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Abstract. With the rapid economic development in recent 
years, China is facing a great challenge due to heavy metal 
pollution. The heavy metals may enter the human body through 
ingestion of aqua products to cause great health risks. In the 
present study, the inhibitory effects of luteolin on the combined 
toxicity of multi-heavy metals (including zinc, manganese, 
lead, copper, cadmium, mercury, chromium and nickel) were 
investigated in HL7702 hepatocyte cells. An MTT assay 
demonstrated that 20 µM luteolin significantly alleviated the 
multi-heavy metal mixture-induced cell death and morpho-
logical changes. Furthermore, 20 µM luteolin significantly 
inhibited multi-heavy metal mixture-induced reactive oxygen 
species (ROS) generation, lipid peroxidation (malondialdehyde 
content) and caused a decrease in adenosine triphosphate levels 
in HL7702 cells. A JC-1 staining assay indicated that 20 µM 
luteolin inhibited the mitochondrial membrane potential-
reducing effect of the multi-heavy metal mixture. Apoptotic 
assays revealed that the multi-heavy metal mixture induced 
HL7702 cell apoptosis in a dose-dependent manner, which 
was significantly inhibited by 20 µM luteolin. Western blot 

analysis indicated that addition of luteolin to the multi‑heavy 
metal mixture significantly alleviated cytochrome c release 
from the mitochondria into the cytosol. In addition, 20 µM 
luteolin had a significant inhibitory effect on multi-heavy 
metal mixture-induced cleavage of caspase-9, caspase-3 and 
poly(adenosine diphosphate-ribose) polymerase-1 protein. 
Immunofluorescence staining demonstrated that addition of 
luteolin significantly alleviated caspase-3 cleavage induced by 
the multi-heavy metal mixture. The present results suggested 
luteolin exerts its inhibitory effects of on multi-heavy metal 
mixture induced cell apoptosis through downregulation of the 
ROS-activated mitochondrial pathway.

Introduction

Rapid industrialization in China had certain drawbacks, and 
it is now facing a great challenge in heavy metal pollution. 
Processes of mining, smelting, industrial production, pesticide 
application as well as oil and other fuel combustion will inevi-
tably result in widespread heavy metal pollution. China's main 
streams are suffering from varying degrees of heavy metal 
pollution (1-6). The various heavy metal elements in contami-
nated water may be accumulated in aquatic weeds, plankton 
and aquatic animals and finally enter the human body through 
various branches of the food chain (7).

Ningbo, an eastern coastal city in China, has >7.8 million 
inhabitants. In this area, the preferred daily diet mostly 
comprises aquatic products, including fish, shrimp, crab and 
shellfish. It is noteworthy that in recent years, the coastal waters 
and aqua products in the Ningbo area have been suffering from 
multi-heavy metal pollution, which mainly includes pollu-
tion with zinc, manganese, lead, copper, cadmium, mercury, 
chromium and nickel (8-10). Long-term consumption of aqua 
products may result in the accumulation of heavy metals and 
further human health hazards.

Multiple heavy metal elements may enter the human body 
simultaneously and the combined toxicity is complex due to 
their interaction. While the toxic molecular mechanisms of 
different heavy metals are not identical, they have certain 
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effects in common. First, most heavy metal ions freely pass 
through the cell membrane and directly react with intracellular 
organelles and biological macromolecules, interfering with the 
intracellular calcium homeostasis and transport system (11). 
Furthermore, most heavy metals cause excessive generation 
of reactive oxygen species (ROS) and lead to organelle and 
DNA damage (12-15). These common points may be useful in 
searching for an effective antidote to antagonize the combined 
toxicity induced by multiple heavy metals.

Luteolin, a common flavonoid, occurs in broccoli, carrots, 
celery, cauliflower and peppers. Studies have confirmed that 
luteolin possesses important pharmacological properties, 
including antimicrobial, antiviral, anti-allergic, antioxidant, 
anti-inflammatory and anticancer effects (16-21). Other studies 
demonstrated that luteolin has an inhibitory effect on the 
toxicity induced by heavy metals. Zhou et al (22) suggested 
that luteolin protected SH-SY5Y cells against zinc-induced, 
ROS-mediated apoptosis. Liu et al (23) reported that luteolin 
regulated the redox imbalance, preserved mitochondrial func-
tion and depressed the caspase family-associated apoptosis 
induced by copper. Excessive ROS generation is associated 
with mitochondrial damage, while luteolin was reported to 
protect mitochondrial function through depression of ROS 
generation (24). In addition to zinc and copper, most other 
heavy metals also induce excessive ROS generation (25-30). 
Therefore, luteolin may be a potential effective antidote to 
prevent the combined toxicity induced by multiple heavy 
metals.

Therefore, the inhibitory effects of luteolin on the 
combined toxicity induced in HL7702 cells by a multi-heavy 
metal mixture, including eight common contamination metals 
identified in aqua products in the Ningbo area, were assessed 
and the underlying molecular mechanisms were investigated.

Materials and methods

Materials and reagents. (CH3COO)2Pb·3H2O, CdCl2·2.5H2O, 
NiCl2·6H2O, MnCl2·4H2O, ZnSO4·7H2O, CuSO4·5H2O and 
K2Cr2O7 (analytical grades, 99.0-99.8%) were all purchased 
from Sinopharm Chemical Reagent Co., Ltd. (Beijing, China). 
CH3ClHg (analytical grade, ≥99.0%) was purchased from 
Dr E hrenstorfer GmbH (Augsburg, Germany). MTT was 
supplied by Amresco® (Solon, OH, USA). Luteolin (analytical 
grades, ≥99.0%) was obtained from Sigma‑Aldrich (St. Louis, 
MO, USA). Bovine serum albumin (BSA) was from Sangon 
Biotech (Shanghai, China). The assay kits for the detection 
of lipid peroxidation (cat. no. S0131), ROS (cat. no. S0033), 
adenosine triphosphate (ATP; cat. no. S0026) and total protein 
were obtained from Beyotime Institute of Biotechnology 
(Shanghai, China). The mitochondrial membrane potential 
assay kit with JC-1 (cat. no. M8650) and the cell mitochon-
dria isolation kit (cat. no.  SM0020) were obtained from 
Solarbio Life Sciences (Beijing, China). The Alexa Fluor® 488 
Annexin V/Dead Cell Apoptosis kit (cat. no. V13241) was 
from Invitrogen (Thermo Fisher Scientific, Inc., Waltham, 
MA, USA). Antibodies B-cell lymphoma  2 (Bcl-2; cat. 
no. 2870), Bcl-2-associated X protein (Bax; cat. no. 2772), 
apoptotic protease activating factor 1 (Apaf1; cat. no. 8969), 
cleaved caspase-9 (cat. no. 7237), caspase-3 (cat. no. 9665), 
cleaved caspase-3 (Asp175; cat. no. 9661), cleaved PARP-1 

(Asp214; cat. no. 9544), used for western blot analysis in the 
present study were obtained from Cell Signaling Technology, 
Inc. (Danvers, MA, USA). Poly(adenosine diphosphate-ribose) 
polymerase-1  (PARP-1; cat. no.  sc-1562), GAPDH (cat. 
no. sc-25778), cytochrome c (cat. no. sc-13561), pro-caspase-9 
(cat. no.  sc-7885) were all purchased from Santa Cruz 
Biotechnology, Inc. (Dallas, TX, USA). Goat anti-mouse IgG 
(cat. no. BA1050) and goat anti-rabbit IgG (cat. no. BA1054) 
were provided by the Boster Biological Technology (Wuhan, 
China). The HL7702 cell line was received from the Cell Bank 
of the Chinese Academy of Sciences (Shanghai, China).

Preparation of heavy metal mixture. The multi-heavy 
metal mixture, which included copper, mercury, cadmium, 
zinc, lead, manganese, nickel and chromium was prepared 
according to the proportions of daily intake of each metal 
through aqua product consumption by an adult in the Ningbo 
area (Table I) (10,31). The sum of the concentrations of the 
eight heavy metal elements was used as the final concentration 
of the multi-heavy metal mixture.

Cell culture. HL7702 hepatocyte cells were maintained in 
RPMI-1640 medium (cat. no. SH30809.01; GE Healthcare Life 
Sciences, Little Chalfont, UK) containing 1% penicillin‑strep-
tomycin and 10% fetal bovine serum from Tianhang Biological 
Technology (Huzhou, China) under standard culture condi-
tions (37˚C; 95% humidified air and 5% CO2).

MTT assay. HL7702 cells were seeded into a 96-well plate at 
a density of 10,000 cells/well in 200 µl medium and cultured 
for 48 h. The cells were then treated with multi-heavy metal 
mixture (concentrations of 0, 16.73, 19.30, 21.87, 24.44 or 
27.01 mg/l) with or without luteolin (20 µM). After 12 h of 
incubation, 10 µl MTT solution (3.5 mg/ml) mixed with 90 µl 
phenol red-free culture medium was added into each well, 
followed by further incubation in the dark for 4 h. After the 
culture medium was discarded, 150 µl dimethyl sulfoxide was 
added to each well. The plate was incubated on an incubator 

Table I. Stock solution of the multi-heavy metal mixture pre-
pared according to the proportions of daily consumption of 
each metal element through aqua products by an adult in the 
Ningbo area.

		C  onsumption through
Heavy metal	C oncentration in	 aqua products by a
element	 stock solution (mg/l)	 70 kg adult (mg/day)

Pb	 1.042	 0.012
Cd	 2.085	 0.024
Hg	 0.174	 0.002
Cu	 48.820	 0.562
Zn	 167.047	 1.923
Mn	 27.016	 0.311
Cr	 6.428	 0.074
Ni	 4.691	 0.054
Total	 257.303	 2.962
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shaker at room temperature for 15 min. The optical density 
was measured at a wavelength of 492 nm using a microplate 
reader.

Lipid peroxidation detection. HL7702 cells were seeded into 
a 6-well plate at a density of 250,000 cells/well in 2.5 ml 
medium and cultured for 48 h. The cells were then treated 
with multi-heavy metal mixture (0, 16.73, 19.30, 21.87, 24.44 
or 27.01 mg/l) with or without luteolin (20 µM). After 12 h 
of incubation, the cells were harvested and then lysed by 
adding 120 µl Nonidet P-40 lysis buffer to each well. The 
lysate was centrifuged at 1,200 x g for 15 min at 4˚C. The 
protein concentration was determined using the bicinchoninic 
acid method. Supernatant (100 µl) was mixed with 200 µl 
malondialdehyde (MDA) detection buffer and then boiled for 
15 min. After cooling to room temperature, the mixture was 
centrifuged at 1,000 x g for 15 min. The supernatant was then 
transferred into a 96-well plate (200 µl/well) and the amount 
of lipid peroxidation was detected at a wavelength of 532 nm 
by a microplate reader. The MDA levels were normalized to 
the protein concentration.

ROS detection. Intracellular ROS levels were determined 
using a ROS detection kit. HL7702 cells were treated with 
multi-heavy metal mixture with or without luteolin as for the 
MTT assay in a black 96-well plate. The cells were then gently 
washed 2 times with serum-free medium. The cells were then 
incubated with 200 µl serum-free medium containing 10 µM 
H2DCFDA at 37˚C for 35 min. The fluorescence distribution 
of each well was detected by a fluorospectrophotometer (exci-
tation wavelength, 488 nm; emission wavelength, 535 nm).

ATP detection. HL7702 cells were treated with multi-heavy 
metal mixture and luteolin as for the lipid peroxidation assay. 
Subsequently, they were gently washed 2 times with 4˚C sterile 
PBS and lysed by adding 200 µl Nonidet P-40 lysis buffer. The 
lysate was centrifuged at 12,000 x g for 5 min at 4˚C. A 20-µl 
aliquot of the supernatant was transferred into a dedicated 
centrifuge tube containing 100 µl ATP detection buffer at room 
temperature. ATP standard solutions (0, 0.5, 1, 5, 10, 50 and 
100 µM) were used to obtain a standard curve. ATP levels were 
detected by measurement of the relative light unit value with a 
luminometer and were normalized to the protein concentration.

JC-1 staining assay. HL7702  cells were treated with 
multi‑heavy metal mixture with or without luteolin as for the 
MTT assay in a black 96-well plate. Subsequently, 100 µl phenol 
red-free culture medium mixed with 100 µl JC-1 staining solu-
tion was added into each well and further incubated in the dark 
at 37˚C for 20 min. After gently washing the cells 2 times with 
200 µl JC-1 staining wash buffer (4˚C), 200 µl phenol red-free 
culture medium was added into each well. The fluorescence of 
each well was observed under a fluorescence microscope and 
images were captured.

Apoptosis detection. Apoptosis was detected using the Alexa 
Fluor® 488 Annexin V/Dead Cell Apoptosis kit. HL7702 cells 
were treated with multi-heavy metal mixture and luteolin as 
for the lipid peroxidation assay. The cells were then harvested 
by EDTA-free trypsinization provided by Thermo Fisher 
Scientific, Inc. Following centrifugation at 67 x g for 5 min 
at room temperature, the cells were resuspended in 500 µl 
Annexin binding buffer containing 1 µl propidium iodide 
dye and 5 µl Alexa Fluor® 488-conjugated Annexin V. The 
single‑cell suspension was further incubated in the dark for 
30 min and apoptosis was then monitored by flow cytometry.

Western blot analysis. HL7702  cells were seeded into 
20x100 mm culture dishes at a density of 1,200,000 cells/dish 
in 10 ml medium and cultured for 48 h. The cells were then 
treated as described above and then gently washed 2 times 
with PBS at 4˚C

For whole-cell protein preparation, 500 µl Nonidet P-40 
lysis buffer containing 10 µM phenylmethane sulfonyl fluo-
ride was added into each dish to lyse cells on ice for 10 min. 
The lysate was filled into Eppendorf tubes and centrifuged at 
15,000 x g for 3 min at 4˚C. Of the supernatant, 350 µl was 
used for whole-cell protein detection.

To prepare cytosolic protein, a cell mitochondria isolation 
kit was used according to manufacturer's instructions and 
80 µl supernatant was used for the protein detection.

Protein concentrations were determined by the BCA 
method. Supernatant was mixed with 5X loading buffer (4:1 in 
volume) and boiled for 5 min.

Polyacrylamide stacking (6%) gels and resolving (10%) gels 
were used to separate proteins of different molecular weights. 
Then the proteins were transferred onto PVDF membranes, 

Figure 1. Morphological changes of HL7702 hepatocyte cells after treatment with multi-heavy metal mixture alone or in combination with luteolin. 
Magnification, x40. Mixture, multi-heavy metal mixture.
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blocked in 5% skimmed milk for 3 h at room temperature 
and incubated for 12 h at 4˚C with primary antibodies. After 
that, membranes were probed with secondary antibodies at 
room temperature for 1.5 h. Immunoblotting was performed 
for Bcl-2, Bax, Apaf1, cytochrome c, pro-caspase-9, cleaved 
caspase-9, caspase-3, cleaved caspase-3 (Asp175), PARP-1, 
cleaved PARP-1 (Asp214) and GAPDH at 1:1,000 dilution. 
The Tanon imaging processing system (Tanon Science and 
Technology Co., Ltd., Shanghai, China) was used for processing 
and evaluation of the western blots by ECL solution.

Immunofluorescence staining for cleaved caspase-3. HL7702 
cells (n=50,000) were seeded onto a glass coverslip and 
maintained under standard culture conditions for 48 h. The 
cells were treated with multi-heavy metal mixture and luteolin 
as described above. The glass coverslips were successively 
dipped in PBS (5 min, 2 times), 4% paraformaldehyde (10 min), 
PBS containing Tween-20 (PBST; 5  min, 2  times), 0.1% 
Triton X-100 (10 min), PBST (5 min, 2 times), 1% BSA-TBST 
blocking buffer (2  h), 1% BSA-TBST solution containing 
cleaved caspase-3 rabbit antibody (2 h; 1:1,000 dilution at 
room temperature), PBST (10 min, 2 times), 1% BSA-TBST 
solution containing goat-anti-rabbit antibody marked with 
Alexa Fluor® 488 (2 h; 1:2,000 dilution at room temperature) 
and PBST (10 min, 2 times). The cell nuclei were stained with 
10 µM DAPI. The immunofluorescence staining of cleaved 
caspase-3 was captured by a fluorescence microscope.

Statistical analysis. Each experiment was performed three or 
more times. Differences within groups were analyzed using 
one-way analysis of variance and a post hoc least significant 
difference test with SPSS 13.0 (SPSS, Inc., Chicago, IL, USA). 
P≤0.05 was considered to indicate a statistically significant 
difference.

Results

Cell viability and morphological changes. Treatment with 
multi-heavy metal mixture alone significantly reduced the 
cell viability and induced cell morphological changes in a 
dose-dependent manner, while addition of 20 µM luteolin 
significantly inhibited these toxic effects induced by the 
multi‑heavy metal mixture (Figs. 1 and 2).

ROS, lipid peroxidation and ATP level changes. The 
multi-heavy metal mixture induced intracellular ROS genera-
tion  (Fig. 3A and B) and lipid peroxidation (Fig. 3C) in a 
dose-dependent manner, and decreased the intracellular ATP 
content (Fig. 3D). Addition of 20 µM luteolin significantly 
inhibited the multi-heavy metal mixture-induced ROS 
generation and lipid peroxidation as well as the decrease of 
intracellular ATP.

Figure 2. Viability of cells after treatment with multi-heavy metal mixture 
alone or in combination with luteolin. *P<0.05, ***P<0.001, mixture alone 
compared with mixture + luteolin; ++P<0.01, +++P<0.001, compared with 
control - (without any treatment); ##P<0.01, ###P<0.001, compared with con-
trol + 20 µM luteolin. Mixture, multi-heavy metal mixture.

Figure 3. (A) ROS levels, (B) immunofluorescence images of ROS (magni-
fication, x40), (C) MDA content and (D) ATP levels of cells treated with 
multi-heavy metal mixture alone or in combination with luteolin. *P<0.05, 
**P<0.01, ***P<0.001, mixture alone compared with mixture  +  luteolin; 
++P<0.01, +++P<0.001, compared with control  -  (without any treatment); 
##P<0.01, ###P<0.001, compared with control + 20 µM luteolin. Mixture, 
multi-heavy metal mixture; ROS, reactive oxygen species; MDA malondial-
dehyde; ATP, adenosine triphosphate.
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Mitochondrial membrane potential changes. With the 
increase in the multi-heavy metal mixture concentration, the 
mitochondrial membrane potential decreased gradually, while 
20 µM luteolin attenuated these changes (Fig. 4).

Apoptotic analysis. Multi-heavy metal mixture induced 
HL7702 cell apoptosis in a dose-dependent manner, while 
20 µM luteolin inhibited this effect (Fig. 5).

Effects on mitochondrial apoptosis-associated signaling 
proteins. Addition of 20 µM luteolin inhibited the multi-heavy 

metal mixture-induced increase of the Bax/Bcl-2 ratio in the 
cells. Furthermore, 20 µM luteolin significantly inhibited 
the multi-heavy metal mixture-induced increases of cleaved 
caspase-9, cleaved caspase-3 and cleaved PARP-1 protein. In 
addition, 20 µM luteolin significantly alleviated the multi-
heavy metal mixture-induced cytochrome c release from the 
mitochondria into the cytosol (Fig. 6).

Immunofluorescence staining results in cleaved caspase-3. 
Immunofluorescence staining revealed that at higher doses, 
multi-heavy metal mixture treatment alone induced significant 

Figure 4. Mitochondrial membrane potential changes after cells were treated with multi-heavy metal mixture alone or in combination with luteolin. 
Mitochondria with high potential could be stained and vice versa. Magnification, x400. Mixture, multi-heavy metal mixture.

Figure 5. Apoptosis analysis after HL7702 cells were treated with multi-heavy metal mixture alone or in combination with luteolin. Cells were analyzed by 
flow cytometry after double-staining with Alexa Fluor® 488 Annexin V (x-axis) and propidium iodide (y-axis). *P<0.05, **P<0.01, mixture alone compared 
with mixture + luteolin; +P<0.05, ++P<0.01, +++P<0.001, compared with control - (without any treatment); #P<0.05, ###P<0.001, compared with control + 20 µM 
luteolin. Mixture, multi-heavy metal mixture; Q, quadrant.
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caspase-3 cleavage (green color) in HL7702 cells, and addition 
of 20 µM luteolin inhibited this effect (Fig. 7).

Discussion

The liver is an important multifunctional organ performing 
detoxification and metabolism of xenobiotics (32), substance 
synthesis and metabolic balancing of nutrients. In a previous 
study by our group, a MTT assay was used to screen various 
antioxidant chemicals for their protective effects and identified 
that 20 µM luteolin significantly inhibited the cytotoxic effects 
if multi-heavy metal mixture in HL7702 cells. Therefore, 
HL7702 hepatocytes were used in the present study to inves-
tigate the combined toxicity of multi-heavy metal mixture 
and the inhibitory effects of luteolin as well as the underlying 
molecular mechanisms.

Normally, ROS generation and quenching are in a dynamic 
balance state due to the intracellular antioxidant system. 
Certain harmful extracellular factors may break this balance, 

resulting in excessive ROS generation beyond the cell scav-
enging ability to then induce organelle damage, abnormal 
expression of proteins or eventually cell death (33-35). Studies 
have demonstrated that most heavy metal ions cause excessive 
intracellular ROS generation (12,22,36,37). The present results 
indicated that the multi-heavy metal mixture induced intracel-
lular ROS generation in a dose-dependent manner, while the 
antioxidant luteolin had a significant quenching effect on this 
ROS generation. Lipid peroxidation is another indicator of cell 
damage from oxidative stress. Excessive ROS released from 
the mitochondria into the cytosol may induce cellular lipid 
peroxidation (38). The cellular MDA content is widely used 
as an index of lipid peroxidation levels. In the present study, 
luteolin was demonstrated to significantly prevent multi-heavy 
metal mixture-induced lipid peroxidation.

As an important energy molecule, ATP participates in 
most intracellular biogenic activities. The intracellular ATP 
levels decline once cells undergo apoptosis, necrosis or 
encounter adverse factors. The ATP detection results of the 

Figure 6. Mitochondrial apoptosis-associated signaling protein expression after HL7702 cells were treated with multi-heavy metal mixture alone or combined 
with luteolin. Mixture, multi-heavy metal mixture; Bcl-2, B-cell lymphoma 2; Bax, Bcl-2-associated X protein; Cyto c, cytochrome c; PARP-1, poly(adenosine 
diphosphate-ribose) polymerase-1; Apaf1, apoptotic protease activating factor 1.
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present study suggested that 20 µM luteolin significantly 
inhibited the multi-heavy metal mixture-induced effect on 
decreasing ATP levels. Excessive ROS and decreased ATP 
levels indicate impaired mitochondrial function  (39-42). 
Mitochondrial JC-1 staining may be used to detect changes 
in the mitochondrial membrane potential. Under normal 
conditions, the JC-1 monomer aggregates in the mitochondrial 
matrix to form polymer J-aggregates (red color). Once the 
mitochondrial membrane potential decreases, JC-1 monomer 
cannot aggregate in the mitochondrial matrix, which results in 
less or no polymer J-aggregate formation (less or no red color). 
With increasing multi-heavy metal mixture concentration, the 
mitochondrial membrane potential gradually decreased, while 
20 µM luteolin significantly attenuated this change.

The simultaneous decrease of intracellular ATP levels 
and mitochondrial membrane potential often accompanies 
cell apoptosis. Apoptosis is an initiative action to implement 
programmed cell death  (43), which is strictly controlled 
by multiple genes, including the protein families of Bcl-2 
and caspases, as well as the c-myc oncogene and P53 tumor 
suppressor gene  (44-46). The death receptor pathways, 
including membrane receptor, cytochrome  c and caspase 
pathways, may be activated by a series of physiological and 
pathological signals (47,48). In the present study, apoptosis was 
monitored by flow cytometry. The results indicated that the 
multi-heavy metal mixture induced HL7702 cell apoptosis in 
a dose-dependent manner, which was significantly inhibited 
by 20 µM luteolin.

Bcl-2 and Bax are proteins belonging to the Bcl-2 family 
and control the mitochondrial membrane permeability to 
regulate the release of cytochrome c (45). Bax upregulates the 
permeability of the mitochondrial membrane accompanied 
with the release of cytochrome c from the mitochondria into the 
cytosol, while Bcl-2 has the opposite role (45,49). Cytochrome c 
in the cytosol activates caspase family proteins and forms the 
cytochrome c/Apaf1/caspase-9 apoptosome, which then leads 
to apoptosis (50). In the present study, mitochondrial apoptosis 
pathway-associated signal protein expression was detected by 
western blot analysis. The results suggest that treatment with the 
multi-heavy metal mixture led to a significant upregulation of 
the Bax/Bcl-2 ratio, as well as the levels of Apaf1, and cleavage 

of caspase-9, caspase-3 and PARP-1. The immunofluorescence 
staining results in the intact HL7702 cells confirmed that 
the mitochondrial apoptosis pathway was activated (positive 
staining for cleaved caspase-3). Furthermore, these results also 
suggested that 20 µM luteolin attenuated multi-heavy metal 
mixture-induced changes in signaling proteins of mitochon-
drial apoptosis pathways.

Therefore, the potential underlying molecular mechanisms 
of multi-heavy metal mixture-induced cytotoxicity may be 
summarized as follows: At first, the heavy metal ions enter 
the cells and induce intracellular ROS generation and mito-
chondrial damage. Subsequently, the permeability of the 
mitochondrial membrane is upregulated by the Bax protein, 
which leads to mitochondrial cytochrome c release from the 
mitochondria into the cytosol and subsequent formation of 
the apoptosome. The apoptosome initiates the cascades of 
caspase-3 and PARP-1 cleavage, and eventually cell apop-
tosis. Luteolin inhibited multi-heavy metal mixture-induced 
apoptosis by quenching the excessive ROS and further by 
blocking the oxidative stress-mediated mitochondrial apop-
tosis pathway.

In conclusion, the present study demonstrated that the 
multi-heavy metal mixture containing eight common metals 
prepared according to the proportions in which daily intake 
of each metal occurs through aqua product consumption by an 
adult in the Ningbo area induced oxidative stress injury and 
mitochondrial damage in HL7702 cells. Luteolin protected 
HL7702 cells from multi-heavy metal mixture-induced 
toxicity through downregulation of the ROS-mediated mito-
chondrial apoptosis pathway. Luteolin may be beneficial 
to prevent the multi-heavy metal pollution-induced health 
hazards arising from long-term aqua product consumption. 
However, the inhibitory effect of luteolin on the combined 
toxicity of multi‑heavy metals was only evaluated by in vitro 
experiments in the present study. A further in vivo study will 
be required to verify the above in vitro experimental results.
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