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Abstract: This paper presents a novel three-dimensional (3D) multi-spectrum sensor
system, which combines a 3D depth sensor and multiple optical sensors for different
wavelengths. Various image sensors, such as visible, infrared (IR) and 3D sensors, have
been introduced into the commercial market. Since each sensor has its own advantages
under various environmental conditions, the performance of an application depends highly
on selecting the correct sensor or combination of sensors. In this paper, a sensor system,
which we will refer to as a 3D multi-spectrum sensor system, which comprises three types of
sensors, visible, thermal-IR and time-of-flight (ToF), is proposed. Since the proposed system
integrates information from each sensor into one calibrated framework, the optimal sensor
combination for an application can be easily selected, taking into account all combinations
of sensors information. To demonstrate the effectiveness of the proposed system, a face
recognition system with light and pose variation is designed. With the proposed sensor
system, the optimal sensor combination, which provides new effectively fused features for a
face recognition system, is obtained.
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1. Introduction

Progress in computer vision and sensor technology has made it possible to acquire various types of
information, such as two-dimensional (2D) data at different wavelengths, as well as three-dimensional
(3D) information in real-time [1–4]. Since each type of sensor provides different features under various
environmental conditions, the performance of an application depends highly on selecting a sensor or
multi-sensor combination. Therefore, the selection of appropriate sensors has become one of the most
significant factors for high-performance vision systems [2,5,6].

Most of the early computer vision applications were based on visible (RGB) sensors, since a visible
image represents what humans perceive visually [1,6]. The range of wavelengths correspond to a
frequency range from approximately 380 nm to 700 nm. Images also contain texture information, which
is one of the most important types of information for object detection, tracking and classification [7,8].
However, since visible sensor images are strongly distorted by changes in illumination, the performance
of visible-sensor-based systems also depends highly on illumination conditions.

The wavelength range of near-infrared (IR) and thermal-IR sensors are from 0.7 µm to 1.0 µm
and from 9 µm to 14 µm, respectively. Although these wavelengths are not perceived by the
human visual system, IR images contain distinctive features, such as thermal radiation emitted by
objects. Furthermore, compared to visible sensor images, infrared images are more invariant to visible
illumination changes [9,10]. However, neither near-IR nor thermal-IR images include color (RGB)
information. In addition, thermal-IR images do not contain texture information and can be affected
by ambient temperature.

Recently, real-time 3D depth sensors, such as the Kinect and time-of-flight (ToF) sensors, have been
introduced and have become some of the most useful sensors for vision applications [3,4]. Real-time
3D sensors make it possible to analyze detailed 3D shape information that cannot be acquired by 2D
sensors. Since the pixel value of a depth image represents the distance between a camera and an object,
many researchers have attempted to apply these sensors to 3D-based applications, such as 3D-based
recognition and 3D object modeling. However the distance information from such sensors is highly
noisy and cannot support texture information.

As explained above, each sensor provides different information and has advantages and
disadvantages in different environments. Therefore, to design more flexible and robust systems, the
selection of sensors for a specific application is a very important problem. However, obtaining the
optimal sensor combination based on calibrated and fused information from all sensors is very difficult,
because of the heterogeneous characteristics of sensors.

In this paper, we propose a sensor system, which we refer to as a 3D multi-spectrum sensor system,
consisting of three types of sensors: visible, thermal-IR and ToF sensors. Through the registration of
all sensors, visible, near-IR, thermal-IR and 3D information is integrated into a 3D multi-spectrum data
framework in real-time. In the data framework, all information from all sensors is calibrated and can
be easily fused. With the data framework, we can easily select optimal sensor combinations considering
all combinations of sensor information. To show the effectiveness of the proposed system, we apply
the system to face recognition in the presence of light and pose variations. With the proposed system,
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we can obtain fused optimal features for high-performance face recognition. In addition, the proposed
system can also be used for surveillance, 3D object modeling and object and human recognition.

This paper is organized as follows. In the next section, we briefly review the related state-of-the art
research areas. The proposed sensor system and its application with recognition methods are discussed
in Section 3. Section 4 shows experimental results on the use of 3D multi-spectrum face data in face
recognition. Conclusions are given in Section 5.

2. Related Works

Previous works related to this paper are roughly divided into three research areas: sensor registration,
applications of time-of-flight cameras and face recognition. Since the proposed system consists of three
different sensors (visible, thermal-IR and ToF sensors) at different locations, the images from the sensors
need to be registered. Therefore, sensor registration is introduced in this chapter. In addition, recent
studies using ToF camera and face recognition in terms of light and pose variation are presented as
applications of the proposed system.

2.1. Sensors Fusion

Various sensors, such as visible, thermal-IR and 3D sensors, have been introduced into the commercial
market. Since each sensor provides different features, many approaches for combining features to
improve the performance of the system have been proposed. In order to fuse sensor data, registration to
transform different sets of data into one coordinate system should be accomplished.

Many approaches have been proposed for registering different types of images, such as visible,
IR and 3D. In [11], a simple registration between IR and visible images using SIFTis proposed.
In [12,13], registration between visible and thermal-IR image data for face recognition involving
illumination variations is described. A real-time fusion method of multiple passive imaging sensors,
visible, IR, and 3D LADARimaging, is presented in [14]. In [15], a method to register a pair of images
captured from visible and IR sensors by line and point matching is presented. In addition, calibration
between depth and color sensors by a maximum likelihood solution by using checker board is performed
in [16,17]. In [18], a multiple sensor fusion system, which combines RGB-Dvision, lasers and a thermal
sensor, in order to detect people, in a mobile robot.

Even though there have been many attempts to develop registration between different types of 2D
sensors, perfect registration cannot be achieved using only 2D information. Additionally, even though
many approaches for calibration between color and depth images have been proposed, high-performance
registration between IR and 3D is still a challenging problem. Moreover, there have thus far been no
attempts to register three types of sensors: IR, visible and 3D sensors.

2.2. Applications of Time-of-Flight Camera

Recently, a ToF camera, which generates full-range distance data in real-time, has been used to extend
the application range of 3D data to real-time systems, such as human-computer interaction (HCI) [19,20],
surveillance [21,22] and robotics [23–26]. One of the most useful applications of the ToF camera is 3D



Sensors 2013, 13 12807

object modeling in order to minimize errors in 3D data, since this data contains noise, due to the motion
and orientation of the object to be acquired, as well as the reflectivity of surfaces [27–29]. In [27],
3D object reconstruction exploits sequential distance images captured at different positions. In [29], a
3D shape scanning method with a ToF camera is presented to improve the quality of 3D scans based
on filtering and scan alignment techniques. In [28], a method to generate spatially consistent 3D object
models by registering 3D data from multiple views is described. In addition, the lack of information from
ToF cameras can be compensated for by using additional sensors [30–32]. A real-time segmentation and
tracking technique that fuses depth and RGB color data proposed in [30] solves some of the problems in
RGB image-based segmentation and tracking, such as occlusions and fast motion. In [31], a real-time
3D hand gesture method using calibration ToF and RGB cameras improves the detection rate, as well
as the handling of hand overlap with the face to allow for complex 3D gestures. In [32], both a ToF
camera and stereo vision are used to make more accurate depth images, and a generated depth map for
augmented reality scenarios is applied.

2.3. Face Recognition

Many approaches for face recognition to handle pose and light variation have attempted to use
various source data, such as 2D, 3D, thermal-IR and near-IR face data, for computer vision and pattern
recognition. Face recognition can be roughly classified into two categories: 2D and 3D data-based
face recognition.

In 2D-based face recognition, features invariant under visible light changes are extracted from 2D
visible, thermal-IR and near-IR face images. In [33], the techniques for decomposing 2D visible face
images into non-negative factors to address illumination changes are presented. In [34], a local ternary
pattern (LTP) is proposed that can compensate for the main weaknesses of LBP, including sensitivity
to large variations in illumination and to random and quantization noise in uniform and near-uniform
image regions. A novel solution for illumination invariant face recognition using near-infrared images
and LBP features is proposed in [9]. In [35], a comprehensive and timely review of the literature on
the use of infrared imaging for face recognition is presented. In [36], the active appearance model
(AAM) is applied to normalize pose and facial expression changes on thermal-IR images, and anatomical
features invariant to the exact pattern of facial temperature emissions are extracted for face recognition.
In [10], image fusion between visible, near-IR and thermal-IR images is presented, which can enhance
the performance of face recognition under uncontrolled illumination conditions. Although IR-image-
based face recognition is an effective approach for eliminating visible light changes, the performance
still depends on the pose of the face.

One way of dealing with pose and light variations is to use 3D face data, since any face pose can
be generated by simple transformations, such as translation, rotation and scaling of 3D face models. In
addition, 3D face shape information, such as curvature [37,38], profile [39,40] and range image [41,42],
can be extracted from 3D face models, since those features are invariant to pose and light variations. A
face recognition system using a combination of color and depth images is proposed in [43,44]. In [45], a
novel thermal 3D modeling system using 3D shape, visible and thermal infrared information is proposed
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that addresses the head pose variation problem in face recognition systems. However, the system cannot
acquire thermal 3D data in real-time.

3. Proposed 3D Multi-Spectrum Sensor System

In order to integrate various sensor information into one calibrated datum, we propose a novel 3D
multi-spectrum sensor system that can provide 3D, visible, near-IR and thermal-IR information. The
system consists of ToF, color and thermal-IR sensors. Through the registration step between sensors, we
generate calibrated 3D multi-spectrum data in real-time. As an application using the 3D multi-spectrum
data, we apply it to a face-recognition system that can address variations in light and pose, as these are
the most significant factors causing performance decline [46].

3.1. Proposed System

Our proposed system consists of ToF, color and thermal-IR cameras, as shown in Figure 1.
Although the ToF camera provides depth information and a near-IR (gray-scale) image simultaneously in
real-time, it does not supply color (RGB) or thermal-IR information. Therefore, we propose a system
that can generate 3D multi-spectrum data that include 3D shape, visible and thermal-IR information by
registering three different kinds of cameras in real-time. The generated 3D multi-spectrum data created
by the system are used for face recognition and to solve problems associated with variations in pose
and light. With the proposed system, we can use four different kinds of information: (1) 3D depth data
from the ToF camera; (2) near-infrared data from the ToF camera; (3) visible (RGB) data from the color
camera and (4) thermal-IR data from the thermal-IR camera.

Figure 1. Proposed system comprising ToF, visible and thermal-IR cameras.

Since the thermal-IR and ToF cameras can capture thermal-IR (3–5 µm, 8–12 µm) and
NIR(750 nm–1,400 nm) ranges regardless of the visible range (360 nm–820 nm), they can be used in
extremely low light conditions. As shown in Figure 2, even though the image captured by the visible
range camera is almost black in the dark, the images from the ToF and thermal-IR cameras are not
affected by changes in external light. Therefore, there may be a wider range of uses for these cameras
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beyond the visible range, e.g., in surveillance applications, such as human detection and tracking at
night. Even though IR and ToF cameras are almost invariant to light variation, they do not provide
color or detailed texture information. Therefore, the proposed system has many advantages in terms
of surveillance, robot vision and HCI, which require 3D information, as well as color and thermal-IR
information in real-time.

Figure 2. Captured images in a lightless condition; (a) visible range image; (b) near-infrared
(IR) image from the time-of-flight (ToF) camera; (c) distance image from the ToF camera;
and (d) thermal-IR image.

(a) (b) (c) (d)

3.2. Registration of ToF, Color and Thermal-IR Cameras

In this step, the registration is used to find visible and thermal-IR information corresponding to 3D
data. Since the proposed system consists of three cameras located at different positions, each image from
the sensors has different image coordinates. In addition, since each camera provides different features,
such as color, thermal-IR, near-IR and 3D information, coordination among cameras is difficult.

Three-dimensional geometry, in which a 3D point (XW ) in a world coordinate system is projected
onto a 2D point (xI) in an image coordinate system, is used for registration between visible or thermal-IR
and ToF cameras. As shown in Figure 3, since the origin of the world coordinate (OW ) is the same as
the origin of the ToF camera, a point in the world coordinate system can be represented as the camera
coordinate system of the ToF camera. In other words, a world coordinate of a point in 3D space is directly
acquired as the 3D point of the ToF camera, as described in Equation (1). Additionally, xI represents a
2D coordinate of the image (pixel) coordinate system of the visible camera. x′I is a 2D coordinate of the
image coordinate system of the ToF camera.

XToF = XW =
[
x y z

]T
(1)

xI =
[
u v

]T
(2)

xI
′ =
[
u′ v′

]T
(3)

First, we estimate the world coordinate of a 3D point (XToF ) from the image coordinate of a 2D point
(x′I) in the image plane of the ToF camera, as shown in Figure 4. In Figure 4, (u0, v0) is the principal
point of the image plane and (ures, vres) represents the resolution of the distance image.
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A 3D point (XToF ) is projected onto a 2D point (x′I) on the image plane. Since the pixel value of a
distance image from the ToF camera represents the distance between the camera and an object, we can
obtain the distance information (z) from the images. Therefore, we can estimate the x-coordinate of the
3D point (XToF ) according to Equations (4) and (5). f is the focal length of the ToF camera, which can
be calculated from the camera calibration [47].

f

z
=

(u′ − u0)

x
(4)

x =
(u′ − u0)× z

f
(5)

Figure 3. Relationship between a different coordinate system (world(XW ) and image (xI ,
x′I) coordinate system).

Figure 4. Structure of ToF camera: a 3D point (XToF ) is projected on a 2D point (x′I) in the
image plane of a ToF camera.
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The coordinate of the 3D point (XToF ) can be estimated using the same method as in Equation (6).

y =
(v0 − v′)× z

f
(6)

Therefore, the world coordinate of the 3D point (XToF ) based on the distance image can be calculated
using Equation (7).

XToF =
[
x y z

]T
=
[

(u′−u0)×z
f

(v0−v′)×z
f

z
]T

(7)

The correspondence between XToF and xI can be represented by Equation (8). C and R indicate
the translation and rotation of the camera coordinate with respect to the world coordinate system,
respectively. C is a 3 × 1 vector, and R is a 3 × 3 matrix. K is a 3 × 3 camera calibration matrix
that includes the internal parameters of the camera [15].

xI = KRT (XToF − C) (8)

Equation (8) can be represented as in Equation (9), which is a linear equation with a
homogeneous coordinate.

xI = (KRT | −KRTC)

(
XToF

1

)
(9)

In summary, the relationship between XToF and xI is given by Equation (10). The 3 × 4 matrix
P = (KT T | −KRTC) is the projection matrix of the camera.

x̃I = PX̃ToF (10)

where X̃ToF =
[
x y z 1

]T
is the homogeneous coordinate of the 3D point

(XToF =
[
x y z

]T
), which is a 4 × 1 column vector with one added as the last element of

the vector, and x̃I =
[
u v 1

]T
is the homogeneous coordinate of the 2D point (xI =

[
u v

]T
),

which is a vector.

Figure 5. The proposed system can be divided into off-line and on-line processes.



Sensors 2013, 13 12812

We divide the proposed system into on-line and off-line steps, as shown in Figure 5. Before the
on-line process, the projection matrices, which represent the relationship between the 3D coordinates
of the ToF camera and the 2D projective coordinate of the visible (PC) and thermal-IR (PT ) cameras,
should be estimated off-line. Subsequently, 3D multi-spectrum data are generated and applications, such
as face recognition, are completed on-line.

In the proposed system, 3D points can be acquired from the ToF camera, and two kinds of 2D points
can be obtained from the color and thermal-IR cameras. Therefore, the two camera projection matrices
can be correctly estimated. One is a matrix (PC) representing the relationship between the 3D points and
2D points of the color images, as in Equation (11), and the other is a matrix (PT ) based on the 2D points
of the thermal-IR images, as in Equation (12).

x̃C = PCX̃ToF (11)

x̃T = PT X̃ToF (12)

where x̃C and x̃T are homogeneous coordinate representations of 2D points in the color image and the
thermal-IR image, respectively, and X̃ToF is a homogeneous coordinate representation of a 3D point
from the ToF camera. Figure 6 illustrates the main concept of the registration between cameras.

Figure 6. Registration between cameras.

To estimate each projection matrix in an off-line process, the corresponding points having the same
feature point in all three cameras should be extracted. To identify the corresponding points between
different cameras, we use a calibration rig to extract feature points at the corners of a check pattern in a
color image. We also make holes in the corners of the check pattern as feature points for the thermal-IR
image. The 2D points (xC , xT ) for color and thermal-IR can be extracted from each image of the
calibration rig shown in Figure 7.

Using a ToF camera, 3D points (XToF ) can be acquired directly, since the distance image has already
been calibrated using the 2D points (xG) of the near-IR image from the ToF camera (Figure 8). Therefore,
we first extract the feature points that are also the corner points of the check pattern in the near-IR image,
as shown in Figure 8a. By using the points extracted from the near-IR images, the 3D coordinates can
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be extracted from the distance image, as in Figure 8b, as well as from the ToF camera, as shown in
Figure 8c.

If we know the number of correspondences xi ↔ Xi, i = 1, 2, . . . N (N ≥ 6) between the 3D points
(Xi) and the 2D image points (xi), we can estimate the camera projection matrix using the direct linear
transformation (DLT) algorithm, which is a minimization method used to find an approximate linear
solution by singular value decomposition (SVD) [47]. Since we can extract a number of correspondences
using a calibration rig, we can estimate the camera projection matrices (PC , PT ). If we know the
projection matrix, then we can obtain each corresponding projected 2D image point on the visible and
thermal-IR image planes from the 3D coordinates obtained with the ToF camera using Equations (2)
and (3), thereby allowing for the acquisition of color and thermal-IR information corresponding to the
3D points.

Figure 7. Images of the calibration rig taken by the visible camera (left) and the thermal-IR
camera (right).

Figure 8. 3D points from the ToF camera: (a) near-IR image of the calibration rig from the
ToF camera; (b) distance image of the calibration rig from the ToF camera; (c) extracted 3D
coordinates of the calibration rig at the corner point of the check pattern in the near-IR image.

(a) (b) (c)

3.3. Generation of 3D Multi-Spectrum Face Data

Before 3D multi-spectrum face data can be generated, the noise in 3D distance images from ToF
camera must be addressed. We first perform a median filter to remove the salt and pepper type noise
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in every image. After that, we use an average image of 10 distance images to capture a more precise
distance image.

We then apply the previous registration method to find the corresponding color and thermal-IR
information to obtain the 3D points of the face to be recognized. In other words, we find the
corresponding 2D coordinates of the color and thermal-IR images of the 3D points from the estimated
projection matrix (PC , PT ) in Equations (11) and (12). Finally, we generate 3D multi-spectrum face
data, which include visible and thermal-IR textures with 3D shape information.

Figure 9 shows the corresponding distance image (3D shape information) (a) and near-IR image (b) of
the thermal-IR image (c) and visible image (d). The red-cross points in Figure 9c,d represent projected
correspondence points on the thermal-IR and visible images from the 3D face region in (b).

Figure 9. (a) 3D depth image and corresponding points in the near-IR image (b); thermal-IR
image (c); and visible (color) image (d).

(a) (b)

(c) (d)

As a result of the registration, 3D multi-spectrum face data for face recognition can be generated.
Since the resolution of the depth image from the ToF camera is too small, we generate 3D multi-spectrum
face data by 3D mesh rendering in OpenGL to create more detailed 3D face data. Figure 10a shows
visible and thermal-IR images, as well as two kinds of 3D multi-spectrum data. One image is color
textured (Figure 10b) and the other is thermal-IR textured (Figure 10c). Since the coordinate of the
distance image corresponds perfectly with the coordinate of the near-IR image, 3D multi-spectrum face
data, including near-IR texture information, can also be generated, as shown in Figure 10d.
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Figure 10. 3D multi-spectrum face data: (a) 3D face shape data from the ToF camera;
(b) color 3D multi-spectrum data; (c) thermal-IR 3D multi-spectrum data; and (d) near-IR
3D multi-spectrum data.

(a)

(b)

(c)

(d)

3.4. Face Recognition

Face recognition is performed using the generated 3D multi-spectrum face data. Then, 3D face data
from the ToF camera contains certain distance noise, as shown in Figure 11. The performance of 3D face
recognition is highly dependent upon distance noise [48]. Therefore, we perform a 2.5D face recognition
step, which includes a 2D frontal face image projected from the transformed 3D multi-spectrum face data
by a normalization step.

Before recognizing a face, a normalization step to transform rotated faces into reference posed faces
is necessary to reduce the pose variation. There are many pose estimation algorithms for minimizing
the mean square error between points in reference data and the closest points in input data by using
translation, rotation and scaling [49]. We use an iterative closest points (ICP) algorithm, which is one
of the most commonly used algorithms for registering 3D data [50,51]. In order to evaluate 2.5D face
recognition, we apply four kinds of classification methods (listed below) that are commonly used for 2D
face recognition.
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Figure 11. Samples of 3D face data acquired by the ToF camera.

1. Principal component analysis (PCA)
2. Fisher linear discriminant analysis (FLDA)
3. PCA feature extraction + support vector machine (PCA + SVM)
4. PCA feature extraction + reduced multivariate polynomial pattern classifier (PCA + RM) [52].

4. Experiments

In order to evaluate the proposed 3D multi-spectrum face-data-based recognition system, we compare
the performance of our proposed system with several existing face recognition methods using different
face data, including 2D/3D and color/thermal-IR face data. We separate the experiments into pose and
light variations in order to ensure the robustness of our proposed approach.

4.1. Experimental Environments

In order to obtain 3D information and near-IR images in real-time, we use a SR-4000 ToF camera
with MESAimaging that can provide a resolution of 176 × 144 pixels at 30 FPS. Color images of the
scene are captured using a FL2 by Point Grey that provides a resolution of 1, 024×768 pixels at 30 FPS.
Thermal-IR images are acquired from a ThermaCAM S65 with an FLIRsystem that has a resolution of
320 × 240 pixels at 50/60 Hz. Since each sensor operates with a different frame rate, we need to set
temporal synchronization among the sensors. We adjust the timing for the image capturing of visual and
thermal-IR cameras to the timing of the image capturing of the ToF camera. The SR-4000 ToF camera
supports a software trigger mode that uses the callback mechanism to capture depth images. When
the callback function is called upon, all images are captured by multi-thread. Although we had tried
to set the temporal correspondence by multi-thread, 2D image capturing and depth image capturing are,
respectively, started with a small time difference, which is about 1msec. Figure 12 shows the installation
of the three cameras. The ToF camera in Figure 12c is positioned to the right of the thermal-IR and visible
cameras. The visible camera in Figure 12b is set next to the thermal-IR camera, as shown in Figure 12d.
Each camera is located as close as possible to reduce occlusion caused by the different camera positions.

Figure 13 shows our experimental environments. The distance between the face image to be acquired
and the cameras is set at 1 m. Three light sources are used to create light variation. In addition, a dark
screen is installed in the background to make it easy to separate face images from the background.
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Figure 12. The proposed system: (a) proposed full system; (b) visible camera; (c) ToF
camera; and (d) thermal-IR camera.

(a) (b) (c) (d)

Figure 13. Experimental environments: three light sources and three different kinds
of cameras.

Even though the data acquisition system is implemented in C, OpenGLand OpenCV, which is a
real-time processing library for computer vision by Intel, other steps, including normalization and
recognition, were simulated using Matlab 2009b on a machine with a 2.93 GHz Intel Core i7 870 and
4 GB of physical memory. Since there is no public facing database that includes all registered 3D, visible
and thermal-IR information with variable illumination and pose conditions, we created two databases
with five different poses and five levels of light variation. All images for the database are captured
indoor with daylight conditions. Each database contains 500 3D multi-spectrum face datasets obtained
from 100 subjects (5 (variations) × 100 (subjects) = 500). We detect face region using the Viola-Jones
face detector, which was implemented using OpenCV [53]. All face images are normalized to 50 × 50
pixels for recognition. Figure 14 shows sample images from our database, which consists of distance,
visible and thermal-IR images. The first row in Figure 14 shows color (RGB) images from the FL2
camera. The second row shows the thermal-IR images captured by the ThermaCAM S65. The third and
fourth rows show the distance and near-IR images, respectively, from the SR-4000 ToF camera.
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Figure 14. Example images in our face database including 3D, visible and thermal-IR
information. The first row shows some color images from the visible camera. The second
row shows images from the thermal-IR camera. Distance images from the ToF camera are
shown in the last row.

4.2. Estimation of Projection Matrices of the Visible and Thermal-IR Cameras

An average image derived from the 100 ToF camera distance images is used to estimate precise
projection matrices after applying a median filter to reduce the effects of distance noise. Once the
projection matrices have been estimated in the off-line process, it does not need to be operated again.
To estimate the projection matrix, we extract 77 corresponding points from the visible, thermal-IR
and distance images. After that, we estimate the projection matrices of the visible and thermal-IR
images with respect to the 3D points from the ToF camera. The accuracy of the projection matrices
is evaluated as re-projection error, which is the Euclidean distance between the projected 2D coordinates
from Equations (11) and (12) and the 2D coordinates of extracted points in the visible and thermal-IR
images, as shown in Figure 15.

Figure 15. Re-projection error between projected 2D coordinates from 3D points and 2D
points extracted from the (a) visual image and (b) thermal-IR image. The red and blue points
represent extracted 2D points and projected 2D points, respectively.

(a) (b)
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We measured re-projection errors at different visual and thermal-IR camera positions, but with the ToF
camera fixed. The mean values of 30 repetitions of re-projection errors with the visual and thermal-IR
camera are 2.7308 pixels and 1.5629 pixels, respectively. Since the resolution of the visual image is
larger than that of the thermal-IR image, the re-projection error of the visual image is more sensitive to
noise than the thermal-IR image. There are many reasons why re-projection error is generated. First,
the low resolution (176 × 144) of the ToF camera causes more error in high-resolution images during
the feature extraction step. Second, even though an average of 30 distance images is used to extract 3D
points, the values still might contain distance noise. Therefore, distance noise estimation and precise
feature extraction algorithms are needed to estimate precise projection matrices.

4.3. Face Recognition with Pose Variation

In this experiment, we only consider pose variation in a face regardless of illumination change.
Therefore, only pose differences in the face database are used. Lighting conditions remain constant.
To verify the robustness against pose variation, we generated a database consisting of 100 subjects, each
exhibiting five different poses (left, right, up, down and front) with respect to the ToF camera for a total
of 500 images. Figure 16 shows example images of a few subjects in various poses.

Figure 16. Example images from the database of five different facial poses: front, up, down,
right and left.

Using those images, we can generate 3D multi-spectrum face data and perform normalization by ICP.
Normalized face data are shown in Figures 17–19, which were constructed using visible, thermal-IR and
near-IR multi-spectrum data, respectively.
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Figure 17. The first row shows 3D visible multi-spectrum face data before normalization
and the second row shows normalized 3D visible multi-spectrum face data.

Figure 18. The first row shows 3D thermal-IR multi-spectrum face data before
normalization, and the second row shows normalized 3D thermal-IR multi-spectrum
face data.

Figure 19. The first row shows 3D near-IR multi-spectrum face data before normalization,
and the second row shows normalized 3D near-IR multi-spectrum face data.
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Experiments using five-fold cross validation are performed to verify the face images. That is, four
face images of a person are used for training, and then, one face image is used for testing. We first train
each classifier using 400 face data images, with four posed data images per subject, and perform the test
using 100 other face data images in different poses. Recognition is performed using a nearest neighbor
classifier with PCA, FDA, PCA + SVM and PCA + RM.

To compare the proposed 2.5D face recognition using 3D multi-spectrum face data with other
recognition methods, we calculate the recognition rate for different face data by PCA, FDA,
PCA + SVM and PCA + RM. In this experiment, we have used different polynomial orders 1 (RM1),
2 (RM2) and 3 (RM3). Since order 3 shows saturated performance, the experiment stops at order 3. In
the SVM and RM experiments, we extracted features using PCA and adopt SVM and RM as classifiers.
In the SVM experiments, we adopt a linear model, a polynomial model and a radial basis function as
kernels. The parameters, such as the number of principal components in the eigenface and the number
of support vectors with SVM, are experimentally selected to achieve the lowest error rate with each
method. Five types of experiments are performed to observe the performance and the robustness against
pose variation using 3D multi-spectrum face data.

1. 2D visible face images with pose variation (2D-vis)
2. 3D range images with pose variation (3D)
3. 3D range images after ICP normalization (3D + ICP)
4. Projected 2D visible face images from 3D multi-spectrum data after ICP normalization

(2D-vis + ICP)
5. Projected 2D thermal-IR face images from 3D multi-spectrum data after ICP normalization

(2D-the + 3D + ICP)
6. Projected 2D near-IR face images from 3D multi-spectrum data after ICP normalization

(2D-NIR + 3D + ICP)

Table 1. Recognition rate with respect to pose variation. ICP, iterative closest points; PCA,
principal component analysis; FLDA, Fisher linear discriminant analysis; SVM, support
vector machine.

Case 2D-vis 3D 3D + ICP 2D-vis + 3D + ICP 2D-the + 3D + ICP 2D-NIR + 3D + ICP

PCA 48.6% 44.2% 74.6% 87% 88.4% 83.8%
(243/500) (221/500) (373/500) (435/500) (442/500) (419/500)

FLDA 50.8% 48.6% 83.8% 93.2% 91.2% 88.6%
(254/500) (243/500) (419/500) (466/500) (456/500) (443/500)

PCA + SVM (linear) 53.2% 50.6% 87.8% 94.4% 93.2% 91.2%
(266/500) (253/500) (439/500) (472/500) (466/500) (456/500)

PCA + SVM (poly) 57.2% 52.6% 91.2% 96.4% 94.4% 93.2%
(286/500) (263/500) (456/500) (482/500) (472/500) (466/500)

PCA + SVM (Rbf) 55.8% 54.6% 87% 90.6% 98.4% 92.4%
(279/500) (273/500) (435/500) (453/500) (492/500) (462/500)

PCA + RM1 53.8% 52.6% 84.4% 92.4% 93.2% 89.8%
(269/500) (263/500) (422/500) (462/500) (466/500) (449/500)

PCA + RM2 55.2% 49.8% 87.2% 94.4% 96.4% 91.8%
(276/500) (249/500) (436/500) (472/500) (482/500) (459/500)

PCA + RM3 57.2% 54% 87.8% 94.4% 93.2% 91.2%
(276/500) (270/500) (439/500) (472/500) (466/500) (456/500)
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The approach in (5) is our proposed method. All experiment results are shown in Table 1.
Based on these experiments, we can solve the pose variation problem by normalizing the 3D face

data. Since there is no light variation to evaluate in this experiment, the result of using 3D visible face
data (4), and 3D thermal-IR face data (5) yield similar recognition rates as the highest recognition rate,
as shown in Figure 20. Even though the result of (3) uses 3D information, the recognition rate is not as
high, because the range images from the ToF camera contain more distance noise. Among the classifiers,
the SVM and RM classifiers show the best recognition rate.

Figure 20. Recognition rate in terms of recognition approaches.

4.4. Face Recognition with Light Variation

We verify performance with light variation using a database consisting of images of 100 subjects
having five different levels of light variation (30◦ left, 15◦ left, front, 30◦ right and 15◦ right) without
pose variations, as shown in Figure 14. This experiment does not require a normalization step for 3D
multi-spectrum face data. Figure 21 shows the invariance of the thermal-IR images with illumination
change, which strongly influences the visible image.

The experiments are performed using five-fold cross-validation, meaning that one face image is used
for testing, and the other four face images are used for training to verify the face image. Therefore, 400
images were used for training, and 100 were used for testing. The experimental methods are the same as
for face recognition with pose variation.

To compare the proposed 2.5D face recognition using 3D multi-spectrum face data with other
methods, we calculate the recognition rate of each method by PCA, FDA, PCA + SVM and
PCA + RM. Five types of experiments are performed to show the robustness of the proposed method
against light variation using 3D multi-spectrum face data as follows:
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1. 2D visible face images with light variation (2D-vis)
2. 2D thermal-IR face images with light variation (2D-the)
3. 3D range images with light variation (3D)
4. Projected 2D visible face images from 3D multi-spectrum data with light variation (2D-vis + 3D)
5. Projected 2D thermal-IR face images from 3D multi-spectrum data with light variation

(2D-the + 3D)
6. Projected 2D near-IR face images from 3D multi-spectrum data with light variation

(2D-NIR + 3D)

Figure 21. An example from the face database having five different light angles: 90◦ left,
45◦ left, front, 90◦ right and 45◦ right.

All recognition rates are shown in Table 2. The results of the experiments indicate that thermal-IR
texture is invariant to light variation, even though visible texture is strongly affected by surrounding
light conditions. In addition, the range image, which is not changed by illumination, shows a reliable
recognition rate, but not as high as the recognition rate of thermal-IR images, as the range data includes
distance noise. As shown in Figure 22, the result using the proposed method (5) and the 2D thermal face
image (2) shows the robustness against light variation.

Based on these experiments, the proposed 2.5D face recognition technique with 3D multi-spectrum
face data shows better performance than 2D and 3D face recognition with variation in pose and light.
The proposed face recognition approach improves the recognition rate with light variation, since the
thermal-IR pattern of the face is not changed by visible illumination changes. Even though normalized
frontal face data can be generated from 3D information, the occluded region between the cameras and the
face cannot be reconstructed. Therefore, some distortions in normalized face images can be generated
by normalization of the occluded region. This may cause a slight performance reduction with pose
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variation. This problem can be solved by using additional ToF cameras at different locations to cover the
occluded face regions.

Table 2. Recognition rate with respect to light variation.

Case 2D-vis 2D-ther 3D 2D-vis + 3D 2D-ther + 3D 2D-NIR + 3D

PCA 54.6% 96.6% 68.0% 53.2% 95.6% 95.2%
(273/500) (483/500) (340/500) (266/500) (478/500) (476/500)

FLDA 57.2% 98.2% 79.2% 55.2% 97.4% 97.2%
(286/500) (491/500) (396/500) (276/500) (487/500) (486/500)

PCA + SVM (linear) 60.0% 97.4% 84.6% 58.0% 97.0% 97.2%
(300/500) (491/500) (423/500) (290/500) (485/500) (486/500)

PCA + SVM (poly) 62.6% 98.6% 88.0% 64.0% 98.8% 98.6%
(313/500) (493/500) (440/500) (320/500) (494/500) (493/500)

PCA + SVM (Rbf) 65.2% 98.8% 91.2% 62.6% 98.8% 98.6%
(326/500) (494/500) (456/500) (313/500) (494/500) (493/500)

PCA + RM1 55.2% 98.2% 82.0% 59.2% 97.0% 97.2%
(276/500) (491/500) (410/500) (296/500) (485/500) (486/500)

PCA + RM2 58.6% 98.8% 87.2% 62.6% 98.8% 98.6%
(293/500) (494/500) (436/500) (313/500) (494/500) (493/500)

PCA + RM3 61.2% 98.8% 90.0% 64.6% 98.8% 98.6%
(306/500) (494/500) (450/500) (323/500) (494/500) (493/500)

Figure 22. Recognition rate in terms of recognition approaches.
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4.5. Processing Time

The processing time is an important factor for a real-time sensor system. The processing time for
each step is shown in Table 3. Each processing time is calculated by averaging of 100 attempts.

Table 3. Processing time for each process.

Content Processing Time (msec)

Image acquisition 29
3D multi-spectrum data generation 41

Recognition

PCA 0.31
FLDA 0.38

PCA + SVM (linear) 0.62
PCA + SVM (poly) 0.75
PCA + SVM (rbf) 0.89

PCA + RM1 0.55
PCA + RM2 0.63
PCA + RM3 0.74

The whole system can be divided into two subsystems: a 3D multi-spectrum sensor system and a face
recognition system. The image acquisition and 3D multi-spectrum data generation are implemented by
C language, and the recognition part is implemented by Matlab. The 3D multi-spectrum sensor system
takes 0.07 s (about 15 data points per second) to generate a 3D multi-spectrum data. In recognition, the
processing time is less than 1 msec. Therefore, the proposed 3D multi-spectrum sensor system can be
used with various real-time applications, such as robots and surveillance.

5. Conclusions

In this paper, we propose a novel 3D multi-spectrum sensor system that provides registered visible,
near-IR, thermal-IR and 3D information in real time. By using this information, we can design more
flexible and robust systems in terms of selecting sensor combinations and more effective fused features.
We showed the usefulness of the proposed system for a face recognition system design with variations in
pose and illumination. This system may also be very useful for designing vision systems for surveillance,
3D object modeling and object recognition.
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