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Abstract: Apple pomace (AP) is known to be rich in biomolecules beneficial for health and it may
advantageously be used to overcome the critical step of piglets’ weaning. The study aimed to
determine the effect of two levels of incorporation of AP on the performance, intestinal morphology,
and microbiota of weaned piglets and investigate this feed ingredient as a weaning strategy. An
experiment was performed with 42 piglets from weaning (28 days old) over a five-week period,
including three iso-energetic and iso-nitrogenous diets (0%, 2%, and 4% dried AP diets) with seven
pen-repetitions per diet (two pigs per pen). AP diets were beneficial for the average daily gain
calculated on week 3 (p = 0.038) and some parameters of the intestinal architecture on the 35 post-
weaning day. The 4% AP diet was beneficial for the feed conversion ratio (p = 0.002) and the energetic
feed efficiency (p = 0.004) on the 35 post-weaning day. AP tended to influence the consistency of feces
(softer to liquid, p = 0.096) and increased the counts of excreted pathogens (p = 0.072). Four percent
AP influenced the richness of the microbiota and the bacteria profile as observed for the phylum
Bacteroidetes or the class Clostridia. The 4% AP diet appeared as an interesting weaning strategy
that should be evaluated in a large cohort.

Keywords: apple pomace; piglet; weaning; microbiota; biomolecules; gut health

1. Introduction

Apple is a fruit rich in phytochemicals linked with good health indicators for humans
(e.g., decreased risk of cancer or cardiovascular disease, positively associated with general
pulmonary health); in particular, its content in both dietary fiber and phenolic compounds
may partially contribute to this beneficial effect [1]. Similarly, the product derived from
apple juice extraction process, apple pomace (AP) is known to contain biomolecules
beneficial for health such as phenolic and terpenic compounds [2,3]. AP can represent a
raw material of great interest for different applications such as the production of lactic
acid [4], as well as being a source of dietary fiber or polyphenolic components [5,6], and as
a possible functional food for the agri-food sector [7]. AP seems to have positive health
effects in rats when used as a feed ingredient. Indeed, it improved the antioxidant status
of the animals—by increasing the activity of superoxide dismutase in a hemolysate of
erythrocytes and by increasing the antioxidant capacity of the lipid fraction of serum. It
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also reduced the blood glucose level of the rats and increased the fermentation process
in the distal part of their gastrointestinal tract [8]. Incorporated at 3.5% in a weaner diet
for piglet, beneficial effects were observed on the gut morphology of the animals [9] or
on other parameters such as intestinal bacteria, blood parameters, or gene expression of
immunological markers [10].

Although beneficial effects may thus be expected, it must be kept in mind that the
composition of AP can largely vary in space and time. For example, the apple cultivars
used for the juice extraction can influence the physico-chemical properties and antioxidant
activities of the residual AP [11,12]. The use of enzymes for extraction of juice [13] or the
blanching and drying process employed on AP [14] have an impact on its composition. So
the potential variability in the composition of the matrix encourages continuing research
on this healthy raw material for its introduction in the feed chain at a large scale and shows
the importance, for feed producers, of properly characterizing the matrix before using it.

Weaning is a critical step in pig production. Indeed, weaning is generally an abrupt
and precocious event—3 to 5 weeks after parturition in the current production—and leads
to multiple external factors of stress included change in the diet from a 20% dry matter milk
feed to an 80–90% dry matter plant-based diet, change in physical and social environments
including the maternal separation and the disruption of the established social group [15,16].
In a few hours, the piglet has to adapt to a novel environment including unfamiliar feeding
and drinking equipment, unfamiliar piglets, with no more stimulus from the sow to start
feeding, and potential lack of thermal comfort [15]. All these stressors induce a reduction
of piglets’ feed intake and multiple biological stresses related to the intestinal structure and
functions, to the nervous and hormonal pathways and to the immune system that may
have an impact on short and long-term performance and health status of the piglet [17–19].

In a few days after weaning, the young intestinal structure has to adapt to the new
diet. Modifications of the intestinal architecture and functions relate to the decrease
of villi height, the increase of crypts depth and intestinal cell mitosis, the reduction of
brush border enzyme activity and the reduction of the absorptive capacity of nutrients
and electrolytes [15]. In addition to these physiological disturbances, impacts on the gut
barrier function, the piglets’ immunity and the microbiota are also described. It induces an
inflammatory response of the intestinal mucosa and makes the animal sensitive to antigens,
toxins, and translocation of bacteria [17,20,21]. As a consequence of all these disturbances,
weaning generates post-weaning symptoms in piglets, including post-weaning diarrhea
often induced by the enterotoxigenic Escherichia coli [22].

Weaning requires nutritional management [23] in order to prevent or counteract the
negative effects on growth performance and intestinal disorders [24] and to ensure lifelong
gut health for pigs [25]. AP at an incorporation dose of 3.5% is a promising matrix [9,10].
However, technical and economic constraints linked with the production of dried AP, may
wonder whether a lower dose of AP also results in beneficial effects in weaned piglets.
Consequently, the aim of the study was to evaluate the effects of dried AP—incorporated
at two levels into a post-weaning diet (a positive control level set at 4% and a lower
intermediate level set at 2%)—on growth performance, on intestinal morphology and on
the microbiota—of the feces during the post-weaning as well as that of the caecum at the
end of the post-weaning period—and globally discuss about AP as a weaning strategy. AP
diets, particularly the higher dose, showed positive effects on some performance indicators
explained partially by the intestinal architecture. The feces of the 4%AP piglets tended to be
softer, to count more excreted pathogens and to have an enriched microbiota. In the caecum
on the 35 post-weaning day, a differential effect on the microbiota was more observed
between 2% AP and 0% AP. The microbiota of 4% AP was similar to 0% AP. Taking into
account globally the results of the experiment, the 4% AP diet appeared as an interesting
weaning strategy that merits to be evaluated in a large cohort to evaluate finely the risk of
dysbiosis due to the excretion of pathogens in the beginning of the post-weaning period.
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2. Materials and Methods
2.1. Experimental Design
2.1.1. Animals, Diets and Housing

The intervention on piglets was approved by the ethical committee of the University
of Liège (ULiège, Liège, Belgium)—file n◦1823. The intervention was in compliance
with European (Directive 2010/63/EU) and Belgian (Royal Decree of the 29 May 2013)
regulations governing the protection of animals used for scientific purposes.

Forty-two piglets [Pietrain x Landrace] from the Walloon Agricultural Research Centre
(CRA-W, Gembloux, Belgium)—21 females and 21 castrated males, free of antibiotics—were
weaned at 28 days of age and transported to the Animal Production Centre in Gembloux
(CEPA-University of Liège, Gembloux, Belgium) for 35 days of post-weaning rearing.

During the lactation period, piglets received a creep feed (meal dry feed) for 10 days
before weaning. The creep feed was composed of 50% milk powder and 50% of the control
diet (SCAR, Herve, Belgium). During the post-weaning period, piglets received one of the
three diets (meal dry feed) formulated for the experiment (control diet with no AP—0% AP-,
experimental diet containing 2% dried AP—2% AP-, experimental diet containing 4% dried
AP—4% AP-; Table 1; SCAR, Herve, Belgium). Diets were formulated to be iso-energetic
(9.6 MJ EN/kg) and iso-nitrogenous (17.5% CP), having in mind the recommendations of
the NRC. To formulate the experimental AP diets, a portion of wheat was removed from
the 0% AP diet that was substituted by AP and—in a lesser extent—by soybean meal and
soya oil.

Table 1. Composition of the post-weaning diets in %.

Ingredients 0% AP 2% AP 4% AP

Wheat 36.89 34.16 31.45
Barley 20.00 20.00 20.00

Soybean meal 16.40 16.83 17.28
Maize 15.00 15.00 15.00

Premix10916 (Inve Belgie, Dendermonde, Belgium) 7.50 7.50 7.50
Sugar beet pulp 2.50 2.50 2.50

AP 0.00 2.00 4.00
Soya oil 1.45 1.72 1.97

L-threonine 0.115 0.120 0.120
Monocalcium phosphate 0.100 0.100 0.100

Tryptophan 0.035 0.035 0.040
DL-Methionine 0.015 0.025 0.030
Rovimix® E50 0.005 0.005 0.005

0% AP, control diet, 2% AP, 2% apple pomace diet, 4% AP, 4% apple pomace diet. Rovimix® is a commercial
source of vitamin E used in animal nutrition.

For the post-weaning housing, piglets were assigned in pair (1 female and 1 male) to
seven boxes (1.5 m2, polymer grating) for each of the three diets following a randomized
complete block design. The boxes of the piglets were gathered in 7 blocks (including each
the 3 diets), taking into account a potential thermic gradient in the housing.

Piglets were fed ad libitum and the enrichment of the boxes was done with steel chains.
All boxes were washed with water every day after scoring the piglet’s fecal consistency.

2.1.2. Sampling of Feces

A sample of feces was collected directly from the rectum of each male two times, i.e.,
on day 8 and day 28, during the post-weaning period. A part of the samples of day 8 was
directly used fresh to detect excreted pathogens. All the samples (day 8 and day 28) were
stored at −80 ◦C, until DNA extraction.
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2.1.3. Sampling of Intestinal Tissues and Contents

On the last day of the experimental period—day 35—the male piglets were euth-
anized by isoflurane inhalation followed by bleeding. Their gastrointestinal tract was
removed and each intestinal segment was isolated. The chyme and the mucosal layer of
the ileum (collected from 1 m to 50 cm of the ileo-cecal junction), caecum and proximal
colon (collected from 30 cm after the ileo-cecal junction) were immediately snap-frozen
in liquid nitrogen and maintained at −80 ◦C until DNA extraction. Five cm of tissue
samples from the duodenum (from 25 cm after the stomach), jejunum (from 2 m after the
stomach) and ileum were collected, rinsed with a saline solution and fixed in 10% formol
until morphological analyses.

2.2. Experimental Measurements
2.2.1. Chemical Analyses

AP was chemically analyzed for the mono-, and disaccharides, fiber, and polyphenols
profile by the Biomass and Green Technologies laboratory (University of Liège, Gembloux,
Belgium) using gas chromatography (GC) after derivatization [26] and high-performance
anion exchange chromatography (HPAEC-PAD) [27]. Rhamnose, arabinose, xylose, man-
nose, galactose, and glucose were determined after aqueous extraction by GC including
derivatization step. Saccharose and fructose were determined in the aqueous extract by
HPAEC-PAD. Arabino-, xylo- and galacto-oligosaccharides were determined by GC after
acid hydrolysis and derivatization. The solvent used was dichloromethane. Glucuronic
acid, galacturonic acid and constituting sugars were determined by HPAEC-PAD and
GC after hydrolysis. Total polyphenols were determined, after extraction of the phenolic
compounds with a polar solvent, by spectrophotometry after oxidation of the phenolic
compounds by the Folin–Ciocalteu reagent [28].

Diets were chemically analyzed by CRA-W (Gembloux, Belgium) for their content
in humidity, crude protein, crude ash, reducing sugars, total sugars, starch, cellulose and
crude fat following Commission Regulation (EC) No 152/2009 of 27 January 2009 laying
down the methods of sampling and analysis for the official control of feed. The NDF,
ADF, ADL content were analyzed following Standard NFV18-122 August 1997 for animal
feedstuffs—Determination of sequential cell-wall—Method by treatment with neutral and
acid detergent and sulfuric acid.

AP and diets were chemically analyzed by Upscience (Saint-Nolff, France) for their
insoluble high molar weight dietary fiber (HMWDF), soluble HMWDF and soluble low
molar weight dietary fiber (LMWDF) following AOAC 991.43 method.

2.2.2. Zootechnical Performance

Piglets were weighed (Giropes G1308, Pesage Warnier, Hannut, Belgium) on a weekly
basis, with the initial weight being the weaning weight. The average daily gain (ADG) was
calculated per box, on a weekly and cumulative basis (from initial weighting to specific
date of weighting), with the final ADG being those calculated using the initial weight and
final weight of piglets. The total feed intake (TFI) and the feed conversion ratio (FCR) were
calculated at the end of the experiment per box. The energetic feed efficiency (EFE) was
calculated as the ratio between the total net energy of the diet ingested per box and the
total weight gain of the piglets of the box. The net energy of the diet was calculated with
EvaPig® software (v 1.3.1.7, INRA–AFZ–Ajinomoto Eurolysine S.A.S., Paris, France) using
the results of the feed chemical analyses.

2.2.3. Scoring of Piglet’s Fecal Consistency

The consistency of the piglet’s feces was visually evaluated on a daily basis per box
from the second day of weaning until the 15 post-weaning day. Two scores were attributed
per box (minimum and maximum scores). The rating scale included 6 ranks [29] from score
0 to score 5. The score 0 was an absence of feces. The score 1 was multiple free pellets of
feces. The score 2 was aggregated pellets shaping the feces. The score 3 was firm feces,
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shaped as a cylinder). The score 4 was soft feces, not shaped as a cylinder. The score 5 was
liquid feces.

2.2.4. Excreted Pathogens

The presence/abundance of pathogens that are known to be involved in the diarrhea
of piglets was investigated on the 8 post-weaning day through the use of the Rainbow Piglet
ScoursTM Bio K 351 (Bio-X Diagnostics S.A., Rochefort, Belgium)—detecting Rotavirus,
E. coli F4, F5, F18, F41 attachment factors, Clostridium difficile, Clostridium perfringens and
Cryptosporidium—following the manufacturer’s instructions.

2.2.5. Intestinal Morphology

The morphological measurements of the intestinal segments were determined fol-
lowing a protocol previously described [30]. The segments, fixed in 10% formol, were
dehydrated and embedded in paraffin wax. For each intestinal segment, four sections of
5 µm were obtained and stained with Alcian blue for mucous detection following routine
methods. The sections obtained were scanned, digitized using an imaging system for
virtual microscopy (Dotslide, Olympus, Belgium) and analyzed with a Java image mor-
phometric processing program (Image J software, National Institute of Health, Bethesda,
MD, USA). Villus length and crypt depth were measured in order to obtain a total of
20 measurements of crypt and villus per section (80 per pig and per intestinal segment).

2.2.6. Short Chain Fatty Acids (SCFA)

The SCFA analyzed were acetic (C2), propionic (C3), isobutyric (iC4), butyric (C4),
isovaleric (iC5), valeric (C5) and hexanoic acids (C6). The SCFA content of the feces and
chyme from the caecum was measured by SPME-GC-MS following a protocol previously
described [31]. Between 20 and 25 mg of samples were introduced into a 20 mL glass vial.
Forty µL of internal standard (2-methylvaleric acid) at a concentration of 0.2 mg/mL, 15 µL
of 0.9 M sulfuric acid, and 920 µL of water were then added. The mixture was vortexed
and placed on the autosampler of the SPME-GC-MS system until analysis. SCFA were
extracted with a SPME fiber, separated on a Focus GC gas chromatograph (Thermo Fisher
Scientific, Waltham, MA, USA) using a Supelcowax-10 column (30 m × 0.25 mm, 0.2 µm)
(Supelco, Bellefonte, PA, USA) and analyzed with an ion trap PolarisQ mass spectrometer
(Thermo Fisher Scientific, Waltham, MA, USA). The agitation temperature was set at 60 ◦C
and the extraction time at 20 min.

2.2.7. Composition and Richness of the Microbiota

The composition and richness of the microbiota were analyzed on all fecal and cecal
samples. DNA extraction and sequencing of all the samples were performed by DNA
Vision (Gosselies, Belgium) following their internal quality SOP. DNA was extracted
from frozen pellets with the DNeasy Blood & Tissue kit according to the instructions
of the manufacturer Qiagen (Qiagen Benelux B.V., Venlo, The Netherlands). DNA was
quantified and qualitatively assessed on a NanoDrop 2000 from Thermo Scientific™ and
by PicoGreenVICTOR X3 (PerkinElmer) using the Quant-it PicoGreen dsDNA Assay kit
from Invitrogen. The 16S targeted region V3-V4 was amplified by PCR, purified and
tagged. Libraries were indexed using the NEXTERA XT Index kit V2 from Illumina. The
high throughput sequencing was carried out on Illumina Miseq in paired-end sequencing
(2 × 250 bp) by targeting an average of 10,000 reads per sample. Finally, the bioinformatic
analysis was executed with the QIIME (Quantitative Insights Into Microbial Ecology)
software, version 1.9.0 with “Greengenes 13_8” as database and recommended parameters
to use QIIME scripts. The OTU (Operational Taxonomic Unit) table was generated based
on a 97% sequence similarity of the sequencing reads to cluster OTUs. Only samples
presenting more than 5000 reads were used for taxonomic analysis. Similarly, samples with
the same normalized number of reads were used for the beta diversity (OTU) analysis for
which the results were expressed in relative abundance—a percentage of the total bacteria.
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Beta diversity (group comparisons)—representing comparison of microbial communities
based on their composition—generated a matrix where dissimilarities/distances were
calculated between every pair of group samples and that was visualized with Principal
Coordinates Analysis. The group comparison analysis was performed for the Weighted
Unifrac distance—based on the abundance of observed organisms.

The parameters of alpha-diversity that were analyzed are Chao1, observed operational
taxonomic unit, phylogenetic diversity whole tree and Shannon index.

2.3. Statistical Analyses
2.3.1. Parametric Tests

The conditions for applying the analysis of variance on the quantitative data of the
experiment have been verified. The assumptions of the data normality and the equality of
variances according to the treatment were confirmed.

Zootechnical performance measured at the end of the post-weaning phase, calculated
as mean values for the global post-weaning period (final weight, final ADG, TFI, FCR, and
EFE) and intestinal morphology measurements were analyzed using a two-way analysis of
variance with “diet” as fixed factor and “block” as random factor (GLM procedure, SAS
v9.4, SAS Inst. Inc., Cary, NC, USA). The Student–Newman and Keuls test was used to
structure the averages. SCFA data from chyme samples were analyzed following the same
procedure using Minitab software (Minitab 18, Minitab Inc., State College, PA, USA).

Zootechnical performance measured during the post-weaning period (ADG calculated
per box, on a weekly and cumulative basis) and SCFA data from fecal samples were
analyzed as repeated measures following a split-plot analysis of variance [32] with “diet”
as fixed factor, “piglet” as random factor and “week” as fixed factor (Minitab 18, Minitab
Inc., State College, PA, USA). Moreover, as a complement of information, analyses of
variance were also performed separately on the different dates of the weekly ADG.

A p-value lower or equal to 0.05 was considered statistically significant. A p-value
between 0.05 and 0.1, or equal to 0.1, was considered a trend. Otherwise, a p-value higher
than 0.1 was considered not significant (ns).

2.3.2. Non-Parametric Tests

The qualitative data (pathogens in feces and fecal consistency scores) were analyzed
using non-parametric tests for which categories were defined in order to comply with the
test application conditions.

The qualitative data obtained from the detection of pathogens by Rainbow kit were
analyzed using a non-parametric chi-square test of association (Minitab 18, Minitab Inc.,
State College, PA, USA) ranking the diet factor into two categories (no AP in the diet and
AP in the diet) and the results into two categories (negative: no pathogen detected or <106

CFU/g; positive: pathogen detected or >106 CFU/g).
The qualitative data obtained from the piglet’s fecal consistency were analyzed using

a non-parametric Cochran test (Minitab 18, Minitab Inc., State College, PA, USA), ranking
the diet factor into two categories (no AP in the diet and AP in the diet) and the results of
the maximum scores into two categories (category A included the scores 0 to 3; category B
included the scores 4 and 5 that was considered as more diarrheic).

The statistical analysis for the alpha-diversity data of the microbiota was based on a
non-parametric t-test (Monte Carlo permutations to calculate p-value) comparing groups
of samples two by two. The analysis for the beta-diversity data (OTU) was done at
different levels of the taxonomy classification to detect differences in read abundances
between groups of samples. The non-parametric Kruskal–Wallis test was used for this
purpose (KW p-value) and it was subsequently adjusted using the Benjamini–Hochberg
false discovery rate procedure for multiple comparisons (FDR p-value). The analysis for
the beta-diversity data (group comparison, weighted Unifrac distance) was done through
the Adonis statistical test.
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A p-value lower or equal to 0.05 was considered statistically significant. A p-value
between 0.05 and 0.1, or equal to 0.1, was considered a trend. Otherwise, a p-value higher
than 0.1 was considered not significant (ns).

3. Results
3.1. Feed Chemical Analyses

Results of the chemical analyses are given in Table 2 for the AP and in Table 3 for
the diets.

Table 2. Characterization of the apple pomace used in the study (mono-, and disaccharides, fiber
and polyphenols).

Chemical Component AP

Rhamnose <0.1 g/100 g DM
Arabinose <0.1 g/100 g DM

Xylose <0.1 g/100 g DM
Mannose <0.1 g/100 g DM
Glucose 3.4 g/100 g DM

Galactose 2.1 g/100 g DM
Fructose 13.5 g/100 g DM

Saccharose 2.9 g/100 g DM
Arabino-oligosaccharide 0.5 g/100 g DM

Xylo-oligosaccharide 0.3 g/100 g DM
Galacto-oligosaccharide 0.2 g/100 g DM

Galacturonic acid <0.1 g/100 g DM
Glucuronic acid <0.1 g/100 g DM

Total polyphenols (Folin-Ciocalteu) 26.7 mg gallic acid/g DM
Quercetin 23.1 µg/g DM
Phloretin 2.8 µg/g DM

Insoluble HMWDF 45.2 g/100 g DM
Soluble HMWDF 12.6 g/100 g DM
Soluble LMWDF 0.5 g/100 g DM

Soluble DF/insoluble DF 0.29
AP, apple pomace; DM, dry matter; HMWDF, high molar weight dietary fiber; LMWDF, low molar weight
dietary fiber.

Table 3. Chemical analyses of the diets.

Chemical Component 0% AP 2% AP 4% AP

Dry Matter (%) 88.0 87.3 88.2
Crude protein (% DM) 18.1 18.7 18.6

Crude ash (% DM) 6.13 5.51 5.45
Reducing sugars (% DM) 1.43 1.76 2.47

Total sugars (% DM) 6.40 7.17 7.93
Starch (% DM) 44.10 43.41 42.23
NDF (% DM) 13.49 13.20 13.20
ADF (% DM) 6.49 6.56 6.68
ADL (% DM) 1.21 1.15 1.38

Cellulose (% DM) 5.13 5.12 4.93
Crude Fat (% DM) 3.34 3.55 3.50

Insoluble HMWDF (% DM) 17.3 17.4 16.7
Soluble HMWDF (% DM) 4.7 4.9 5.1
Soluble LMWDF (% DM) 3.3 3.0 3.1
Soluble DF/insoluble DF 0.46 0.45 0.49

ADF, acid detergent fiber; ADL, acid detergent lignin; DM, dry matter; HMWDF, high molar weight dietary fiber;
LMWDF, low molar weight dietary fiber; NDF, neutral detergent fiber; 0% AP, control diet, 2% AP, 2% apple
pomace diet, 4% AP, 4% apple pomace diet.



Microorganisms 2021, 9, 572 8 of 21

3.2. Zootechnical Performance

Piglets from two boxes were excluded from the experimental set-up due to health
issues in the first days of the experiment. The first piglet—0% AP box—was excluded due
to the infection of a hoof of the female piglet. The second piglet—4% AP box was excluded
due to a paw problem of the male piglet.

For the performance at the end of the post-weaning period, final weight, final ADG
and TFI were not statistically different between diets (Table 4). FCR, as well as EFE of
piglets that had received the 4% AP diet were significantly lower compared to piglets of
the 0% AP and 2% AP diets.

Table 4. Zootechnical performance of piglets receiving control or experimental diets during 35 days
of the post-weaning rearing period.

Zootechnical
Parameter 0% AP 2% AP 4% AP SEM p-Value

Diet
p-Value
Block

Initial weight (kg) 8.4 8.4 8.4 0.1 ns ns
Final weight (kg) 21.0 22.6 23.1 0.4 ns ns
Final ADG (kg/d) 0.361 0.406 0.421 0.012 ns ns

TFI (kg DM) 19.8 21.7 20.5 0.5 ns ns
FCR 1.79 a 1.75 a 1.59 b 0.03 0.002 ns

EFE (MJ NE/kg gain) 16.9 a 16.8 a 15.2 b 0.2 0.004 ns
a, b values assigned different letter within a row are statistically different; 0% AP, control diet (n = 6); 2% AP, diet
containing 2% dried apple pomace (n = 7); 4% AP, diet containing 4% dried apple pomace (n = 6); ADG, average
daily gain; DM, dry matter; EFE, energetic feed efficiency; FCR, feed conversion ratio; NE, net energy; ns, not
significant; TFI, total feed intake.

For the weekly ADG measured during the post-weaning period, the statistical analyses
using repeated measures did not differ between diets. However, analyses of variance
performed on ADG week by week (Table 5) revealed that ADG in week 3 was higher for
2% AP and 4% AP diet than that of 0% AP diet. ADG in week 2 and week 4 showed a trend
to be different.

Table 5. Average daily weight gain (ADG) of piglets receiving control or experimental diets week
by week.

ADG 0% AP 2% AP 4% AP SEM p-Value
Diet

p-Value
Block

ADG week 1 (d0–d + 7) 0.118 0.134 0.143 0.013 ns ns
ADG week 2 (d + 7–d + 14) 0.304 0.261 0.350 0.020 0.083 ns
ADG week 3 (d + 14–d + 21) 0.367 b 0.459 a 0.458 a 0.017 0.038 ns
ADG week 4 (d + 21–d + 28) 0.489 0.563 0.537 0.018 0.085 ns
ADG week 5 (d + 28–d + 35) 0.530 0.613 0.614 0.020 ns ns

a, b values assigned different letter within a row are statistically different; 0% AP, control diet (n = 6); 2% AP, diet
containing 2% dried apple pomace (n = 7); 4% AP, diet containing 4% dried apple pomace (n = 6); ADG, average
daily gain; d, day with d0 as the first day of the experiment.

3.3. Scoring of Piglet’s Fecal Consistency and Excreted Pathogens

The results obtained from the observation of the feces (maximum score in each box)
during the first two weeks of the post-weaning period showed a trend (p = 0.096) for more
softer to liquid feces with AP diets than with the 0% AP diet (Table 6, left side). The results
obtained through the use of the Rainbow kits showed a trend for more pathogens with
diets containing AP than with the 0% AP diet (Table 6, right side, p = 0.072).
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Table 6. Contingency tables for the scoring of fecal consistency during the first 14 days post-weaning period and detection
of the excreted pathogens in feces on the 8 post-weaning day.

Diet Statistical Parameter Fecal Consistency Scoring 1 Pathogens in Feces 2

A B Total Negative Positive Total

Apple pomace

Count 51 144 195 84 20 104

Expected count 57.47 137.53 87.58 16.42

Adjusted Residuals −1.809 1.809 −1.713 1.713

No apple pomace

Count 33 57 90 44 4 48

Expected count 26.53 63.47 40.42 7.58

Adjusted Residuals 1.809 −1.809 1.713 −1.713

Total Count 84 201 285 128 24 152

p-value 0.096 0.072
1 Contingency table from a Cochran test done on the maximum scores of fecal consistency. Feces were observed per box on a daily basis
from the second day of weaning until the 15th post-weaning day. Consistency A included the results from no feces to normal feces (scores 0
to 3), consistency B included soft to liquid feces.2 Contingency table from a Chi-Square test of Association counting the presence (positive
test or >106 CFU) or absence (negative test or <106 CFU) for Rotavirus, E. Coli F4, F5, F18, F41 attachment factors, Clostridium difficile,
Clostridium perfringens, and Cryptosporidium. Fecal samples were taken on the 8 post-weaning day.

3.4. Intestinal Morphology

The results of the morphological measurements performed on the three small intestinal
segments showed a significant effect of the diet on the duodenal villus length and on the
ileal ratio villus length/crypts depth (Table 7). Piglets receiving the 4% AP diet presented
higher duodenal villus length than piglets from the 0% AP diet; with intermediate values for
the 2% AP piglets. In the same way, piglets receiving the 4% AP diet had a higher ileal ratio
villus length/crypt depth than piglets with the 0% AP diet (with the difference between
4% AP and 0% AP mainly due to the higher villus length of 4% AP in mean value). No
effect of the diet was observed on jejunum measurements although numerical differences
between the mean values in jejunum were similar to those observed in the duodenum.

Table 7. Results of the morphological measurement (villus and crypts) on the three upper intestinal
segments on the 35 post-weaning day.

Intestinal Parameter 0% AP 2% AP 4% AP SEM p-Value
Diet

p-Value
Block

Duodenum (n = 6) (n = 7) (n = 6)
Villus length (µm) 320 b 381 ab 429 a 16.4 0.018 ns
Crypts depth (µm) 436 471 448 10.5 ns ns

VL/CD 0.74 0.81 0.96 0.039 ns ns

Jejunum (n = 6) (n = 6) (n = 5)
Villus length (µm) 354 366 420 20.5 ns ns
Crypts depth (µm) 314 325 324 8.9 ns ns

VL/CD 1.14 1.16 1.31 0.07 ns ns

Ileum (n = 6) (n = 7) (n = 6)
Villus length (µm) 240 273 315 13.4 ns ns
Crypts depth (µm) 255 270 242 7.9 ns ns

VL/CD 0.94 b 1.03 ab 1.33 a 0.07 0.039 ns
a, b values assigned a different letter within a row are statistically different; 0% AP, control diet; 2% AP, diet
containing 2% dried apple pomace; 4% AP, diet containing 4% dried apple pomace; VL/CD, ratio villus
length/crypts depth.
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3.5. Short Chain Fatty Acids (SCFA)

No SCFA differences between groups were observed in the samples of feces on the
8 and 28 post-weaning days (calculated as g/kg feces or as mmol/kg feces) and in the
caecum samples (calculated as g/kg cecal content or as mmol/kg cecal content) (data
not shown).

3.6. Richness and Composition of the Microbiota
3.6.1. Fecal Microbiota Composition on Day 8 Post-Weaning

The Shannon index tended (p = 0.094) to be higher in the feces of 4% AP piglets (5.7)
than in the feces of 0% AP piglets (5.0), while the Shannon index of the 2% AP piglet’s
feces was 5.4. Other indices (Chao1, observed operational taxonomic unit, phylogenetic
diversity whole tree) were not different. The weighted Unifrac distance tended to be
different between groups (p = 0.052, Appendix A).

At the phylum level of classification (Figure 1), for the 0%AP and 2% AP piglets, the
phyla showing the higher relative abundances—by decreasing order—were Firmicutes,
Actinobacteria and Bacteroidetes (containing Bacteroidia as unique class in all the samples
of the study). For the 4% AP piglets, it was Firmicutes, then Bacteroidetes that was more
abundant than Actinobacteria. For all piglets, the phylum Proteobacteria was scarce (0.0%
for 0% AP, 0.1% for 2% AP, and 0.5% for 4% AP).

Figure 1. Composition (phyla and classes) of the microbiota in feces of piglets on the 8 post-weaning day. Diet 0% AP, control
diet (n = 5), 2% AP, diet containing 2% dried apple pomace (n = 7), 4% AP, diet containing 4% dried apple pomace (n = 6).

The class Clostridia was twice as abundant in comparison to Bacilli in apple pomace
diets while they were equal in the diet without AP (Figure 1).

Coriobacteriaceae, Lactobacillaceae and Enterobacteriaceae were bacterial families
influenced by the diet as well as Dorea, Slackia, Ruminococcus, and Catenibacterium when
considering the genus level of the classification (Appendix B and Supplementary File—
Figure S1).
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3.6.2. Fecal Microbiota Composition on Day 28 Post-Weaning

The indexes describing the α-diversity did not differ between the diets. The weighted
Unifrac distance tended to be different between groups (p = 0.069, Appendix A).

As observed on the 8 post-weaning day, the phylum Firmicutes showed the highest
relative abundance in the fecal microbiota of piglets on the 28 post-weaning day (Figure 2).
It was then followed for the three diets by the phylum Bacteroidetes and then Actinobacte-
ria. The relative abundance of Proteobacteria was below 1% (0.2% for 0% AP, 0.1% for 2%
AP, and 0.2% for 4% AP; p = not significant).

Figure 2. Composition (phyla and classes) of the microbiota in feces of piglets on the 28 post-weaning day. Diet 0% AP, control
diet (n = 6), 2% AP, diet containing 2% dried apple pomace (n = 7), 4% AP, diet containing 4% dried apple pomace (n = 6).

The class Clostridia was the first class of bacteria (>50% relative abundance) for AP
diets and it became also the first class for the 0% AP diet at this timepoint (Figure 2).

Amongst the more abundant families—cited by decreasing order—were Lactobacil-
laceae, Lachnospiraceae, and Ruminococcaceae for the 0% AP and 2% AP piglets. It was
Lactobacillaceae, Ruminococcaceae, and Lachnospiraceae for the 4% AP diet (Table 8).
Between these three families, Ruminococcaceae showed a significantly higher relative
abundance for the 4% AP diet than for the 2% AP diet (p = 0.047) and a trend to be more
abundant than for the 0% AP diet (p = 0.078). Clostridiaceae showed also a significantly
higher relative abundance for the 4% AP diet than for the 2% AP diet (p = 0.028); 0% AP
was intermediate and not statistically different from 2% AP and 4% AP. Veillonellaceae
showed the lowest abundance for the 4% AP diet than for the 0% AP and 2% AP diet
(p = 0.009).
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Table 8. Relative abundances (% of total bacteria) of families and species of the microbiota in feces of
piglets on the 28 post-weaning day.

Phylum-Class
Family—Genus (If app.)—Species

(If app.)
0%AP 2%AP 4%AP SEM p-Value

KW/FDR

Actinobacteria–Actinobacteria-
Bifidobacteriaceae 0.0 0.3 0.0 0.06 ns/ns

Actinobacteria–Coriobacteriia-
Coriobacteriaceae 1.9 1.9 1.8 0.21 ns/ns

Bacteroidetes–Bacteroidia-
Bacteroidales (undef. fam.) 0.1 0.2 0.3 0.06 ns/ns

Prevotellaceae 2.2 3.2 1.4 0.31 ns/ns
Muribaculaceae (formerly called

S24-7) 4.0 2.5 8.7 1.46 ns/ns

(Paraprevotellaceae) 0.1 0.1 0.0 0.01 ns/ns
Cyanobacteria–4C0d-2

YS2 (undef. fam.) 0.1 0.2 0.2 0.04 ns/ns
Firmicutes–Bacilli-

Enterococcaceae 0.1 0.0 0.0 0.03 ns/ns
Lactobacillaceae 25.3 31.3 23.2 2.91 ns/ns
Streptococcaceae 6.1 3.0 1.8 0.84 ns/ns

Firmicutes–Clostridia-
Clostridiales (Other fam.) 0.1 0.1 0.2 0.03 ns/ns
Clostridiales (undef. fam.) 3.7 2.7 5.5 0.44 0.099/ns

Christensenellaceae 1.5 0.9 3.1 0.61 ns/ns
Clostridiaceae 3.5 ab 2.3 b 5.9 a 0.64 0.028/ns

Clostridiaceae -SMB53 (undef. sp) 0.6 ab 0.4 b 1.1 a 0.14 0.036/ns
Clostridiaceae (undefined genus) 2.8 ab 1.6 b 4.6 a 0.54 0.019/ns

Dehalobacteriaceae 0.1 0.0 0.1 0.02 ns/ns
Eubacteriaceae 0.0 0.2 0.0 0.05 ns/ns

Lachnospiraceae 16.3 19.8 14.1 1.50 ns/ns
Lachnospiraceae -Blautia (other sp.) 0.1 a 0.0 b 0.0 b 0.02 0.024/ns
Lachnospiraceae -Dorea (other sp.) 0.8 a 0.6 a 0.2 b 0.12 0.024/ns

Lachnospiraceae -Lachnospira
(undef. sp) 0.4 ab 0.4 a 0.1 b 0.06 0.036/ns

Peptococcaceae 0.2 0.1 0.2 0.02 ns/ns
Peptostreptococcaceae 0.1 0.1 0.1 0.02 ns/ns

Ruminococcaceae 13.6 ab 12.9 b 19.8 a 1.27 0.047/ns
Veillonellaceae 12.2 a 11.4 a 4.8 b 1.12 0.009/ns

Veillonellaceae -Dialister (undef. sp) 2.3 a 2.1 ab 0.5 b 0.32 0.016/ns
Veillonellaceae -Megasphaera (undef.

sp) 5.7 a 6.6 a 2.8 b 0.59 0.015/ns

Veillonellaceae -Mitsuokella (undef.
sp) 2.4 a 1.1 b 0.6 b 0.29 0.023/ns

Veillonellaceae -Mitsuokella
multacida 0.1 0.5 0.1 0.09 0.063/ns

Veillonellaceae -(undef. genus) 0.5 0.3 0.1 0.08 0.064/ns
[Mogibacteriaceae] 1.4 1.2 1.6 0.16 ns/ns

Firmicutes–Erysipelotrichi-
Erysipelotrichaceae 6.6 5.0 5.3 0.62 ns/ns

Erysipelotrichaceae -[Eubacterium]
cylindroides 0.7 0.3 0.6 0.09 0.092/ns

Erysipelotrichaceae -Bulleidia
p-1630-c5 1.3 0.9 0.6 0.01 0.085/ns

Erysipelotrichaceae -L7A_E11
(undef. sp) 0.0 0.0 0.1 0.03 0.060/ns

Erysipelotrichaceae -(undef. genus) 0.1 0.1 0.2 0.02 0.085/ns
Planctomycetes–Planctomycetia-

Pirellulaceae 0.2 0.2 0.2 0.08 ns/ns
Proteobacteria–

Deltaproteobacteria-
Desulfovibrionaceae 0.1 0.0 0.1 0.02 0.071/ns

-Desulfovibrio (undef. sp) 0.1 0.0 0.1 0.100/ns
Proteobacteria–

Gammaproteobacteria-
Succinivibrionaceae 0.0 0.1 0.0 0.01 ns/ns

TM7–TM7-3-
F16 0.0 0.1 0.1 0.03 ns/ns

Tenericutes–Mollicutes-
RF39 (undef. fam.) 0.1 0.1 0.1 0.01 ns/ns

WPS-2—(undefined class)-
(undef. fam.) 0.0 0.0 0.6 0.18 0.065/ns

Families showing a relative abundance > 0.1% in at least one diet were included. Only species showing a
statistical trend or significance were included; relative abundance in % of the total bacteria. a, b values assigned a
different letter within a row are statistically different; 0%AP, control diet (n = 6); 2%AP, diet containing 2% dried
apple pomace (n = 7); 4%AP, diet containing 4% dried apple pomace (n = 6); if app., if applicable; KW/FDR,
Kruskal–Wallis/Benjamini–Hochberg false discovery rate; ns = not significant; undef. fam., undefined family;
undef. sp, undefined species.
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At the genus/species levels of the classification (Table 8, Supplementary File—Figure
S2), two bacteria from the Clostridiaceae family were significantly more abundant in
the feces of the 4% AP piglets (SMB 53_undefined species and Clostridiaceae_undefined
genus) compared to the 2% AP piglets, with intermediate values for the 0% AP group.
In contrast, Blautia_other sp., Dorea_other sp.—both from Lachnospiraceae family—and
undefined species of Dialister, Megasphaera, and Mitsuokella—these three bacteria from the
Veillonellaceae family—were more abundant in the 0% AP group compared to the 4% AP;
results for the 2% AP diet was statistically not different from 0% AP or 4% AP following
the bacteria as seen in Table 8.

3.6.3. Cecal Microbiota Composition on Day 35 Post-Weaning

The indices describing the α-diversity of the cecal microbiota of the chyme (Chao 1,
number of operational taxonomic unit and phylogenetic diversity) revealed an increased
richness for the 4% AP piglets compared to the 2% AP piglets (p-value significant for
the three parameters), the indices for 0% AP were intermediate (Table 9). The weighted
Unifrac distance was not different between groups (p = ns, Appendix A).The profile of
the microbiota present in the chyme of the caecum (data not shown) was similar between
diets except for Coprococcus (“undefined species”) that was more abundant in the 0% AP
piglets (1.3%, p = 0.014) than in the 2% AP piglets (0.6%), while the abundance for the 4%
AP piglets was intermediate (1.1%). A trend was also observed for Muribaculaceae (0.1%
for 0% AP, 0.1% for 2% AP, 0.2% for 4% AP; p = 0.078) and Lachnospira (“undefined species”;
0.1% for 0% AP, 0.4% for 2% AP, 0.5% for 4% AP; p = 0.069).

Table 9. Alpha-diversity indexes of the microbiota from the chyme and the mucosa of the caecum on
the 35 post-weaning day.

Index 0% AP 2% AP 4% AP p-Value KW

Chyme
Chao 1 1103 ab 990 b 1189 a 0.015
OTU 707 ab 633 b 790 a 0.024

PD Whole Tree 40.0 ab 36.1 b 44.3 a 0.030
Shannon 5.4 5.3 5.7 ns

Mucosa
Chao 1 771 ab 668 b 849 a 0.045
OTU 491 423 527 0.084

PD Whole Tree 34.1 30.2 36.4 ns
Shannon 6.0 5.5 6.1 ns

a, b values assigned a different letter within a row are statistically different; 0% AP, control diet; 2% AP, diet
containing 2% dried apple pomace; 4% AP, diet containing 4% dried apple pomace; KW, Kruskal–Wallis; ns, not
significant; OTU, operational taxonomic unit; PD, phylogenetic diversity.

The indices describing the α-diversity of the cecal microbiota of the mucosa were less
influenced by the diet than chyme samples. Chao 1 was the only index of the α-diversity
of the microbiota to be statistically higher for 4% AP piglets compared to 2% AP piglets,
while 0% AP had an intermediate value (Table 9). The number of operational taxonomic
units tended to be more substantial for 4% AP piglets. The weighted Unifrac distance
tended to be different between groups (p = 0.054, Appendix A). From a bacterial point
of view (Table 10), more differences were visible between diets compared to the chyme
results. Firmicutes were more abundant for 2% AP piglets (p = 0.045) than for 0% AP and
4% AP piglets; Bacteroidetes were more abundant for 0% AP and 4% AP piglets (p = 0.049)
than for 2% AP piglets. The third dominant phylum—Proteobacteria—tended (p = 0.053)
to be more abundant in 0% AP piglets (5.6%) and less abundant in 2% AP piglets (1.3%).
Statistical differences or trends were observed for families Muribaculaceae, Pasteurellaceae,
Peptostreptococcaceae and Prevotellaceae as well as for species Acidaminococcus “undefined
species”, Actinobacillus “other species”, Campylobacter (“undefined species”), Coprococcus
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“undefined species”, Megamonas “undefined species”, Mitsuokella multacida, Oscillospira
“undefined species” and Prevotella “undefined species”.

Table 10. Relative abundances (% of total bacteria) of the microbiota from the mucosa of the caecum
in piglets on the 35 post-weaning day.

Phylum-Class: Family–Genus–Species 0% AP 2% AP 4% AP SEM p-Value
KW/FDR

Bacteroidetes 14.6 a 6.5 b 13.6 a 1.27 0.049/ns
Bacteroidia: 14.6 a 6.5 b 13.6 a 1.27 0.049/ns

Prevotellaceae 11.9 5.2 10.5 1.08 0.060/ns
Prevotellaceae–Prevotella (undef. sp.) 3.0 a 1.0 b 3.6 a 0.36 0.010/ns

Muribaculaceae (formerly called s24-7) 0.2 ab 0.1 b 0.3 a 0.03 0.037/ns
Firmicutes 78.3 b 90.1 a 82.4 b 1.68 0.045/ns
Clostridia: 46.5 49.4 54.5 2.02 ns/ns

Lachnospiraceae–Coprococcus (undef. sp.) 0.7 0.5 0.9 0.07 0.073/ns
Peptostreptococcaceae 0.1 0.1 0.1 0.01 0.074/ns

Ruminococcaceae–Oscillospira (undef. sp.) 0.2 a 0.1 b 0.3 a 0.03 0.037/ns
Veillonellaceae–Acidaminococcus (undef. sp.) 0.1 0.2 0.3 0.04 0.088/ns

Veillonellaceae–Megamonas (undef. sp.) 0.4 3.5 0.1 0.97 0.070/ns
Veillonellaceae–Mitsuokella multacida 0.0 0.5 0.1 0.10 0.094/ns

Proteobacteria 5.6 1.3 3.0 0.63 0.053/ns
Epsilonproteobacteria: 3.2 0.9 1.4 0.39 ns/ns

Campylobacteraceae–Campylobacter (undef. sp.) 2.5 0.5 0.9 0.34 0.083/ns
Gammaproteobacteria: 2.1 0.3 1.4 0.33 ns/ns

Pasteurellaceae 0.2 0.0 0.0 0.03 0.057/ns
Pasteurellaceae–Actinobacillus (Other sp.) 0.1 a 0.0 b 0.0 a 0.02 0.030/ns

a, b values assigned a different letter within a row are statistically different; 0% AP, control diet (n = 6); 2%
AP, diet containing 2% dried apple pomace (n = 7); 4% AP, diet containing 4% dried apple pomace (n = 6);
KW/FDR, Kruskal–Wallis/Benjamini–Hochberg false discovery rate; ns, not significant; OTU, operational
taxonomic unit; PD, phylogenetic diversity; undef. sp., undefined species. Are shown in the table the bacteria
with statistical differences.

4. Discussion
4.1. Zootechnical Performance and Intestinal Morphology

During the post-weaning period, AP improved the ADG of piglets on week 3. At the
end of the post-weaning period, only piglets that had received the 4% AP diet showed
a lower FCR and EFE compared to 0% AP piglets, which may partially be explained by
the improved intestinal morphology, i.e., a higher villus length in the duodenum and a
higher VL/CD in the ileum compared to the 0% AP piglets. Indeed, the villus length/crypt
depth ratio is a good indicator for estimating the likely digestive capacity of the small
intestine [33]. These observations are in line with those of Sehm and colleagues [9] who
showed a beneficial effect of 3.5% of dry AP on the villus height at certain time points
of the post-weaning period. It could be hypothesized that this improved small intestinal
morphology may be explained by the higher level of reducing sugars in the AP diets
(mainly in the 4% AP diet), particularly due to fructose from AP. Indeed, AP is rich in
fructose and it was demonstrated—in humans—that fructose is primarily metabolized in
the small intestine [34], where it is an interesting source of energy for the enterocytes. As
the zootechnical performance at the end of post-weaning for the 2% AP piglets were similar
to those of 0% AP piglets and as the intestinal morphology results were intermediate and
statistically not different from those of 0% AP and 4% AP piglets, reducing the level of
incorporation of AP in the diet seems not appropriate concerning zootechnical performance
mainly due to a stunted growth at the beginning of the post-weaning period.

4.2. Scoring of Piglet’s Fecal Consistency and Excreted Pathogens

On the eighth post-weaning day, more pathogens tended to be detected in the feces of
piglets receiving AP (through the Rainbow kit), together with the presence of numerically
softer/liquid feces during the first two post-weaning weeks. It is known that healthy
individuals can live in equilibrium with pathogens without clinical symptoms as long as
there is equilibrium between the host and its entire microbiota [35]. On the one hand, the
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softer and liquid feces observed could be due to the pathogens [33], which can represent a
threat for the piglets’ health, leading to a potential use of antibiotics. On the other hand, we
cannot exclude the hypothesis that the softer feces can be due to the fiber composition of the
AP diets. Indeed, the water holding capacity of some fiber [36] and the possible abrasive
effect of large/coarse fiber [37] may affect the intestinal mucosa and the consistency of the
feces. This invites further unravelling the reasons why softer feces are observed with AP to
confirm or refute the risk of an increasing use of antibiotics with AP, which can compromise
the use of this ingredient as a weaning strategy. Under the good sanitary conditions offered
during the experiment, pathogens did not appear as a threat and were not the cause of poor
performance. However, it would be of great interest to test AP in large cohort to assess
the risk of dysbiosis with a 4% AP diet and confirm or refute the ability of AP to maintain
homeostasis or the absence of clinical symptoms.

4.3. Microbiota and SCFA in Feces and Cecum

Although some bacterial indicators on the 8 post-weaning day may appear less
favourable with AP (e.g., Enterobacteriaceae more abundant in 2% AP feces than 0%
AP feces or Lactobacillaceae less abundant with AP), several indicators point to a positive
effect of a 4% AP addition in the post-weaning diet.

Firstly, the richness of the microbiota in the feces seems better for the 4% AP diet for
this critical period (eighth post-weaning day), which is an important factor for health [38],
increasing ecological stability and resilience after a stress-related disturbance [39]. Further-
more, this higher α-diversity for the 4% AP group was clearly observed in the chyme and
on the mucosa of the caecum on the 35 post-weaning day.

Secondly, the second most abundant phylum in the feces for the 4% AP piglets on
the eighth post-weaning day was Bacteroidetes which can also be considered as positive,
seen their potential for microbial enrichment [40] or metabolism modulation for human
health [41]. In line with this high relative abundance of Bacteroidetes in feces of piglets from
the 4% AP diet on the 8 post-weaning day—reflecting the fermentation process at the end
of the large intestine—the Bacteroidetes were also highly present in the cecal mucosa on the
35 post-weaning day—as a result of the fermentation process at the beginning of the large
intestine. It should however be noted that in the cecal mucosa on the 35 post-weaning day,
the relative abundance of the Bacteroidetes were also high in the 0% group, as compared to
the 2% AP group, but the Bacteroidetes were the third phylum in feces of 0% AP and 2%
AP piglets, on the 8 post-weaning day. However, caution is required when interpreting
the results for Bacteroidetes because this phylum also includes bacteria that can become
problematic for health, as seen with Prevotella copri, acting in a beneficial or detrimental
manner depending on the context [42,43].

Thirdly, the higher abundance of Clostridia in the feces of the AP group on the eighth
post-weaning day further supports the beneficial effect of AP, seen their importance for the
maintenance of immune and gut homeostasis [44,45].

Fourthly, the higher relative abundance of the Ruminococcaceae in the feces of 4% AP
piglets compared to those of 0% AP and 2% AP piglets on the 28 post-weaning day, is in line
with a possible improved resistance/tolerance to pathogens [46]. In the cecal mucosa again,
both the 0% and 4% AP groups had the highest relative abundance of Ruminococcaceae
compared to the 2% AP group.

Lastly, although only a trend, the higher relative abundance of Proteobacteria in the
mucosa of the caecum of 0% AP piglets on the 35 post-weaning day together with the
lowest relative abundance of Firmicutes—compared to the AP supplemented piglets—may
indicate towards a state of microbial dysbiosis, as also observed in young layer chicks [47].

It is worthy to note that the AP treatment seemed to affect more the composition of
the microbiota of the mucosa than of the chyme and the composition of the microbiota in
the 2% AP group did overall seem to differ more from the 0% and 4% AP groups.

Remarkably, no differences in SCFA between the different groups were observed in
the feces on the 8 and 28 post-weaning days or in the caecum on the 35 post-weaning day.
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It is unclear why the differences in the diversity and composition of the microbiota seemed
not to be reflected in changes in the SCFA.

4.4. AP as a Weaning Strategy for Gut Health

Taking together the data on performance, intestinal morphology and microbiota, the
4% AP diet showed potential to use as a feed ingredient for the post-weaning period in
the experimental conditions applied, while the 2% AP diet seemed less interesting at the
beginning of the post-weaning. It is uncertain which component of the AP was beneficial
for the intestinal morphology and modulated the microbiota. AP used in the experiment
was fairly rich in fructose, leading to more reducing sugars in the AP diets. As fructose
may give energy to the small intestine [34] during the feed transition and was combined
with an extra oil in AP diets, it may have affected the gut morphology. In this way, using
a 4% AP diet during the post-weaning influenced positively the digestive process in the
small intestine. In addition, the literature shows that the profile in dietary fiber of AP offers
healthy components for the large intestine [1], amongst which pectin is known to exhibit
positive effects on gut health parameters such as immunomodulation [48] or microbiota
modulation [49], due to its impact on the digestive and fermentative processes [50]. How-
ever, the content of glucuronic acid and galacturonic acid in AP was rather low, which
leaves the question if the pectins (<1 g/100 g DM) or the oligosaccharides (1 g/100 g DM
of arabino-, xylo-, and galacto-oligosaccharides)—oligosaccharides that may also influence
the immune response [51]—played a prebiotic effect [52–54]. Other important bioactive
components of AP are the polyphenols; the AP used in the experiment seemed well en-
dowed with it compared to cultivars quantified in the literature—twice [55] to five times
more [11] than values found in the literature. In their review on polyphenols—gut micro-
biota and health-, Espin and colleagues [56] stated the emerging concept of 3P for gut health
(probiotic, prebiotic and polyphenols) that promotes polyphenols to the same biological
level of prebiotics. They explained the two-way interaction linking polyphenols and guts
microbiota. Polyphenols shape the microbiota—enhancing the presence and abundance of
bacteria beneficial for health—and microbiota catabolizes the polyphenols into metabolites
often more active and absorbed by the colon than native forms. In a rat experiment on
apple pectin and a polyphenol rich fraction of apple extract, Aprikian and colleagues [57]
concluded that their combination is more effective than their separate supplementation. We
support this hypothesis that AP exerts beneficial effects for health by its global matrix effect
(involving fructose, oligosaccharides and other prebiotic components, and polyphenols)
influencing in its entirety the digestive and the fermentative process in piglets.

The “gut health” principle consists of the equilibrium between the diet, the host (ep-
ithelium, mucus layer and gut-associated lymphoid tissue) and its microbiota (commensal
bacteria and transient bacteria, including pathogens) [33]. The AP diets still need to be
evaluated from a “host response” point of view to fully appreciate the effect of such a diet at
weaning. Indeed, many mechanisms related to the barrier properties of the gastrointestinal
tract are to be explored, such as permeability of the epithelium or interleukins and growth
factors secretion [25]. From the bacterial equilibrium observed in the study, referring to the
work of Spees and colleagues [44], a beneficial effect of the 4% AP diet can be expected on
some immune factors. Moreover, Sehm and colleagues [9] showed a beneficial effect of AP
on gut-associated lymphoid tissue by reducing its activity.

4.5. Emerging Concept from the Results

The nutrients in apple pomace may give a beneficial effect on the critical step of
piglet’s weaning due to its monosaccharides, fiber, and polyphenols content by improving
the energetic absorption—in the small intestine—and by modifying the gut microbiome.

At weaning, the digestive system of the piglet undergoes structural (intestinal ar-
chitecture) and functional (enzymatic baggage) changes. The infant intestinal structure
is replaced by a mature intestinal structure that is adapted to the new diet [15,24]. We
hypothesized that during this transition, the monosaccharides profile of apple pomace
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maintained an energetic absorption—despite the global energetic deficiency status of
piglet—by compensating the loss of the highly digestible carbohydrates of the milk.

Moreover, due to the weaning perturbations, the large intestine is potentially over-
loaded with readily fermentable nutrients—starch becoming a main fermentative substrate
for the microbiota instead of the non-starch polysaccharides [58]. By incorporating apple
pomace, the level of sugars in the diet progressively increased contrarily to the level of
starch that decreased and apple pomace appeared beneficial in this way, enabling a good
absorption of monosaccharides in the small intestine.

As a last identified consequence of adding apple pomace, the dietary fiber and polyphe-
nolic compounds [2,3]—known to interact with the microbiota and to have beneficial health
effect [56]—modulated the intestinal ecosystem so that the new balance resulted in healthy
piglets, at least in this small study.

5. Conclusions

AP, at a level of 4% of incorporation, had positive effects on piglet’s performance,
intestinal morphology and microbiota during the post-weaning period. A lower level
of inclusion of AP—set at 2%—did not appear sufficient to induce these changes. AP
constitutes a matrix of high interest for the feed sector due to its composition in dietary
fiber (including oligosaccharides), biomolecules beneficial for health (as polyphenols), and
probably also through its reduced sugars profile (fructose content). The results suggest
that AP could be used as a suitable weaning strategy for gut health although the impact of
the 4% AP diet on the gut epithelium and immune system need yet to be investigated. AP
needs also to be investigated in large cohort to better evaluate the bacterial load of 4% AP
diet in the context of the reduction of antibiotics in animal production and the phase-out of
zinc oxide in weaner diets.
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Author Contributions: Conceptualization, S.D. and N.E.; Formal analysis, S.D. and E.P.; Funding ac-
quisition, P.R.; Investigation, S.D.; Methodology, S.D., N.A., C.D. and M.-L.S.; Project administration,
P.R.; Resources, J.W.; Supervision, N.E.; Validation, P.R. and N.E.; Writing—original draft, S.D. and
N.E.; Writing—review and editing, V.D., S.G., E.F. and P.R. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by the WALLOON AGRICULTURAL RESEARCH CENTRE
(CRA-W, Gembloux, Belgium)—a part of the COPROPIG project (Moerman funds).

Institutional Review Board Statement: The study was approved by the ethical committee of the
University of Liège (ULiège, Liège, Belgium)—file n◦1823. The intervention was in compliance
with European (Directive 2010/63/EU) and Belgian (Royal Decree of the 29 May 2013) regulations
governing the protection of animals used for scientific purposes.

Informed Consent Statement: Not applicable.

Data Availability Statement: The datasets analyzed for this study can be found in the ENA database
(https://www.ebi.ac.uk/ena/browser/home, accessed on 30 June 2020) under the accession number
PRJEB38962.

Acknowledgments: The authors thank Martine Laitat (FARAH, ULiège) for her help in feces scor-
ing, Richard Agneessens (CRA-W) for the feed chemical analyses, DNA Vision and SCAR for the
collaboration, Maxence Didelez (CRA-W) for the experimental phase, the “pig team” of CRA-W and
all collaborators (CRA-W and Gbx-ABT) for the help the last day of the experiment.

Conflicts of Interest: The authors declare that there is no conflict of interest.

https://www.mdpi.com/2076-2607/9/3/572/s1
https://www.mdpi.com/2076-2607/9/3/572/s1
https://www.ebi.ac.uk/ena/browser/home


Microorganisms 2021, 9, 572 18 of 21

Appendix A

Figure A1. Principal Coordinate Analysis of beta diversity. (a) Weighted Unifrac distance for fecal samples on the
8 post-weaning day (p = 0.052); (b) Weighted Unifrac distance for fecal samples on the 28 post-weaning day (p = 0.069);
(c) Weighted Unifrac distance for chyme samples from caecum on the 35 post-weaning day (p = 0.244); (d) Weighted Unifrac
distance for mucosal samples form caecum on 35 post-weaning day (p = 0.054); triangle = 0%AP diet, circle = 2%AP diet,
square = 4%AP diet.
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Appendix B

Table A1. Relative abundance of family and genus of microbiota feces on day 8 post-weaning
influenced by the diets.

0% AP 2% AP 4% AP p-Value KW/FDR

Feces on day 8 post-weaning (family)

Coriobacteriaceae 1.6% 4.5% 2.5% 0.080/ns
Lactobacillaceae 45.5% 25.5% 23.1% 0.053/ns

Enterobacteriaceae 0.0% 0.1% 0.4% 0.020/ns

Feces on day 8 post-weaning (genus)

Dorea 1.3% a 0.2% b 0.7% ab 0.024/ns
Slackia 0.0% 0.1% 0.0% 0.039 1/ns

Ruminococcus 1.4% 0.6% 1.0% 0.049 1/ns
Catenibacterium 0.5% 0.7% 4.3% 0.037 1/ns

a, b values assigned a different letter within a row are statistically different; 0% AP, control diet (n = 5); 2%
AP, diet containing 2% dried apple pomace (n = 7); 4% AP, diet containing 4% dried apple pomace (n = 6);
KW/FDR, Kruskal-Wallis/Benjamini-Hochberg false discovery rate; ns, not significant. 1 the result of the multiple
comparisons Kruskal-Wallis test performed was not significant.
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