knockout mice
and more work to verify this view in the future. d) As all mouse
models not only lack AXL but also lack a key component of innate
antiviral immunity (Ifnar), loss of type I IFN signaling may mask
the important role of AXL in ZIKV-infected mice. At present,
Ifnar−/− mice are recognized as model mice for studying ZIKV
because ZIKV preferentially infects cells with impaired abilities to
produce type I IFN (Lazear et al., 2016; Hastings et al., 2017). In
previous studies, ZIKV hijacked AXL to antagonize the type I
interferon pathway to promote its infection, and the deficiency in
Ifnar just weakened the need of ZIKV for AXL. e) The expression,
distribution, and interaction of cell surface proteins in commercial
immortal cells are usually different from those of primary cells in
vivo, so it is not surprising that there are deviations between in vivo
and in vitro experiments.
AXL RECEPTOR BLOCKING DRUG
CANDIDATES AGAINST DENV AND ZIKV

Based on the worldwide population of ZIKV and DENV, there is
an urgent need to develop effective interventions against them.
AXL, as a common receptor candidate for ZIKV and DENV, is
one of the potential targets for drug and inhibitor development.
R428 is an anticancer drug known for targeting the kinase domain
of AXL (Holland et al., 2010; Huey et al., 2016). In vitro model, it
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performs well in inhibiting ZIKV and DENV replication
(Meertens et al., 2012; Meertens et al., 2017). Sarukhanyan
improved the structure of R428 to form compound 1’ and 2’,
which has a higher affinity with AXL than the original drug
(Sarukhanyan et al., 2018). Warfarin is an anticoagulant drug that
is intended to inhibit vitamin K epoxide reductase, and can also be
used as an indirect blocker of AXL (Mega and Simon, 2015;
Tormoen et al., 2020). The inhibition of epoxide reductase
prevents carboxylation of glutamic acid residues in the
epidermal growth factor domain of Gas6 responsible for
attachment and fusion of enveloped viruses (Sarukhanyan et al.,
2018). Through high-throughput genetic screens, it is found that
BMS-907351 and BMS-777607 as AXL inhibitors could effectively
inhibit the replication of ZIKV in human transformed
osteosarcoma cells (Mega and Simon, 2015). Bhattacharyya also
verified that BMS-777607 greatly inhibited activation of AXL and
effectively reduced the replication of enveloped viruses in bone-
marrow-derived DCs (Bhattacharyya et al., 2013). Besides, Pan
found that nonsteroidal anti-inflammatory drugs such as aspirin,
naproxen, ibuprofen, lornoxicam, and acetaminophen could
inhibit ZIKV replication by degrading AXL via the
ubiquitination pathway (Rausch et al., 2017; Pan et al., 2018)
(Figure 4D). Although current inhibitors against AXL have been
shown to inhibit the replication of ZIKV and DENV at the cellular
level, whether these drugs can be used in clinical treatment is still
unknown, and need more in-depth research.
OTHER REMAINING UNRESOLVED ISSUES

With the outbreak of ZIKV, the interactions of AXL and flaviviruses
are an active area of investigation, but there are still many doubts. a)
How flaviviruses may incorporate PS in their membrane? It is
known that the lumenal leaflet of ER membrane contains PS, which
suggests PS can be incorporated into the surface of the virus particle
when the virus is replicating (Leventis and Grinstein, 2010; Perera-
Lecoin et al., 2013). Viruses can also induce apoptosis in various
ways, subsequently expose PS on virus-producing cells and budding
from the membrane of apoptotic cells (Nour et al., 2013; Chua et al.,
2019). But It is worth noting that the presence of PS alone is not
enough for enveloped viruses to enter by apoptotic mimicry.
Because influenza A virus (IAV) and coronaviruses, which also
have PS, are not enhanced by AXL (Jemielity et al., 2013; Moller-
Tank and Maury, 2014). b) How Gas6 accesses virion-associated
PS? As described before, why DENV or WNV produced by insect
cells can use AXL, but not mammalian cells? It is generally believed
that the virus structure is static, but the E protein structures exist as a
dynamic and heterogeneous population, which contributes to the
atomic model of virions that breath over time (Kuhn et al., 2015;
Barrows et al., 2018). Viral breathing can be affected by the
environment or viral genetic factors (Lewis et al., 1998; Austin
et al., 2012; Kostyuchenko et al., 2014; Dowd et al., 2015; Lim et al.,
2017; Barrows et al., 2018). At 28°C, mosquito cells produce smooth
herringbone conformation as the dominant mature form of DENV
viral particles. At 37°C, DENV particles appear unstable bumpy
structure with broken, deformed, of different sizes, or in aggregates
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(Zhang et al., 2013b). The change of the conformation may expose
patches of the virion membrane, making it easier to bind Gas6. In
contrast, WNV particles maintain a smooth closed conformation at
37°C (Mukhopadhyay et al., 2003). The conformational change of
viral particles caused by temperature does not seem to explain this
phenomenon in all flaviviruses. Another phosphatidylserine
receptor TIM-1 can directly interact with PS of DENV and WNV
to promote infection (Meertens et al., 2012; Oliveira and Peron,
2019). Compared with TIM-1, Gas6 is a bigger protein, it may
require larger exposed patches of the viral membrane, whichmay be
more available for ZIKV than for DENV or WNV (Kostyuchenko
et al., 2016; Richard et al., 2017; Hasan et al., 2018). c) Is AXL a
common receptor for all flaviviruses, and does AXL perform other
functions during flavivirus-infection? Previous research has
indicated that AXL protects against WNV infection by
maintaining blood-brain barrier (BBB) integrity, suggesting the
new role of AXL in flavivirus research (Miner et al., 2015). AXL
not only promotes the entry of EBOV but also suppresses its release
in the later stages of replication (Shimojima et al., 2006; Li
et al., 2014).
CONCLUSION

In this review, we summarize the biological characteristics of
DENV, ZIKV, and AXL, and the biological functions of AXL in
the invasion of cells by DENV and ZIKV. At present, it is believed
that AXL mainly plays a role in two ways in the process of virus
replication, a) promoting virus binding and internalization and b)
promoting virus replication by activating AXL to antagonize the
type I interferon pathway. But the contradictory results shown in
the mouse experiments seem to close the door for the study of
AXL and flaviviruses. Future research needs to focus on
discovering the causes of the differential results in vitro and in
vivo, and the mechanism by which flaviviruses expose PS to bind
phosphatidylserine receptors. Through an in-depth understanding
of the above issues, the development of AXL inhibitors that can be
used in clinical treatment may be a new antiviral strategy.
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