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Abstract

From a large clinical blood oxygenation level dependent (BOLD) functional magnetic reso-

nance imaging (fMRI) study, we report several interrelated findings involving transient

supra-network brainwide states characterized by a saturation phenomenon we are referring

to as “polarization.” These are whole-brain states in which the voxelwise-normalized BOLD

(vn-BOLD) activation of a large proportion of voxels is simultaneously either very high or

very low. The presence of such states during a resting-state fMRI (rs-fMRI) scan is signifi-

cantly anti-correlated with diagnosed schizophrenia, significantly anti-correlated with con-

nectivity between subcortical networks and auditory, visual and sensorimotor networks and

also significantly anti-correlated with contemporaneous occupancy of transient functional

network connectivity states featuring broad disconnectivity or strong inhibitory connections

between the default mode and other networks. Conversely, the presence of highly polarized

vn-BOLD states is significantly correlated with connectivity strength between auditory, visual

and sensorimotor networks and with contemporaneous occupancy of transient whole-brain

patterns of strongly modularized network connectivity and diffuse hyperconnectivity.

Despite their consistency with well-documented effects of schizophrenia on static and time-

varying functional network connectivity, the observed relationships between polarization

and network connectivity are with very few exceptions unmediated by schizophrenia diagno-

sis. Many differences observed between patients and controls are echoed within the patient

population itself in the effect patterns of positive symptomology (e.g. hallucinations, delu-

sions, grandiosity). Our findings highlight a particular whole-brain spatiotemporal BOLD acti-

vation phenomenon that differs markedly between healthy subjects and schizophrenia

patients, one that also strongly informs time-resolved network connectivity patterns that are

associated with this serious clinical disorder.
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Introduction

While there is growing attention in human blood-oxygenation dependent (BOLD) functional

magnetic resonance imaging (fMRI) studies focused on time-varying connectivity between

functional networks [1–13] and even on time-varying spatial structure of the network maps

[14–16], much less attention is given to the global spatial dynamics of activated brain space

induced by and facilitating time-varying network relationships [17, 18]. These ambient whole-

brain spatiotemporal phenomena can exhibit strong relationships with disease [17] and pro-

vide a wider-angle lens through which to view the results of network-level analyses. We present

here one example of a dynamically varying spatial phenomenon that correlates very strongly

with schizophrenia diagnosis, exhibits structured and robust effects on observed functional

network connectivity (FNC), correlates significantly with occupancy of certain dynamic func-

tional network connectivity (dFNC) state and also exposes very different patterns of spatiotem-

poral dynamics and organization in schizophrenia patients (SZs) and healthy controls (HCs).

The basis of this analysis is an early-stage transformation of the pre-processed BOLD fMRI

volume into voxelwise normalized form (vn-BOLD /vn-fMRI). Although every voxel spends

exactly a third of its time in the upper (resp. lower, resp. middle) third of its own intrinsic acti-
vation profile, the proportion of gray-matter voxels simultaneously in the upper (resp. lower)

third of their respective activation profiles during given TRs is highly variable. In healthy sub-

jects we find the brain coalesces regularly into states where a high proportion of voxels are

simultaneously in the highest (resp. lowest) third of their activation profiles, i.e. states in which

the brain is highly polarized.

These highly polarized brain states occur significantly more often in healthy controls than

in schizophrenia patients (see Fig 1). The more balanced state characterized by an approxi-

mately equal proportion of voxels in the highest, lowest and middle thirds of their intrinsic

Fig 1. Key observation: Healthy brains converge toward and achieve states of pervasive polarization. Both panels show mean normalized voxel timeseries values

along the z-dimension displayed on a medial slice advancing through time from left to right; (Left) a 42 yr old healthy male control exhibits intervals in which apparently

very large proportions of gray matter voxels are simultaneously toward the top or the bottom of their intrinsic activation profiles (IAPs); (Right) a 40 yr. old male

schizophrenia patient exhibits some weak progression toward accumulating large proportions of similarly activated voxels, but the process never quite achieves the

highly polarized states evident in the matched control displayed on the left.

https://doi.org/10.1371/journal.pone.0224744.g001

Transient highly polarized brain states more common in healthy controls than in schizophrenia patients
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activation profiles (IAPs) occurs much more frequently in schizophrenia patients. These polar-

ized regimes are also very strongly correlated with short-timescale whole-brain functional net-

work connectivity states (some positive, some negative correlations in which the effect

direction differs between patients and controls for the highly modularized connectivity state

exhibiting negative DMN-to-other connections). The phenomenon of widespread polarization

can be parsed more finely in spatial terms, and doing so also reveals distinctions between

patients and controls. Examples include the determination of each voxel’s “polarity participa-
tion rate” which is its probability of being in the top (resp. bottom) third of its own activation

profile at times when this condition holds for a large proportion of voxels, i.e. when the whole

brain is in a polarized state. We find that the spatial distribution of voxelwise polarity partici-

pation differs significantly between patients and controls; in controls there are large clearly

delineated regions characterized by very high polarity participation rates, while in patients the

larger and better defined regions are those that represent very low rates of polarity participa-

tion. Another way to probe the time-varying spatial structure of polarized voxels is to recode

(polarity code) voxel timeseries as {−1,0,1} according to whether the voxel is in the bottom,

middle or top third of its intrinsic activation profile at each TR. The polarity-coded brain

maps can then be clustered into a set of brainwide voxel co-polarization patterns, providing a

spatially explicit parameterization of polarity space in which subject trajectories can be studied.

We find highly significant differences between patients and controls in occupancy rates of the

resulting clusters.

Materials and methods

Participants, preprocessing, network identification and dynamic functional

connectivity

We summarize below some basic information about data collection, preprocessing, network

identification and computation of dynamic functional connectivity. Details are available in [4].

Resting state functional magnetic resonance imaging data was collected from 163 healthy con-

trols (117 males, 46 females; mean age 36.9) and 151 age and gender matched patients with

schizophrenia (114 males, 37 females; mean age 37.8) during eyes-closed conditions at 7 differ-

ent sites across United States. Data for six of the seven sites was collected on a 3T Siemens Tim

Trio System. One site used a 3T General Electric Discovery MR750 scanner. All resting state

fMRI scans were acquired using a standard gradient-echo echo planar imaging paradigm:

FOV of 220 × 220 mm (64 × 64 matrix), TR = 2 s, TE = 30 ms, FA = 770, 162 volumes, 32

sequential ascending axial slices of 4 mm thickness and 1 mm skip. Data processing was per-

formed using a combination of toolboxes (AFNI1, SPM2, GIFT3) and custom code written in

Matlab. We performed rigid body motion correction using the INRIAlign toolbox in SPM to

correct for subject head motion followed by slice-timing correction to account for timing dif-

ferences in slice acquisition. To mitigate the impact of outliers, the data was despiked using

AFNI’s 3dDespike algorithm. Individual subject scans were then warped to a Montreal Neuro-

logical Institute (MNI) template and resampled to 3 mm3 isotropic voxels. Instead of gaussian

smoothing, we smoothed the data to 6 mm full width at half maximum (FWHM) using AFNI’s

BlurToFWHM algorithm which performs smoothing by a conservative finite difference

approximation to the diffusion equation, an approach that has been shown to reduce scanner

specific variability in smoothness providing “smoothness equivalence” to data across sites.

Each voxel time course was variance normalized prior to performing group independent com-

ponent analysis as this has shown to better decompose subcortical sources in addition to corti-

cal networks. Following the early stage processing, the data from all subjects was decomposed

using group independent component analysis (GICA) into 100 network spatial maps (http://

Transient highly polarized brain states more common in healthy controls than in schizophrenia patients

PLOS ONE | https://doi.org/10.1371/journal.pone.0224744 December 11, 2019 3 / 21

http://icatb.sourceforge.net/
https://doi.org/10.1371/journal.pone.0224744


icatb.sourceforge.net) of which 47 were identified as functionally meaningful resting state net-

works (RSNs). Subject specific spatial maps (SMs) and timecourses (TCs) were obtained from

the group level spatial maps via spatiotemporal regression. The timecourses were detrended,

orthogonalized with respect to estimated subject motion parameters, then despiked and band-

pass filtered into [0.05,0.15] Hz using a 5th order Butterworth filter. Dynamic functional con-

nectivity (dFNC) between RSN timecourses was estimated using a sliding window approach.

Following protocols from recent studies on dynamic connectivity [4], we used a tapered rect-

angular window length of 22 TRs (44 seconds), shifted 1TR forward at a time and computed

pairwise correlations between RSN time courses within these windows. Static, or traditional

functional network connectivity (FNC) simply uses a single untapered window of length

162TR, the length of the scan. The 47 functionally meaningful networks retained from the

100 component GICA all into 5 broad functional domains: subcortical (SC, 5 networks), audi-

tory (AUD, 2 networks); visual (VIS, 11 networks), sensorimotor (SM, 6 networks), cognitive

control (CC, 13 networks), default mode network (DMN, 7 networks), cerebellar (CB, 2

networks).

Pre-processing of 4D volumes for the polarity analysis was identical to that for dFNC,

except for the inclusion of a voxelwise detrending step and the omission of the spatial smooth-

ing step that typically precedes GICA. This choice was made to control for cases in which a rel-

atively small number of evenly distributed extremely high (or low) intensity voxels distort

polarity measurements for the regions they are distributed within.

Dynamic polarity states, polarity metric and polarity participation maps

We construct several measures intended to capture spatial patterns in the brain formed by the

set of voxels that are either simultaneously very highly activated or simultaneously minimally

activated. These co-polarized voxels do not exclude voxel collections that share correlative rela-

tionships, but they are far more general. Included in the set of voxels, for example, that are

highly activated during a given TR there would usually be a subset that rose together from an

earlier TR, a subset that dropped together from an even higher previous level of activation and

a subset that are roughly unchanged from the previous TR. Which is to say that within the set

of highly activated voxels at a given TR can be, in a temporally localized sense, subsets consist-

ing of correlated voxels, anti-correlated voxels and uncorrelated voxels.

Voxel activation profiles and polarity coding. The timeseries of each gray matter voxel

v 2 V is individually z-scored to create a normalized (intrinsic) activation profile. Values in

each z-scored timeseries are then discretized into discrete intrinsic activation level (IALs), i.e.

they are recoded as −1s, 0s or +1s according to whether they are in the lower third (z<−0.43,

‘Low Polar’), middle third (z2(−0.43,0.43), ‘Neutral’) or upper third (z>0.43, ‘High Polar’) of

the voxel’s intrinsic activation profile (see Fig 2). The resulting discretized timeseries in A ¼
f� 1; 0;þ1g � fLow;Neutral;Highg for each voxel will be referred to as the its discretized

intrinsic activation level timeseries, IALv(t).
Dynamic polarity regimes (dPRs). Every individual voxel intrinsic activation level time-

series assumes, by design, each of the values −1, 0 and 1 exactly 1/3 of the time. This however

provides no information about the proportion of voxels simultaneously at the same IAL at any

given TR. Switching from the individual voxel standpoint to the whole brain standpoint, we

characterize each TR by a length-3 vector ‘ðtÞ
��!
¼ ðhðtÞ; ðlðtÞ; ðnðtÞÞ, h(t),l(t),n(t)2[0,1], h(t)+l

(t)+n(t) = 1 of proportions where hðtÞ ¼ #fv : IALvðtÞ ¼ 1g=jVj; lðtÞ ¼ #fv : IALvðtÞ ¼
� 1g=jVj; nðtÞ ¼ #fv : IALvðtÞ ¼ 0g=jVj are the proportion of voxels at each intrinsic activa-

tion level at TR = t. If we do not keep track of the entire history of each voxel, the number of

voxels in any of the three intrinsic activation levels observed at a given TR would follow a

Transient highly polarized brain states more common in healthy controls than in schizophrenia patients
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binomial distribution with p = 1/3, n ¼ jVj. The expected number for any of the levels would

be pn ¼ 1

3
jVj and the expected proportion in each level would simply be EðhÞ;EðlÞ;EðnÞ ¼

p ¼ 1=3. Empirically we see μ(h) = 0.333,μ(l) = 0.335,μ(n) = 0.332. Applying k-means cluster-

ing (Matlab’s built-in k-means function with 3 clusters, 3000 iterates, 300 replicates, Euclidean

distance, number of clusters selected by the elbow criterion) to all 50240 of these 3-vectors

(one for each of 314 subjects at 160 TRs) suggest the brain dynamically organizes into three

very stylized polarity regimes (dPRs) (see Fig 3): a High-Polarized regime whose cluster cen-

troid (0.46,0.24,0.30) presents h�1/3, l�1/3 and n~1/3; a Low-Polarized regime whose cluster

centroid (0.23,0.46,0.31)presents h�1/3, l�1/3 and n~1/3; and a Non-Polarized or Equidis-

tributed Regime whose cluster centroid (0.33,0.33,0.34) presents h~1/3, l~1/3 and n~1/3 (see

Fig 4).

Polarity metric. We also define a real-valued polarity metric. Since EðhÞ;EðlÞ ¼ 1=3 and

the polarized states are characterized by having both h>1/3 and l<1/3, a given subject’s degree

of polarization at TR = t can be summarized with P(t) = −(h_z (t)l_z (t)), where hz and lz are

z-scored versions of the timeseries h(t) and l(t) respectively, recentered to have mean 0. Large

positive values of hz (resp. lz) represent values of h(t) (resp. l(t)) that are much larger than 1/3,

while high magnitude negative values of hz (resp. lz) represent values of h(t) (resp. l(t)) that are

much smaller than 1/3. The most polarized timepoints are those in which one of hz or lz is

large and positive, while the other is large and negative. So P(t) is rising with the degree of

polarization at TR = t, is near zero when the brain is balanced between h(t),l(t) and n(t) and

grows more negative when both h(t) and l(t) are simultaneously much larger or much smaller

than 1/3 (brain is not polarized but also not well balanced between h(t),l(t) and n(t)) (see

Fig 5).

Polarity participation maps (PPMs). The dPRs are crude summaries and capture noth-

ing about the locations or identities of voxels that contribute to the computed proportion of

voxels in each of the three levels at a given TR, and thus nothing about the overall role of spe-

cific voxels in producing the a subject’s polarized regimes. To capture this information we cre-

ate a polarity participation map (PPM) for each subject in which each voxel is assigned a value

in [0,1] according to the proportion of polarized dPR states it contributes to, i.e. the sum of the

Fig 2. Time advancing first along rows, then along columns in all three panels; (Left) Basic post-processed medial slice data through time for

one subject; (Center) Same subject’s medial slice data through time where each voxel’s activation timeseries has been separately z-scored to

recast the data in a voxel-intrinsic, normalized form that provides a clearer view of which voxels are near the ceiling or the floor of their own

activation profile at each TR]; (Right) Discretized version of the middle panel in which voxel IAPs are recoded in {-1,0,+1} according to whether

they are in the bottom third of the IAP (z<−0.431), the middle third of the IAP (−0.431�z�0.431) or top third (z>0.431) as a rough parsing of

the brain at each TR into voxels near their own floors and ceilings of activation.

https://doi.org/10.1371/journal.pone.0224744.g002

Transient highly polarized brain states more common in healthy controls than in schizophrenia patients
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proportion of that subject’s Polarized-High states during which that voxel’s IALv(t) = 1 and the

proportion of their Polarized-Low states during which the voxel’s IALv = −1 (see Fig 4). Apply-

ing k-means clustering (Matlab’s built-in k-means function with 2 clusters, 3000 iterates, 300

replicates, Euclidean distance, number of clusters selected by the elbow criterion) to all 314 of

these 60303-vectors (one for each of 314 subjects) yields clusters whose centroids evidently

represent different spatial distributions of highly participating voxel (Fig 6, bottom left).

Network-level polarity participation. To assess the role that different functional net-

works play in whole-brain polarized states, we threshhold and binarize the 47 group-level net-

work spatial maps and then average the value of each subject’s z-scored polarity participation

map restricted to the threshold-surviving voxels in each network spatial map (see Fig 7, bottom

row). Specifically, each group spatial map is z-scored (since scale in GICA spatial maps is arbi-

trary) and thresholded at z�1.25 to retain the only the top decile of voxels. The polarity partici-

pation rates are also z-scored and averaged, for each subject, over each network’s threshold-

surviving voxels. The measured network participation for a given subject and a given network

can thus be negative, indicating that the average voxel in that network participates in the sub-

ject’s whole-brain polarized states at a sub-mean level.

Dynamic brainwide co-polarization patterns (CoPPs). The low-dimensional dPRs give

a rough sense of how overall counts of co-polarized voxels vary through time and PPMs

Fig 3. (Top Left) The three whole-brain dynamic polarity regimes: Polarized-High (46% voxels high, 24% voxels low, 30% voxels neutral),

Polarized-Low (23% voxels high, 46% voxels low, 31% voxels neutral), Non-Polarized/Balanced (33% voxels high, 33% voxels low, 34% voxels

neutral); (Top Right) Group-wise mean occupancy rates of the three dynamic polarity regimes; the non-polarized/balanced regime is the

most common for all groups, with evident differences between patients and controls in all regimes; (Bottom Right) In regression model

correcting for age, gender and mean frame displacement (motion), the effect of schizophrenia diagnosis on occupancy of the polarized states

is negative and highly significant while the effect of schizophrenia diagnosis on occupancy of the balanced state is positive and highly

significant; (Bottom Right) Among schizophrenia patients, the effect of positive symptoms (including delusions, hallucination and

grandiosity) intensity on polarity regime occupancies echoes the broad effect of schizophrenia itself suggesting that the difference between

schizophrenia patients and controls the neighboring may be driven largely by positive symptomology, including the key psychotic symptoms:

delusions and hallucinations. Negative schizophrenia symptoms such as bunted affect and general psychological symptoms such as anxiety

and depression did not have significant effects on the polarity regime occupancy rates.

https://doi.org/10.1371/journal.pone.0224744.g003
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provide a time-averaged picture of which regions of the brain are most commonly implicated

in whole-brain polarized states. Neither approach, however, provides insight into how highly

polarized whole-brain states evolve and dissolve, nor what role they may play in longer whole-

Fig 4. Overview schematic showing the steps from (Bottom Left) individually normalized voxel timeseries (voxel intrinsic activation profiles (IAPs)) to

(Middle Left) single voxel discretized intrinsic activation levels (IALs) to (Top Left) whole brain dynamic polarity regimes (dPRs) into which this voxel is

recruited at a very high rate (83% of the time that the whole brain is in the Polarized-High or Polarized-Low state, each characterized by mean of of the entire

brain’s voxels are simultaneously either in the high or low (+1, -1) intrinsic activation levels, this voxel is one of the participating set of co-polarized voxels. The

average voxel only participates in fewer than half (43%) of a subject’s highly polarized states.

https://doi.org/10.1371/journal.pone.0224744.g004

Fig 5. Using scalar valued measureP(t) of time-varying whole-brain polarization we see that (Left) the oscillatory pattern in degree of polarity has power decaying in

frequency and no discernible peaks that would point to biological rhythms associated with respiration or heartbeat; (Right) The value ofP(t) clearly separates for

timepoints at which the whole brain is in the Non-Polarized dPR state (blue) vs. timepoints at which the whole brain is one of the two polarized (Polarized-High,

Polarized-Low) states (red).

https://doi.org/10.1371/journal.pone.0224744.g005
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brain itineraries that involve more structured or intricate spatial patterns of polarity-coded

voxels. Toward this end we extract transient whole-brain patterns of co-polarization in a

voxel-intrisic analogy to whole-brain co-activation patterns (CAPs) employed in several

published studies [19]. Replacing each continuous voxel timeseries v(t) with its discretized

intrinsic activation level timeseries IALv(t) yields a representation of the entire brain in A ¼
f� 1; 0;þ1g � fLow;Neutral;Highg at each TR. Applying k-means clustering (Matlab built-

in k-means function with 13 clusters, 3000 iterates, 100 replicates, Euclidean distance, number

of clusters selected by the elbow criterion) to all 50240 of these jVj = 6030-dimensional obser-

vations (one for each of 314 subjects at 160 TRs) spatially elaborates the crude numerical

counts/proportions captured by the 3-dimensional dynamic dPRs. The brainwide co-polariza-

tion patterns (CoPPs) that emerge as centroids of these clusters indicate that the cruder dPRs

are capturing spatially structured voxel-level arrangements whose population-level occupancy

rates are relatively uniform (, top left). Among the CoPPs associated with TRs that are assigned

to one of the polarized dPR states are some that are pervasively polarized, i.e., the proportion

of voxels simultaneously at either High or Low levels is much higher than the ~45% or so in

the associated dPR cluster centroid (see Fig 8, bottom left).

Identification of the most ‘strongly polarized’ CoPPs. Although the samples being clus-

tered are 60303-dimensional vectors of −1’s 0’s and +1’s, the elements of the cluster centroids

are averages in the continuous interval [−1,1]. Due to the high dimensionality of the samples

(i.e., membership in a given cluster can arise predominantly from good matching of some arbi-

trary collection of tens of thousands of voxels to other cluster members, while still leaving

thousands of degrees of freedom), the determination of what it means for one of these cen-

troids to represent a “pervasively polarized” brain state is necessarily somewhat subjective. We

have decided on a criterion based loosely on the asymptotic distributions of sample means for

a set of identically distributed uniform discrete random variables under a convenient (but not

entirely valid assumption) of independence. The sample is quite large so the asymptotic

Fig 6. (Top Left) Population-wide voxel polarity participation rates are normally distributed with mean μ = 0.46 and

standard deviation σ = 0.11; (Top Middle) Population average voxelwise polarity participation rates displayed on axial

slices from z = 1 on upper left through z = 46 lower right corner; (Top Right) Significant (p<0.05 (FDR)) voxelwise t-

statistics for difference from the mean polarity participation rate; (Bottom Left and Middle) Subject-level polarity

participation maps fall robustly into two clusters. Cluster 1 presents regions with above average participation rates,

average participation rates and, predominantly ventricular areas with below average participation. The regions with

above average participation are much smaller in Cluster 2 than Cluster 1 and the areas with average and below average

participation much larger in Cluster 2; (Bottom Right) Healthy subjects split evenly between the two clusters while

schizophrenia patients occupy Cluster 2 much more often than Cluster 1.

https://doi.org/10.1371/journal.pone.0224744.g006
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framing is not entirely unreasonable. We will say that a CoPP represents a strongly polarized

state if the probability that the magnitude of the absolute mean |μCoPP| of its elements would

have probability less than α = 0.001 under a very conservative adaptation of above-stated

model. The sign of μCoPP in such a case determines if that CoPP is positively or negatively

polarized. Since voxels assume values +1,0 ans -1 with equal probability, i.e. EðIALvðtÞÞ ¼
0; EððIALvðtÞ � EðIALvðtÞÞ

2
Þ ¼ 1, we assume by the central limit theorem that the within-

cluster voxel means are distributed as N 0; 1ffiffici
p

� �
where ci is the number of observations in the

cluster, and thus the global mean μi of the whole set of v = 60303 N 0; 1ffiffici
p

� �
random variables

is distributed as N 0; 1ffiffiffiffivci
p

� �
. The rescaling factor vci>107 for all i, which makes the standard

deviation so close to 0 that absolute values as small as 10−5 are in the extreme α = 0.001 tails of

the distribution. To account for the high level of spatiotemporal dependence and produce a

distribution whose far tails do not include values with magnitude smaller than 10−5, we first

reduce ci by treating all timepoints from a given subject as dependent, so that cluster i is treated

as containing ni = 314ri samples, where ri is the population-averaged occupancy rate of cluster

i. We further assume, based on the group spatial ICA (GICA) performed on this data [4] that

there are 47 independent units of space (the set of “good” spatially independent networks iden-

tified by the GICA). The test distribution for μi thus becomes N 0; 1ffiffiffiffiffiffi
47ni
p

� �

, a distribution with

Fig 7. Network level polarity participation; network-level polarity participation population means (top left); significant SZ effects (p<0.05 (FDR)) on network

level polarity participation (top right); schematic (bottom) showing three axial slices of the z-scored population averaged PPM (bottom middle) and the same

three axial slices of the binarized thresholded group-level cerebellum GICA spatial map (bottom right) and the group-level GICA substantia negra (bottom left)

illustrating how PPM projection onto thresholded substantia negra presents negative network-level polarity participation and PPM projection onto

thresholded cerebellum presents positive network-level polarity participation.

https://doi.org/10.1371/journal.pone.0224744.g007
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much more conservative tails than N 0; 1ffiffiffiffivci
p

� �
. Using the α = 0.001 tails of this distribution as a

threshold we identify 3 positively (see Fig 9) and 3 negatively polarized CoPPs.

Longer itineraries in polarity space

We take two approaches to investigating forward-time CoPP itineraries:

Fig 8. Polarity coded 3D volumes distribute into 13 clusters, all of which exceed 6% occupancy at the population level (top left); among

these clusters are two whose centroids are pervasively strongly polarized (bottom row, first and second column); SZ has a significant

negative (p<0.05 (FDR)) effect on occupancy of the two most strongly polarized CoPPs (bars at x = 11 and x = 12 in top-center bar

plot); within the patient population there is also a significant negative effect of positive symptomology, including the key psychotic

symptoms (delusions and hallucinations) on occupancy of the most strongly and pervasively polarized states (right-most bars in top

right bar plot). The positive symptom effect within the patient population is significant at the raw α = 0.05 level without surviving the

stronger multiple comparison threshold.

https://doi.org/10.1371/journal.pone.0224744.g008

Fig 9. All panels show axial slices from z = 1 (top left corner) to z = 46 (bottom right corner); (Left) one of the strongly polarized transient time varying

co-polarization patterns (CoPPs); (Middle) more structured but still strongly positively polarized co-polarization pattern; (Right) extremely strongly and

pervasively positively polarized CoPP.

https://doi.org/10.1371/journal.pone.0224744.g009
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Itineraries from group-averaged transition probabilities. We find the forward-time

group-level most-probable itinerary from a source CoPP Ci through a set of subsequent dis-
tinct CoPPs Cj,Ck,Cl,. . . where i6¼j6¼k6¼l6¼� � � by using transition probabilities computed at the

group level: from Ci the most probable forward-time transition out of Ci at the group-averaged

level is to Cj, and from Cj the most probable transition is to Ck etc. This process which can be

extended until one of the elements of the path repeats, at which point the remainder of the for-

ward-time itinerary is determined by the segment that contains the initial instance and the

successor instance of the repeated element. Note that these are itineraries with respect to CoPP

transitions from one state to a new distinct state, not accounting for the probability of remain-

ing in the presently occupied CoPP. For purposes of interpretation it is important to keep in

mind both that the reported itineraries are computed from group-level average transition

probabilities and that they are expressed in terms of successive distinct states rather than suc-

cessive timepoints. We are employing this approach to better understand how healthy and

patient populations move through the polarity space (parameterized in terms of CoPPs) and

specifically to probe the role the most pervasively polarized states may be playing in overall

brain function.

Sparse convolutional coding of CoPP occupancy timeseries. Another way to study lon-

ger sequences of CoPP occupancies is to perform multichannel 1-dimensional convolutional

sparse coding (CSC) of the symbolic timeseries of CoPP occupancies. These are symbolic time-

series because although we are indexing the CoPPs with a set of nonnegative integers, the

actual index values have no numerical meaning: they can be permuted, replaced with large

negative numbers, replaced with letters or words or any other way of identifying a given CoPP

with some tag or label. This is a slightly unconventional type of timeseries to approach with

convolutional feature extraction techniques, however it can be handles by treating the 1D sym-

bolic timeseries in a N-letter alphabet as an N-channel binary 1D timeseries, which is effec-

tively a multivariate timeseries in which exactly one of the channels (or univariate consitutent

timeseries) takes value 1 at every timestep, while all others are 0 at that timestep. This encodes

the occupancies in channel form and allows the use of convolutional sparse coding algorithms,

such as those developed for the the publicly available Python-based sparse coding package

Sporco [20]. Based on initial exploratory work, resource/efficiency considerations and concern

with ease of interpretation we used Sporco’s convolutional basis pursuit denoising (CBPDN)

dictionary learning algorithm to represent the CoPP symbolic timeseries data with a dictionary

of 64 mutichannel (in this case 13 channels, one for each CoPP) elements of temporal duration

7TRs. The elements represent replicable translation-invariant features of the mutichannel

timeseries data that combine additively at each timepoint to reproduce the local properties of

the signal. The elements of the dictionary are also, as an entire set, optimized so that only a

small number of the elements are making the largest proportion of nonzero contributions to

signal reconstruction, e.g. they are translation-invariant features, built from a nonlinear feature

extraction algorithm, that ultimately reproduce the data additively with the largest rate of non-

trivial contribution coming from a subset of the features.

Statistical analyses

All reported schizoprenia or symptom effects from regression analyses were obtained from

mutiple regressions in which age gender and mean frame displacement (motion) were

included as nuisance variables, i.e. the reported effects are already corrected for age, gender

and motion. In the case of symptom effect, the reported results for a specific category of symp-

tom, e.g. positive symptoms of schizophrenia, are also corrected for confounding effects of the

remaining symptom categories, e.g. negative and general symtoms.
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Results

Dynamic polarity regimes and schizophrenia

We find that occupancy of very polarized brain states is strongly correlated with diagnostic sta-

tus (see Fig 3): SZ diagnosis has a significant negative effect on occupancy of both the Polar-

ized-High (β = −0.05,p<1.1×10−13) and the Polarized-Low (β = −0.04,p<2×10−11) states.

Higher scores on a symptom inventory [21] further suppress polarity, with positive symptoms

(including psychotic symptoms such as delusions and hallucinations) exhibiting significant

suppressive effects on the Polarized-High (β = −0.03,p<0.003) and Polarized-Low (β = −0.02,

p<0.05).

Dynamic polarity regimes and functional network connectivity

Since the original decomposition into networks is typically based on scale-invariant measures

such as correlations (seed-based methods) or dependence (independent component analysis

(ICA)), conventional scan-length functional network connectivity (FNC) and also dynamic

functional network connectivity (dFNC) computed on sliding windows through the network

timecourses both implicitly incorporate information from what we are calling voxel activation

profiles. These initial decompositions are followed by evaluations of network connectivity that

also tend to rely on correlation, a scale-invariant quantity. Using the five time-resolved con-

nectivity states reported in earlier work from this dataset [22] we probe the relationship

between polarity and time-varying connectivity by investigating the occupancy rates of the

polarized dPR states within windows characterized by each of the five different dynamic con-

nectivity states (see Fig 10). For each dFNC state, we perform a two-sample t-test on the sub-

ject-level occupancy rate of polarized dPR states during windows characterized by that dFNC

state vs. subject-level occupancy rates of polarized dPR states on all windows. This is assessing

group-wise, the degree to which polarized dPR states occupancies during the 22TR windows

characterized by any specific dFNC state are distinguished from other 22TR windows in a sub-

ject’s scan. The polarized dPR occupancy rates are at the subject-level, computed window-wise

for each of the 22TR windows characterized by a given dFNC states for that subject. The num-

ber of such windows per subject will vary, so the number of polarized dPR occupancy rates

recorded for different subjects for any given dFNC state can be different, and when this count

differs between two subjects, the number of occupancy rates recorded for those subjects from

windows characterized by any other dFNC state will also be different. This somewhat cumber-

some procedure allows for testing the role of polarized dPRs in realizing each dFNC state, cor-
recting for the tendency of a given subject to be in polarized dPR states more generally. And

since the t-tests are done at the group level, i.e. they are tests of the entire set of polarized dPR

occupancy rates associated with windows characterized by a given dFNC state for all healthy

controls (resp. all SZ patients) vs. the entire set of polarized dPR occupancy rates associated

with windows characterized by all other dFNC states for all healthy controls (resp. all SZ

patients) it is accounting for the different baseline polarized dPR occupancy rates for each

group HCs have a higher baseline occupancy rate for the polarized dPR states. We find that for

both SZs and HCs, polarized dPR state occupancy is significantly elevated during occupancy

of the hyperconnected dFNC state and the highly modularized dFNC state in which the default

mode network (DMN) is non-correlated with other networks. The opposite holds for the dis-

connected dFNC state and the semi-modularized dFNC state in which the DMN is anti-corre-

lated with other networks: polarized dPR state occupancy is significantly depressed during

occupancy of these two dFNC states. The highly modularized dFNC state with negative DMN-

to-other connectivity is the one for which polarity plays a very different role in the patient and

Transient highly polarized brain states more common in healthy controls than in schizophrenia patients
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control populations. Polarized state occupancy during occupancy of this dFNC state is signifi-

cantly elevated in controls, and significantly depressed in patients (see Fig 10 for all effects of

polarity on dFNC occupancy, evaluated separately for SZ and HC).

We also investigated the role of polarized dPR occupancy rates on traditional “static” func-

tional network connectivity. In this case we use the standard full-scan dPR occupancy rates

employed in most other sections of this paper, i.e. for this analysis the polarized dPR occu-

pancy rate for a given subject is number of occupancies of either the high or low polarized

state for that subject, divided by the total number of TRs) and consider their effect on pairwise

network connectivity measures also computed as correlations between network timecourses

over the whole length of the scan. Our findings suggest that many reliably observed differences

between schizophrenia patients and controls in functional network connectivity may actually

Fig 10. Labeled dFNC states with functional domains indicated along axes: Subcortical (SC), Auditory (AUD), Visual (VIS), Sensorimotor (SM), Cognitive

Control (CC), Default Mode (DM), Cerebellar (CB); the dFNC states that are significantly more (resp. less) occupied by SZs are in red (resp. blue) boxes;

significant elevation (red) or depression (blue) of brain polarity during windows characterized by each dFNC state are underneath each state. From left to right,

and top to bottom, the occupancy rates of the dFNC states shown above are: Non-Modularized: Disconnected (0.26 HC, 0.47 SZ); Semi-Modularized: Negative

DMN-to-Other (0.15 HC, 0.23 SZ); Highly-Modularized: Negative DMN-to-Other (0.16 HC, 0.09 SZ); Highly-Modularized: non-Negative DMN-to-Other

(0.22 HC, 0.07 SZ); Non-Modularized: Hyperconnected (0.21 HC, 0.14 SZ).

https://doi.org/10.1371/journal.pone.0224744.g010
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be strongly mediated through the role of whole-brain polarization, that the ability of the brain

to organize itself into pervasively polarized states (a phenomenon that can have implications

for connectivity but correlative relationships can exist within and across bands of intrinsic

voxel activation levels) influences the measured correlative relationships that we observe in SZ

and HC populations, and also proxies for underlying neurobiological and neurovascular facts

that play strong roles in organizing network interactions and convergence into transient highly

polarized states. Schizophrenia diagnosis is very significantly negatively correlated with occu-

pancy of polarized dPR states, but in a multiple regression of FNC measures on schizophrenia

diagnosis and polarized dPR state occupancy rate (along with the usual covariates: age, gender

and mean frame displacement), the strong univariate effects of polarized dPR occupancy rate

on FNC measures largely survive correction for the role of SZ diagnosis while the strong uni-

variate effects of SZ diagnosis are highly disrupted, leaving only a small set of significant SZ

effects after polarized dPR occupancy rates are accounted for (see Fig 11).

Fig 11. (Top Left) Significant (p<0.05 (FDR)) effects of polarized dPR occupancy on functional network connectivity in

multiple regression that accounts for age, gender and motion but not for schizophrenia diagnosis; many strong positive effects

within and between auditory (AUD), visual (VIS) and sensorimotor (SM) networks combined with some strong negative

effects between subcortical (SC) and cerebellar (CB) networks and the auditory-visual-sensorimotor (AVSM) block; (Top

Right) Significant (p<0.05 (FDR)) effects of polarized dPR occupancy on functional network connectivity in multiple

regression that accounts for age, gender and motion and also schizophrenia diagnosis; many effects from the partial model to

the left survive; broad effect patterns similar after correcting for the role of schizophrenia diagnosis; (Bottom Left) Significant

(p<0.05 (FDR)) effects of schizophrenia on functional network connectivity in multiple regression that accounts for age,

gender and motion but not for polarized dPR state occupancy rates; many strong negative effects in the AVSM block

networks combined with strong positive effects between subcortical and cerebellar networks and the AVSM block (Bottom

Right) Significant (p<0.05 (FDR)) effects of schizophrenia on functional network connectivity in multiple regression that

accounts for age, gender and motion and also polarized dPR state occupancy; a small proportion of effects from the partial

model to the left survive after correcting for the role of dPR state occupancy.

https://doi.org/10.1371/journal.pone.0224744.g011
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Polarity participation maps and schizophrenia

While schizophrenia patients (especially those with strong positive symptomology are much

more likely to pass through periods during which a large proportion of voxels are simulta-

neously near the ceiling or floor of their own intrinsic activation profiles, the number of ways

that proportion of voxels can distribute over space, even subject to local smoothness con-

straints, is combinatorially overwhelming. For example there are more than 60,30330,151 =

6�104�30,150 = 6�10121,400 sets of 30,151 voxels that could be responsible for a given case of the

“High-Polarized” state in which ~50% of the voxels are simultaneously at their intrinsic “high”

level. Even subject to local smoothness constraints, the participating voxel collections could be

drifting spatially between instantiations of the Polarized-High state, yielding relatively uni-

form, spatially unstructured, time and subject-averaged voxel participation rates. We found

however that, on average, there are well-delineated regions in which the most highly partici-

pating voxels are concentrated and other regions consisting of voxels unlikely to be part of a

whole-brain Polarized-High or Polarized-Low state. Within the broad patterns of voxel partici-

pation that hold at the population level, there are also significant differences between schizo-

phrenia patients and controls (Fig 6, top right). The subject-level PPMs robustly fell into two

clusters with distinct patterns of voxel participation and highly significant differences in occu-

pancy between patients and controls. The two clusters of PPMs present very different spatial

patterns of voxel participation in polarized dPR states. Among other evident differences there

are default mode, parietal, cingulate and visual regions that participate in whole-brain polari-

zation at very high rates in Cluster 1 but contribute little to whole-brain polarization in Cluster

2 (see, bottom row). The occupancy of both PPM clusters is strongly affected by the diagnostic

status of the subject: SZ has a highly significant negative effect (β = −0.294,p<2.6×10−08) on

occupancy of Cluster 1 (resp. a highly significant positive effect (β = 0.294,p<2.6×10−08) on

occupancy of Cluster 2).

Polarity participation maps, functional networks and schizophrenia

The highest magnitude voxels in GICA functional network spatial maps are, by construction,

nearly mutually spatially disjoint. This permits easy assessment of network-level polarity par-

ticipation by computing the mean polarity participation rate of supra-threshold voxels in each

network spatial map. We chose to threshold z-scored network spatial maps at �z ¼ 1:25 ðpðz >
�zÞ < 0:1Þ and also z-scored the PPMs, mapping them from [0,1] into (−1,1). The lowest net-

work-level polarity participation was in subcortical networks (other than the thalamus), the

inferior temporal and frontal gyri and the dorsomedial prefrontal cortex (see Fig 7). Significant

effects of SZ diagnosis on the network-level polarity participation (p<0.05, after false discovery

rate (FDR) correction of multiple comparisons) were broadly evident, with positive effects

clustering in subcortical cognitive control networks, negative effects in the auditory, visual and

sensorimotor networks (see Fig 7). These effects track in sign and significance with SZ effects

on inter-network connectivity (see Fig 11 above).

Dynamic brainwide co-polarization patterns and schizophrenia

Brainwide co-polarization patterns, the centroids of clustered 3D polarity-coded volumes (e.g.
S

v2V IALvðtÞ for TR = t) from all subjects and timepoints, are much more spatially resolved

than the dPR 3-vectors and more temporally resolved than the scan-length summary PPMs.

We find that these CoPPs are quite spatially structured, include strong and spatially pervasive

polarized states (see Fig 8) and at the population scale, all are occupied at similar rates (see Fig

8). Occupancy of more polarized CoPPs exhibit strong negative SZ effects however.
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Longer itineraries of co-polarization patterns and schizophrenia. Group-average CoPP

transition probabilities reveal that schizophrenia patients move through polarity space, on

average, very differently than controls. Considering the longer itineraries in which the most

pervasively polarized CoPPs are embedded reveals that their greater probability of realization

in healthy controls reflects, in part, a more fluid and diverse sampling of the space of whole

brain polarization patterns (Fig 12). Controls exhibit a greater “dynamic range” than patients,

a finding consistent with several other recent results [23]. In this setting however, the extra

dynamic range puts controls repeatedly in parts of the polarity space that are proximal to more

pervasive forms of both positive and negative polarization, increasing the odds of repeatedly

entering those states. In healthy controls the most probable exit itinerary from any CoPP has a

short transient of at most one intermediate state, followed by entry into the absorbing length-9

periodic orbit joining the most strongly polarized states of both valencies. In patients, the most

probable exit itinerary from any CoPP passes through at most four intermediate states before

entering one of two absorbing periodic orbits, each an alternating oscillation between either

two non-polarized CoPPs or one non-polarized and one mildly polarized CoPP. Some care is

required in interpreting these different group-level itineraries: 1. They are expressed in terms

of successive distinct states rather than successive timepoints; 2. The transition probabilities are

group averages that need not be quantitatively or ordinally realized in individual subjects; 3.

These are statistical itineraries based on stepwise highest probability transitions and need not

be perfectly realized in any fixed set of simulated CoPP occupancy timeseries generated by the

full transition probability matrix for either group, i.e. there is non-negligible probability at

Fig 12. The group level most-probable itineraries out of the maximally pervasively polarized CoPPs differs between

controls and patients; Group-specific CoPP-to-self transition probabilities are indicated above or below the CoPP

while transition probabilities from one CoPP to the (group-specific) most probable next distinct CoPP are indicated

along the corresponding edges; highly polarized states are indicated with red (positive) and blue (negative) nodes;

(Right) In controls the exit path from either maximally polarized CoPP is the same closed circuit of length 9 which

presents a process by which pervasive polarization starts to attenuate, passing through more neutral or heterogeneous

states and finally shifting toward pervasive polarization of the opposite valency; After short transients, the most-

probable healthy itineraries always enter the displayed length-9 periodic orbit. (Left) In patients, the most probable exit

itinerary from either maximally polarized CoPP involves a short transient followed by an alternating oscillation

between in one case two neutral non-polarized states, and in the other a negatively polarized state and a non-polarized

state. After short transients, the most-probable patient itineraries always enter one of the two displayed alternating

oscillations.

https://doi.org/10.1371/journal.pone.0224744.g012
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each step of doing something other than staying in the present state or transitioning to the

most probable subsequent distinct state, which makes these itineraries more analogous to tren-

dlines though a pointcloud than to the attractors of a (stochastically perturbed) deterministic

dynamical system. Sparse translation-invariant temporally extended (7TR) representations of

CoPP trajectories identified via sparse convolutional dictionary learning (see Fig 13) offer evi-

dence that the transitions in the healthy circuit from Fig 12 are present at the subject level,

involve protracted occupancies of individual CoPPs, and are significantly more present in

healthy controls than in patients.

Discussion

We report results about large-scale spatial BOLD patterns formed by voxel activation time-

series that have each been normalized with respect to their own means and variances (i.e., indi-

vidually z-scored). Our findings indicate that the healthy brain, through some combination of

neural, vascular and neurovascular coupling factors, is strongly characterized by the degree to

Fig 13. (Top Left) Significant p<0.05 (FDR)) effects of schizophrenia on the contributions of each of 64 elements of a

13-channel 1-dimensional sparse dictionary of 7TR temporally convolutional encodings of the original timeseries of

CoPP occupancies [20]. Since the CoPP indices are merely arbitrary labels and not numerically meaningful, the

timeseries are transformed into stacked binary timeseries: each of the univariate timeseries coded as ‘1’ at timepoints

when that CoPP is occupied, and ‘0’otherwise. Multichannel sparse temporally convolutional coding represents this

timeseries in the form of additive (in this case the coefficients are constrained to be non-negative) contributions of

each dictionary element at each timepoint of the input timeseries. The contributions of the different dictionary

elements obtained in this way differ very significantly between patients and controls, even after correction for multiple

comparisons; (Top Right) One dictionary element (element #8, indicated with a large asterisk in top left panel) that is

significantly less present in the representations of patient CoPP occupancy timeseries than the representations of CoPP

occupancy timeseries of controls; (Bottom Row) Axial slices 17, 18 and 19 of the four CoPP states that appear in

sequence as most strongly present in the dictionary element displayed in top right panel; this element is showing high

probability of being in CoPP #5 (highly structured, highly positively polarized state) for 2 or 3 TRs, followed by a high

probability of being next in CoPP #11 (strongly pervasively positively polarized) for 2 or 3TRs, then high probability of

next being in CoPP #4 (pervasively positively polarized for short period, then transitioning to CoPP #7 (broadly

neutral/non-polarized with some light positive polarization).

https://doi.org/10.1371/journal.pone.0224744.g013
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which it exhibits periods of spatially pervasive elevated (resp. depressed) vn-BOLD activation

(see Fig 3 and Fig 8). The relative inability of schizophrenia patients to organize this level of

pervasive polarization is extremely statistically significant (p<10−11). There are also significant

differences between healthy and patient populations in the spatial distribution of voxel partici-

pation in these states of pervasive brain polarization with stronger structured regions of highly

participating voxels among healthy controls (Fig 6). This large-scale brain polarization phe-

nomenon exhibits tractable and clinically relevant interactions with familiar connectivity-

based targets of fMRI analysis: functional network spatial maps, functional network connectiv-

ity and dynamic functional network connectivity. The voxels most drawn into whole-brain

polarization states distribute differently over group-level GICA spatial maps in patients and

controls (see Fig 7): auditory, visual and sensorimotor networks contain more voxels with high

polarity participation rates in controls than patients whereas subcortical and cerebellar net-

works contain more voxels with high polarity participation rates in patients than controls.

There are also significant relationships between polarization and short-timescale functional

network connectivity states (Fig 10), relationships that are predominantly unmediated by clini-

cal status with the single exception of the highly modularized state with negative correlations

between default-mode and other networks. This dynamic connectivity state is significantly

more occupied by controls under conditions of higher than average polarization, while its

occupancies by patients are both more numerous and occur under conditions of lower than

average levels of whole-brain polarization. In traditional “static” FNC the largely unmediated

relationship between polarization and the structure of network correlations/anti-correlations

persists (Fig 11). Polarization both guides/constrains and is built from underlying networks

and their connectivity. We show that the phenomenon of dynamic, large-scale spatially perva-

sive polarization in vn-BOLD fMRI is strongly suppressed among those with diagnosed

schizophrenia however, with significant intensification of the suppressive effect among

patients with higher positive symptomology scores (Fig 3). Positive symptoms include the core

psychotic symptoms of schizophrenia: delusions and hallucinations. We have also shown that

patients and controls exhibit very different patterns of voxel participation in the polarized TRs

(Fig 6). The difference in spatial patterns of “polarity participation” between patients and con-

trols is also present at the network scale. Again it is not clear whether this arises more from

voxel effects aggregating into network effects or whether coherent network behavior is shaping

most of the voxel participation patterns. Drilling into the transient spatial patterns of discre-

tized voxel IALs yields a set of 13 whole brain co-polarization patterns (CoPPs) that capture,

among other things, multiple ways the collection of voxels simultaneously at a given intrinsic

activation level (IAL) distribute spatially at timepoints when the whole brain occupies the cor-

responding dPR state (e.g. voxels with IAL = 1 when the whole brain is occupying the polar-

ized-high dPR state). The most strongly polarized CoPPs are significantly more occupied by

controls than patients which is consistent with results from the coarse polarity summary pro-

vided by dPR state occupancies (Fig 8). However, with CoPPs, we also see group-level evidence

of a healthy circuit itinerary in polarity space that cycles through the maximally positively

polarized CoPP, progressing through four CoPPs with increasing presence and strength of

negatively polarized regions until reaching the maximally negatively polarized CoPPs and

returning again to the maximally positively polarized CoPP through three intermediate transi-

tion states. Using the group-averaged transition probabilities for healthy subjects, i.e. tracing

from the most strongly positively polarized CoPP using the highest group-average probability

forward-time transition (to a different state) and continuing in this manner leads through the

most strongly negatively polarized CoPP and then to back to the most strongly positively

polarized CoPP again, presenting a group-level most probable healthy itinerary through polar-

ity space accounting for 9 of the 13 CoPPs, including the most strongly polarized states. For
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schizophrenia patients the group-level most probable forward-time trajectory out of the maxi-

mally positively polarized CoPP never recovers a significant level of polarity, either positive or

negative, instead alternating between two non-polarized states (Fig 12).

Phenomena involving voxels reaching peak activity on similar timelines either across sub-

jects following a stimulus (e.g. ingestion of glucose[24]) or on voxel subsets within-subjects sat-

isfying behavioral constraints (e.g. exhibiting characteristics of epileptic spiking [25]) have

been documented in the past. There are many neurobiological and vascular factors that could

be contributing to the observed tendency of the healthy brain to organize itself toward globally

polarized vn-BOLD states, and multiple pathways by which this convergence fails to material-

ize as fully or as frequently among schizophrenia patients. The inability to “fully polarize” has

both locally structured and global manifestations (note that both the strongly polarized struc-

tured CoPPs and the strongly pervasively polarized CoPPs in Fig 8 are significantly more occu-

pied by controls, and further, in Fig 12, that strongly polarized structured states are precursors

to strongly pervasively polarized state in the attracting orbit for healthy controls). This is sim-

ply to point out that the phenomenon we have observed manifests on both local and more

global scales, and its disruption in schizophrenia patients is evident at both of these scales.

From a neural perspective the difference between patients and controls could arise from fac-

tors such as imbalanced inhibition and excitation [26, 27], impeded propagation due to locally

weakened coupling [28–30] or disrupted patterns of top-town feedback [31], any of which

could be influenced by excessive synaptic pruning [32] among other possible physiological

underpinnings. As an early-stage exploratory analysis the present study has many limitations

and possible directions of extension. The results will certainly depend on the resolution of the

initial discretization for example. The role of vascular factors can be further elucidated by per-

forming a similar analysis on data from non-BOLD modalities such as EEG and MEG. Finally,

while CoPPs and their dynamic itineraries offer some insight into the formation dynamics of

highly polarized states, they do not in our view satisfactorily resolve the dominant pathways by

which polarization diffuses through much of the brain. Although there are many additional

directions to take with this work, we believe that the proposed approach provides a powerful

new perspective on the disruption of brain function, represents a novel way of studying resting

fMRI data that does not rely on the standard network-based paradigm, and has the potential to

lead to additional biomarkers of brain disease.
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