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Abstract: A semi-parametric econometric model is used to study the relationship between 

malaria cases and climatic factors in 25 African countries. Results show that a marginal 

change in temperature and precipitation levels would lead to a significant change in the 

number of malaria cases for most countries by the end of the century. Consistent with the 

existing biophysical malaria model results, the projected effects of climate change are 

mixed. Our model projects that some countries will see an increase in malaria cases but 

others will see a decrease. We estimate projected malaria inpatient and outpatient treatment 

costs as a proportion of annual 2000 health expenditures per 1,000 people. We found that 

even under minimal climate change scenario, some countries may see their inpatient 

treatment cost of malaria increase more than 20%. 

Keywords malaria and climate change; semi-parametric modeling; cost of malaria 

treatment  

 

  

OPEN ACCESS 

mailto:brucemccarl@gmail.com
mailto:aklesso@msu.edu


Int. J. Environ. Res. Public Health 2011, 8         

 

914 

1. Introduction 

Vector-borne diseases are among the diseases that have been linked with climate change [1]. 

Malaria is probably the deadliest climate sensitive vector-borne disease [2]. In 2008, globally there 

were an estimated 243 million malaria cases with 863,000 deaths. 89% of the reported deaths were in 

Africa. Most of the deaths were among children under 5 years’ old and pregnant women. The annual 

economic costs of malaria in Africa in terms of foregone production have been estimated to be about 

US $12 billion [3]. However, that estimate is likely low as it neglects costs of treatment, loss of life, 

and lifelong disabilities that often result from childhood infections. Goodman et al. [4] estimates that 

the malaria burden in Africa is about 10% of the region’s total disease burden in terms of disability 

adjusted life years (DALY). HIV/AIDS is also a factor as it weakens the immune system increasing 

vulnerability to malaria infection and there are an estimated 25 million infected people. Together, 

HIV/AIDS and malaria cause more than 4 million deaths per year [5]. Consequently malaria is a 

critical public health issue in Africa. 

A number of researchers have investigated the relationship between malaria and climatic factors as 

reviewed in [1] and [6]. Zhou et al. [7] and Wandiga et al. [8] work on African highlands and indicate 

that climatic factors such as temperature and precipitation play an important role in explaining the 

variation in malaria cases but these studies were conducted on a small scale (in a specific region of a 

country) creating a need for larger scale investigation. The role of climate change in the increase of 

malaria incidence in African highlands has particularly been controversial [9,10] but it is difficult  

to totally deny the fact that climatic factors play an important role on malaria incidence [11,12].  

Most of the economic analyses have been oriented toward cost effectiveness analysis of anti-malaria 

drugs [3,13,14] and available treatment options [4]. Goodman et al. [15] reviewed literature on the 

measurement of the economic impact of malaria in sub-Saharan Africa and concluded that the few 

available studies are less reliable and there is a need of more sophisticated research in the area. A 

number of biophysical research models [16-18] have been developed but do not include economic 

impact assessment.  

This paper reports on a larger scale econometric study of the relationship between climatic factors 

and reported malaria cases using data from 25 African countries from 1990 to 2000. In turn we 

examine the potential effect of climate change using IPCC temperature and precipitation projections. 

This research differs from the existing literature in several noteworthy ways; (1) many relevant  

socio-economic factors are accounted for in modeling malaria-climate relationship in order to separate 

socio-economic factors impact from pure climate factors impact, (2) a semi-parametric specification is 

estimated and tested that does not assume a priori knowledge of the functional relationship between 

climatic factors and malaria prevalence, (3) more African countries are included in the study and (4) a 

model based projection of the malaria treatment cost increase/decrease due to climate change by the 

end of the century is given. 

2. Malaria and Its Link to Climate: An Overview 

Malaria is transmitted by mosquitos carrying malaria parasites. Malaria’s distribution depends on 

the availability and productivity of mosquito breeding habitat. The availability of the breeding habitat 

is related to stagnant water that remains after rainfall while productivity of the breeding  
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habitat is a function of the ambient temperature [12,19]. Rainfall rises the abundance of the breeding 

habitat while higher temperature increases the malaria risk by shortening the malaria parasites 

development-cycle [20]. The average life span of a mosquito carrying malaria parasites is about  

21 days. It takes 19 days for the malaria parasite to mature inside the mosquito at 22 degrees Celsius 

and 8 days to mature at 30 degrees Celsius. Apart from the African highlands and the farthest southern 

and northern African regions, the annual mean temperature on the African continent is above  

25 degrees Celsius [19]. Therefore, the projected increase in mean temperature of about 1.4 to  

5.8 degrees Celsius under climate change [21] may result in a faster parasite development and a 

potentially higher incidence of malaria. 

Recent studies have attempted to estimate the impact of climate change on malaria prevalence.  

Ebi et al. [22] studied climate suitability for stable malaria transmission in Zimbabwe under various 

climate change scenarios based on MARA/ARMA (Mapping Malaria Risk in Africa/Atlas du Risque 

de la Malaria en Afrique) decision rules. They indicate that changes in temperature and precipitation 

could alter the geographic distribution of malaria in Zimbabwe, with previously unsuitable regions 

with dense human populations becoming suitable. Thomson et al. [23] investigated the effect of 

rainfall and sea surface temperature on malaria incidence in Botswana finding that variability in 

rainfall and sea temperature accounts for more than two-thirds of the inter-annual variability in malaria 

incidence. Ndiaye et al. [24] studied relationships between climate variability and malaria mortality in 

a small region of Senegal from 1984 to 1996. They found that 89.1% of the malaria mortality was 

observed in August and December which are relatively rainy and warmer months. They found high 

correlation between rainfall variability and malaria mortality but did not find significant correlation 

with temperature and humidity variability. Jaenisch and Patz [25] find that malaria prevalence is 

sensitive to short-term fluctuations in temperature and rainfalls in a way that extreme precipitation 

events could wash away anopheles mosquito larvae from breeding sites and lead to reduced incidence. 

This argument means that the relationship between malaria cases and climatic factors is of a nonlinear 

nature and using linear functions to study such relationship will be misleading. Wandiga et al. [8] 

found significant correlation between malaria cases and climatic factors in Uganda but implicitly 

assumed a linear relationship [25]. Zhou et al. [7] pursued a nonlinear relationship study and found 

that climatic factors were the driving forces behind malaria’s resurgence in highlands of Africa 

explaining 65 to 81 percent of the variation in number of cases. They also found a statistically 

significant synergy effect between temperature and precipitation in determining the number of malaria 

cases in all the regions studied.  

The study in this paper builds on these previous studies to improve our understanding of the 

climate-malaria relationship and the potential economic consequences from climate change. We 

employ socio-economic variables to study how they might affect malaria prevalence along with 

temperature and precipitation. Some of these variables may exhibit linear relationships while others 

might involve nonlinearities. To accommodate this we use semi-parametric methods that allow 

nonlinearity without assuming a priori knowledge of the functional forms governing the  

process [10,26-28]. Also, semi-parametric methods offer a way to test the validity of the non-linear 

relationship between climate and malaria prevalence claimed in previous literature [7,23,25] using a 

nonparametric statistical test [27]. 
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To carry out this study we will examine malaria incidence in 25 African countries for which data 

were available (Algeria, Benin, Botswana, Burkina, Burundi, Central African Republic, Chad, Cote 

D’Ivoire, Djibouti, Egypt, Ethiopia, Ghana, Guinea, Malawi, Mali, Mauritania, Morocco, Niger, 

Rwanda, South Africa, Sudan, Togo, Uganda, Tanzania, Zimbabwe).To do this we use the World 

Health Organization (WHO) data on disease incidence from 1990 to 2000 plus associated temperature 

and precipitation data while controlling for socio-economic confounding factors. Several African 

countries do not regularly report their national malaria incidence data to the WHO and those with 

missing data and outliers were not included. 

3. Model Specifications 

The basic data set is in the form of a panel with repeated observations at multiple sites. To carry out 

the statistical analysis a semi-parametric panel model is specified and estimated [28-30]. Such a model 

allows us to simultaneously handle nonlinearity in the relationships along with the effects of countries 

and time (years). Pooling the data across countries and years allows us to capture the likely impact that 

we might expect to see in a longer, but unavailable, time series for the individual countries. The 

estimated coefficients give information on the relationship between observed malaria cases, 

temperature and precipitation. The theoretical model follows the analysis in Li and Racine as well as 

Tseng et al. [28,31] and is specified as follows: 

                      ,        and            (1) 

where     is the natural log of the number of reported malaria cases per 1,000 people in country   at 

time period        is a vector of climate variables that includes temperature, precipitation and a 

measure of climate variability;     is a vector of socio-economic control variables that includes 

population density, per capita gross domestic product, inequality index, per capita healthcare 

expenditure and number of hospital beds per 1,000 people;    are unobserved individual country 

effects and     is an idiosyncratic error term. The function  , the coefficients β and the unobserved 

country effects    are all parameters to be estimated. Note that climate variables are assumed to affect 

the number of malaria cases per 1,000 people through an unknown function   to be estimated while the 

socio-economic variables affect malaria cases linearly. 

4. Model Estimation 

The estimation method follows Robinson’s [32] two step estimation procedure and is as follows: 

Step1: Express the conditional expectation of malaria cases per 1,000 people       with respect to 

the climate variables (   ) as follows: 

                                   (2) 

where the nonlinear variables     are assumed to be uncorrelated with the individual country effects 

and the idiosyncratic error terms. That is, climatic factors are uncorrelated to unobservable items that 

affect a particular country’s disease prevalence (e.g., poor environmental conditions, drug resistance) 

and the statistical error in fitting the model. This assumption allows consistent estimation of the linear 

parameters of the model. Note also that a measurement error on the number of cases is inevitable as 
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many cases of malaria in remote area are unreported. However, it is well known in the  

econometric literature [33] that these measurement errors will not affect the consistency of our 

estimated coefficients.  

By subtraction of (2) from (1) we have: 

                                          (3) 

The conditional expectations are estimated using non-parametric kernel regression methods such 

that                     ,                        and         is a kernel estimator [28]. Equation (3) 

is then transformed into a well-known linear form: 

                       (4) 

At this point the estimated values of the parameter    are obtained using panel data specification 

estimation methods [34]. Here fixed or random effects panel data econometrics specifications could be 

applied. The fixed effects specification allows a possible correlation between the variable      and the 

country effects    . The random effects specification assumes independence between      and the 

country effects    . Since the independence between the individual unobserved effects and the 

regressors cannot be established ex ante, we use a Hausman specification test [35,36] to test the 

suitability of the fixed effects assumption. In this test the null hypothesis is that the individual 

unobserved effects and the regressors are uncorrelated                    . 

Step 2: Given the estimates of    , then estimate the function  using the relation 

                            (5) 

By writing               , we have the non-parametric form: 

                        (6) 

and   is estimated locally minimizing                        
 

    
     

 
 , with      being a 

kernel density function. Ullah and Mundra [37] show that by expressing   as a smooth coefficient 

function such that           
      ), where              we can estimate       ) as: 

              
 

     
    

     

 
  

  
      

 
      

   
     

 
     (7) 

where (*) implies that local estimation using kernel estimator on conditional expectations is applied. 

This specification takes into account the fact that climate variability can cause a jump in the number of 

malaria cases or change the rate of growth in the malaria cases. This particular specification also 

reduces the dimensionality of the nonparametric function   . Li and Racine [28] provide in-depth 

insight regarding the properties of these estimators. 

5. Data 

Malaria outbreak data were drawn from WHO reports [3,14] for 1990 to 2000 of 25 African 

countries representing a balanced panel with 319 observations. Associated monthly temperature and 

precipitation data were drawn from Mitchell et al. [38,39]. Data on demographic and other control 

variables were assembled as follows: 
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 Population and GDP data were drawn from the World Development Indicators [40] and CIA 

World Factbook [41]. 

 Data on the country specific gini inequality index and area in square kilometers per country 

(used to compute the population density) are obtained from the CIA World Factbook [41]. 

 Per capita expenditures on health were obtained from the WHO report [14]. 

 Data on the number of hospital beds per 1,000 people were obtained from the Organization for 

Economic Cooperation and Development [42].  

The socio-economic variables were only available in the form of annual observations. Thus we 

aggregated our other data to an annual basis and for the climate variables computed variances using the 

monthly observations. As a result, all of our observed variables are in annual frequency. The key 

summary statistics of all the variables used in the estimation are given in Table 1. 

Table 1. Summary statistics. 

Variable Definition Mean Std. Dev. Min. Max. 

CAPCASES Malaria cases per 1,000 people. 95.2 119.64 0.0 947.4 

TEMP Temperature (Degree Celsius) 24.24 3.32 16.7 29.2 

STDTEMP Temperature standard deviation  2.9 1.9 0.3 8.5 

PRECIP Precipitation (mm/m3) 777.4 479.3 37 1,921.7 

STDPRECIP Precipitation standard deviation 60.0 41.1 1.3 220.4 

POP Population (million) 18.5 22.1 0.5 118.9 

POPDENS Population Density per km
2
 51.5 59.3 1.9 304.6 

CAPGDP Per capita GDP(US$/capita) 671.4 809.5 110.3 3,764.2 

GINI Gini inequality index 42.9 7.2 29.8 61 

CAPEXP Health expenditure ($/capita) 93.7 119.4 14 579 

CAPBED Hospital beds per 1,000 people. 1.2 0.9 0.1 4.8 

 

The summary statistics indicate that there is generally less variability in temperature than in 

precipitation for most of the countries. Therefore, only variability in precipitation is used in the 

regression as a measure of climate variability index. 

6. Empirical Model Specifications 

Two specifications of the nonlinear function   are assumed and estimated. The first assumes an 

additive form and the second, a complex function of unknown form of  . In the first specification, the 

function   is smooth in the climate variability index measured by monthly standard deviation in 

precipitation. In such case, climate variability affects the number of malaria cases not only through the 

intercept      but also through the slope of temperature     ) and precipitation     . That is, the effect 

of temperature and precipitation on the number of cases will depend on how precipitation variability 

evolves (consistent with the argument made by Jaenisch and Patz [25]). In other words, the size of the 

impact of temperature and precipitation on the malaria prevalence is conditioned by fluctuations in 

climate measured by the standard deviation in precipitation. The empirical statistical relationship 

between malaria cases, climatic and socio-economic variables can be written as: 
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 5        +               (8) 

where   , for         are smooth coefficients (or functions of climate variability) and    are the 

coefficients of the linear socio-economic control variables. Note that in this specification the 

interaction between temperature and precipitation is established through the variability in precipitation. 

In the second specification where the form of the nonlinear function is unknown, the empirical 

formulation of the model can be written as: 

                                                                      

                                             (9) 

Although, this last specification is the most attractive for empirical investigation proposes because it 

nests all possible functional forms of the effect of climatic factors on malaria prevalence, it comes with 

the cost that higher dimensionality of the function   might weaken the correct estimation of the 

marginal effects given the sample size in hand. Since we are fitting a three dimensional function with 

fewer data points (our current sample size is 305 observations) we can run into the risk of not having 

enough data points in some neighborhoods for a good fit. This problem is known as “curse of 

dimensionality” in non-parametric estimations [30]. That is, when more data become available  

(e.g., 500 observations at least) more general non-parametric models with fewer assumptions could  

be tested). 

7. Results and Their Interpretation  

Results obtained from the two model specifications are similar in many aspects but because of 

possible “curse of dimensionality” issues only results from the first specification are presented. We use 

the natural log of malaria cases per 1,000 people as dependent variable.  

Results for the linear effects of the socio-economic variables on malaria cases are presented in 

Table 2. These effects are all statistically different from zero (except the effect of population density) 

and have expected signs. Also, the coefficients on these variables have the expected signs. An increase 

in GDP per capita and per capita expenditures on healthcare significantly reduce the number of malaria 

cases. In contrast, a higher Gini inequality index (meaning more unequal distribution of income) and 

count of hospital beds per 1,000 people lead to an increase in the number of reported malaria cases. 

We included number of hospital beds per 1,000 people for each country as a proxy for access to 

medical care. The assumption is that the number of hospital beds per 1,000 people indicates ability of 

an infected person to get to a health care facility and get treatment. Therefore, areas with more access 

to health care facilities are more likely to have cases reported and this needed to be controlled for. Note 

also that the socio-economic variables explain about 22%           of the variations observed in 

the log of malaria cases per 1,000 people. 
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Table 2. Linear coefficient estimates (b). 

Variables Coefficients Std. Dev. T-Stats. Other Stats. 

CAPGDP −0.0008 0.0004 −1.86 ** 

 GINI 0.3721 0.0821 4.53 * 

 POPDENS 0.0001 0.0047 0.03 

 CAPEXP −0.0266 0.0056 −4.71 * 

 CAPBED 1.3648 0.4467 3.06 * 

 CONSTANT 0.0321 0.0567 0.56 

 Fisher-Stats (5,271) 

   

12.87 * 

R2 

   

0.22 

Hausman   (5)-Stats (a) 

   

13.24 * 

* significant at 1% critical level; ** significant at 10% critical level. 
(a)

 The significance of the Hausman    statistic implies the rejection of the hypothesis of 

independence between the unobserved effects and the socio-economic variables. Therefore, 

the result presented in this table is obtained from fixed effects model specification. 
(b)

 Since the dependent variable is the log of malaria cases per 1,000 people, the linear 

coefficients could not be directly interpreted as marginal effects but for any regressor    

the marginal effect should be calculated as            by using logarithmic functions  

derivative rule. 

 

The nonparametric component estimation results show that the three climate factors (temperature 

levels, precipitation levels and precipitation variability) explain 36% of the variation in the log of 

malaria cases. The 36% explanatory power of malaria cases by climate variables is lower than has been 

found in previous literature (e.g., Zhou et al.[7] and Ndiaye et al.[24]) likely because these previous 

models did not control for the relevant socio-economic confounding factors and included fewer 

countries. A nonlinear relationship is detected between malaria cases and climate variability and 

temperature but a linear constant effect of precipitation levels at any given climate variability 

realization. The effect of climatic factors on the number of malaria cases follows patterns shown in 

Figures 1 to 3. Lower climate variability (less than 0.19 standard deviations) has positive impact on 

malaria cases but as variability increases above 0.19 standard deviations, we observe a decrease in the 

number of cases but with high uncertainty, as shown by wider 95% confidence intervals (Figure 1).The 

effect of temperature on malaria cases at any given climate variability follows an increasing but not 

linear trend (Figure 2). Below 20 degrees the effect is negative and decreasing as expected since lower 

temperature levels do not permit survival of adult mosquitoes and therefore reduce their abundance. 

The effect is increasing for temperature levels between 20 ºC and 25
 
ºC but becomes positive only 

from 22 ºC as shown in Figure 2. At temperature levels above 25 ºC, the effect slows down but 

remains positive with an increasing trend. The pattern of the effect of temperature on malaria cases is 

consistent with the description given in MARA/ARMA report [12]. Note that since the range of 

temperatures in our sample is between 16.7 ºC and 29.2 ºC with the mean at 24.1 ºC we expect 

marginal increases in temperature to increase malaria prevalence in many of the countries of study. 

Precipitation levels have small but statistically significant effect on the number of cases (Figure 3). 

Also we conducted a nonparametric Fisher test [26,27,43] which fail to reject the hypothesis that all 

estimated coefficients are statistically different from zero at 1% significance level.  
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Figure 1. Effect of climate variability (standard deviation of precipitation) on per capita 

malaria cases with 95% confidence intervals. This graph is the plot of the function 

                in Equation (8). It describes the impact of climate variability measured 

as the standard deviation of precipitation on malaria prevalence. 

 

Figure 2. Effect of temperature levels on per capita malaria cases conditional on climate 

variability with 95% confidence intervals. This graph is the plot of the temperature 

function                        in Equation (8). It shows how temperature levels 

affect malaria prevalence given the current climate variability conditions measured as the 

standard deviation in precipitation. 

 

We tested several model specifications in which; (1) an interaction term of temperature and 

precipitation is included in the model, (2) three interaction terms resulting from combinations of the 

three climatic factors are included in the model, and (3) pure linear model specifications with or 
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without interaction terms are estimated. Using a Bayesian model selection criterion (Akaike 

Information Criteria (AIC)) as in Woods [43], we find that nonparametric model specifications with or 

without temperature and precipitation interaction term perform the best and all the linear specifications 

perform poorly. However, the temperature and precipitation interaction term is statistically 

insignificant (in fact the interaction effects are already captured through the monthly standard 

deviation of precipitations variable).We retained the nonparametric model specification without 

temperature and precipitation interaction term. 

Figure 3. Effect of precipitation levels on per capita malaria cases conditional on climate 

variability with 95% confidence intervals. This graph is the plot of the precipitation 

function                          in Equation (8). It shows how temperature levels 

affect malaria prevalence given the current climate variability conditions measured as the 

standard deviation in precipitation. 

 

The varying-coefficients obtained for temperature and precipitation are used to calculate the 

elasticity of the number of malaria cases with respect to climate factors for each of the  

25 countries. Since the dependent variable is the log of malaria cases, the equation estimated is 

                      . The change in percentage of the number of malaria cases with respect to a 

one percent change in temperature or precipitation hereafter called elasticity is calculated as 

     
  

  
 
 

 
                        and averaged over the 11 years period of study for each country.  

The results in Table 3 (columns 3 and 4) suggest that the number of malaria cases in most of the 

countries is very responsive to changes in temperature excepting the findings in Botswana, Chad, 

South Africa and Tanzania where the response is small. Negative temperature effects are only 

observed in Central African Republic, Ethiopia and Guinea. The number of malaria cases is also very 

responsive to precipitation levels in Algeria, Central African Republic, Cote d’Ivoire, Djibouti,  

Egypt, Ethiopia, Ghana, Guinea, Malawi, Morocco, Rwanda, and Sudan but less responsive in  

Benin, Botswana, Burkina, Chad, Mauritania, Mali, Niger, South Africa, Togo, Uganda, Tanzania  

and Zimbabwe. 
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Table 3. Estimated change in the number of malaria cases due to climate change in the 

past 20 years 
(a)

. 

  

 

   Computed change  

 

   

  in number of cases 

 

 

Average 

 

Cases Elasticity (%) per 1,000  Equivalent 

 

annual cases 

 

to 1 ºC to 1% people under  percentage 

 per 1,000   change change under observed change per 

 people  in in climate change 1,000 

 (1990–2000)  Temp. Precip. past 20 years people 

Algeria 0.01   155.25 2.38 0.00 0.33 

Benin 86.53 

 

23.93 −0.50 −8.81 −0.10 

Botswana 31.05 

 

1.78 −0.02 0.23 0.01 

Burkina 60.99 

 

19.92 −0.66 −3.99 −0.07 

Burundi 168.53 

 

14.30 0.16 2.17 0.01 

Central Afr. Rep. 32.36 

 

−27.73 10.89 10.32 0.32 

Chad 45.14 

 

0.87 −0.15 −0.12 0.00 

Cote d'Ivoire 55.56 

 

183.91 −13.69 8.25 0.15 

Djibouti 9.73 

 

143.36 4.63 16.67 1.71 

Egypt 0.00 

 

132.28 1.13 0.00 0.72 

Ethiopia 6.19 

 

−46.19 −84.68 −32.22 −5.21 

Ghana 120.89 

 

34.86 −1.85 −7.35 −0.06 

Guinea 67.27 

 

−12.44 −12.25 −62.18 −0.92 

Malawi 381.81 

 

10.47 −3.08 81.22 0.21 

Mali 27.40 

 

11.59 −0.01 0.64 0.02 

Mauritania 62.29 

 

21.94 0.31 4.35 0.07 

Morocco 0.01 

 

313.46 9.85 0.01 1.10 

Niger 96.78 

 

14.84 0.23 7.38 0.08 

Rwanda 165.90 

 

30.98 −2.90 2.54 0.02 

South Africa 0.51 

 

3.89 0.11 0.00 0.00 

Sudan 228.75 

 

29.16 −1.34 −18.33 −0.08 

Togo 112.28 

 

8.37 −0.23 −4.43 −0.04 

Uganda 92.24 

 

4.39 −0.32 2.23 0.02 

Tanzania 302.68 

 

1.97 0.00 1.19 0.00 

Zimbabwe 98 

 

12.65 −0.53 2.68 0.03 
(a) The formula used to calculate the projected cases is based on the definition of elasticity. Let the 

elasticity value of the number malaria cases with respect to 1 oC change in temperature be    and 

the elasticity value of the number of malaria cases with respect to 1% change in precipitation 

be   . If the projected change in temperature in degree Celsius is   and the projected change in 

precipitation is expressed in percentage as   , then knowing the current number of malaria cases 

average  , the projected number of malaria cases is calculated as                  . 
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8. Effects of Climate to Date and Projections 

The calculated elasticity is used to estimate both  

 the consequences of recent climate change on the observed malaria cases to date and  

 the effects of projected climate change in 2080 to 2099 to cases that would be observed under 

those conditions. 

Between 1961 and 1990, the IPCC indicates average global temperatures have been increasing at 

the rate of 0.2 degree Celsius per decade [21] but precipitation has decreased by about 5–10 percent 

across the African continent [44]. We evaluated the effects of this on the estimated malaria cases using 

the elasticities estimated above. In particular we calculated for each country the change in temperature 

in degree Celsius and the percentage change in precipitation levels between the 1980–1989 decade and 

the 1990–2000 decade and used these values to estimate the effect of climate on malaria prevalence for 

these 20 years. The results are compiled in Table 3. These results show that excepting Benin, Burkina, 

Chad, Ethiopia, Ghana, Guinea, Sudan and Togo that all of the study region countries had an increase 

in the number of malaria cases due to climate change. The effect on the disease was particularly large 

in Algeria, Central African Republic, Djibouti, Egypt, Malawi and Morocco where we compute  

that recent climate change has contributed more than 21% increase in the number malaria of cases  

per 1,000 people. 

The effects of future climate change on potential malaria cases was also estimated using projected 

temperature and precipitation alterations for 2100 drawn from 21 global climate models for the A1B 

emission scenario [21]. Temperature and precipitation projection values for Africa are not available at 

country level but rather for five larger regions (West, East, South, North and Mediterranean). The 

countries were assigned the projection for the region in which they fell. The potential changes in the 

number of malaria cases were computed at the minimum, median and maximum projected 

temperature/precipitation values corresponding respectively to scenario 1, scenario 2 and scenario 3 

malaria cases projection in the Table 4. We found both positive and negative responses in the number 

of malaria cases depending on country and climate change scenarios. All but three countries showed a 

projected increase in the total number of cases across climate change scenarios. In the endemic zone 

around the equator the only countries to show a reduction across scenarios are Central African 

Republic, Ethiopia and Guinea. The general observation is that climate change is likely to enhance the 

number of cases in countries with high levels of currently infected people excepting a few countries. In 

particular, all other things held constant countries such as Algeria, Benin, Burkina, Burundi, Cote 

D’Ivoire, Djibouti, Egypt, Ghana, Malawi, Mauritania, Niger, Rwanda, Sudan, and Togo would see 

their malaria prevalence rate per 1,000 people increase more than 25% across climate change scenarios. 
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Table 4. Projected cases change by the end of the century (2080–2100). 

  Average annual 
 

Cases Elasticity (%) Projected increase/decrease 

 

cases 
 

to 1 ºC to 1% 
 

in cases per 1,000 people 

 

per 1,000 
 

change change by the end of the 

 people  in in Century (2080–2100)
 (a)

 

 

(1990–2000) 
 

Temp. Precip. 
 

Scenario 1 Scenario 2 Scenario 3 

Algeria 0.01   155.25 2.38 

 

0.02 0.05 0.07 

Benin 86.53 

 

23.93 −0.50 

 

41.17 67.48 90.42 

Botswana 31.05 

 

1.78 −0.02 

 

1.14 1.91 2.61 

Burkina 60.99 

 

19.92 −0.66 

 

25.49 39.28 50.66 

Burundi 168.53 

 

14.30 0.16 

 

42.55 79.01 110.41 

Central Afr. Rep. 32.36 

 

−27.73 10.89 

 

−47.88 −22.56 14.23 

Chad 45.14 

 

0.87 −0.15 

 

1.33 1.16 0.75 

Cote d’Ivoire 55.56 

 

183.91 −13.69 

 

252.40 321.99 358.53 

Djibouti 9.73 

 

143.36 4.63 

 

23.77 47.80 71.26 

Egypt 0.00 

 

132.28 1.13 

 

0.01 0.01 0.01 

Ethiopia 6.19 

 

−46.19 −84.68 

 

10.57 −45.82 −143.26 

Ghana 120.89 

 

34.86 −1.85 

 

96.03 134.58 162.20 

Guinea 67.27 

 

−12.44 −12.25 

 

59.12 −44.10 −171.21 

Malawi 381.81 

 

10.47 −3.08 

 

217.00 182.96 121.42 

Mali 27.40 

 

11.59 −0.01 

 

5.74 10.48 14.89 

Mauritania 62.29 

 

21.94 0.31 

 

22.84 45.49 67.35 

Morocco 0.01 

 

313.46 9.85 

 

0.04 0.10 0.16 

Niger 96.78 

 

14.84 0.23 

 

23.88 47.85 71.05 

Rwanda 165.90 

 

30.98 −2.90 

 

106.97 130.78 100.65 

RSA 0.51 

 

3.89 0.11 

 

0.03 0.07 0.10 

Sudan 228.75 

 

29.16 −1.34 

 

129.26 192.00 210.21 

Togo 112.28 

 

8.37 −0.23 

 

19.25 30.49 40.00 

Uganda 92.24 

 

4.39 −0.32 

 

8.17 10.88 10.00 

Tanzania 302.68 

 

1.97 0.00 

 

10.73 19.15 25.81 

Zimbabwe 97.53 

 

12.65 −0.53 

 

29.66 0.00 4.84 
(a) The formula used to calculate the projected cases is based on the definition of elasticity. Let the elasticity 

value of the number malaria cases with respect to 1oC change in temperature be    and the elasticity value of 

the number of malaria cases with respect to 1% change in precipitation be   . If the projected change in 

temperature in degree Celsius is   and the projected change in precipitation is expressed in percentage as   , 

then knowing the current number of malaria cases average   , the projected number of malaria cases is 

calculated as                  . 

9. Estimated Cost of Treatment for Future Cases 

The malaria outpatient and inpatient treatment cost is an economic burden for populations of 

endemic countries (all countries in this study are located in an endemic area except Algeria, Egypt, 

Morocco and South Africa). Outpatient treatment is related to treatments of mild cases using available 

malaria drugs without hospitalization for more than a day. However, for severe malaria cases 

(particularly for children under five) an inpatient treatment requiring hospitalization of several days is 

needed. The WHO recommends use of a line of drugs known as Artemisinin-based Combination 

Therapies (ACTs) although these are currently less accessible because of cost, demand and supply 



Int. J. Environ. Res. Public Health 2011, 8         

 

926 

imbalance, and limited knowledge of safety [13]. We estimated the average prices of such drugs in 

Table 5 based on the reported drugs prices by the WHO [45] and the transportation costs (about 25% 

of the price) to reach the demand points [4]. The total outpatient costs (Table 6 column 3) for each 

individual country are calculated under minimal climate change projection scenarios (scenario 1). 

Similarly, average inpatient costs (Table 6 column 4) are calculated using information from studies 

conducted in Senegal and Kenya [46,47]. 

The cost projections indicate that the vast majority of the countries studied will see an increase of 

their costs of fighting the disease. We find that the predicted treatment costs, particularly the inpatient 

costs, as a percentage of 2000 health expenditure per 1,000 people, increase by more than 20% for 

countries such as Burundi, Cote D’Ivoire, Malawi, Rwanda and Sudan. Since most of the reported 

cases are severe cases (particularly children under five), the projected cost in malaria treatment will be 

most likely close to the inpatient treatment cost estimates. 

Tables 5. Outpatient and inpatient unit treatment cost in 2004 USD. 

    Price($) Test($) Transport($) Total( $) 

Drug prices  

   

  

Artesunate 

 

0.54 1.39 0.48 2.41 

Artesunate-Mefloquine 0.36 1.39 0.44 2.18 

Artemether-Lumefantrine 0.15 1.39 0.38 1.92 

Artesunate-Amodiquine 0.08 1.39 0.37 1.83 

Mean outpatient cost 

   

2.08 

Hospitalization treatment cost 

   Kenya 

    

64.00 

Senegal 

    

70.00 

Mean Inpatient cost 

   

67.00 

Table 6. Estimated inpatient and outpatient treatment cost under climate change scenario 1. 

 

Projected Treatment costs per  

1,000 people  

(in 2004 USD) 

 

Treatment costs (in percentage 

 

cases per 1,000 

 

of 2000 health expenditure 

 people  per 1,000 people) 

 

under Scenario1 Outpatient
(a)

 Inpatient
(b)

 

 

Outpatient (%) Inpatient (%) 

Algeria 0.02 0.05 1.63 

 

0.0 0.0 

Benin 41.17 85.76 2,758.58 

 

0.3 8.1 

Botswana 1.14 2.36 76.08 

 

0.0 0.0 

Burkina 25.49 53.08 1,707.60 

 

0.1 3.2 

Burundi 42.55 88.63 2,851.00 

 

0.6 20.4 

Central Afr. Rep. −47.88 −99.73 −3,208.11 

 

−0.2 −6.4 

Chad 1.33 2.78 89.33 

 

0.0 0.2 

Cote d'Ivoire 252.40 525.71 16,911.11 

 

0.7 21.4 

Djibouti 23.77 49.50 1,592.37 

 

0.1 2.5 

Egypt 0.01 0.01 0.35 

 

0.0 0.0 

Ethiopia 10.57 22.02 708.40 

 

0.1 3.7 

Ghana 96.03 200.02 6,434.28 

 

0.2 6.3 

Guinea 59.12 123.14 3,961.17 

 

0.2 5.2 

Malawi 217.00 451.96 14,538.70 

 

1.1 35.5 
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Table 6. Cont. 

 

Projected Treatment costs per  

1,000 people  

(in 2004 USD) 

 

Treatment costs (in percentage 

 

cases per 1,000 

 

of 2000 health expenditure 

 people  per 1,000 people) 

 

under Scenario1 Outpatient
(a)

 Inpatient
(b)

 

 

Outpatient (%) Inpatient (%) 

Mali 5.74 11.95 384.31 

 

0.0 1.2 

Mauritania 22.84 47.58 1,530.61 

 

0.1 4.8 

Morocco 0.04 0.09 2.87 

 

0.0 0.0 

Niger 23.88 49.73 1,599.67 

 

0.2 6.4 

Rwanda 106.97 222.79 7,166.67 

 

0.7 22.4 

South Africa 0.03 0.06 2.06 

 

0.0 0.0 

Sudan 129.26 269.22 8,660.18 

 

0.7 21.7 

Togo 19.25 40.10 1,289.89 

 

0.1 2.6 

Uganda 8.17 17.03 547.69 

 

0.0 0.7 

Tanzania 10.73 22.35 718.98 

 

0.1 2.9 

Zimbabwe 29.66 61.78 1,987.38 

 

0.0 1.2 
(a) Average outpatient treatment costs are calculated by multiplying the number of projected malaria cases by the 

average drug prices in Table 5. 
(b) Average outpatient treatment costs are calculated by multiplying the number of projected malaria cases by the 

average hospitalization costs in Table 5. 

10. Conclusions and Discussion 

This paper studies the link between malaria cases and climatic factors in 25 African countries 

observed over 11 years. We conducted an econometric analysis and found that the number of malaria 

cases per 1,000 people is significantly influenced by climate factors in most of the countries studied, 

with disease incidence generally increasing under climate change. However, this effect is not uniform 

across countries as has been found in biophysical malaria modeling studies [16-18]. Additionally, the 

cost of malaria treatment is projected to increase in most of the countries studied. 

Socio-economic factors are also found to impact significantly the number of malaria cases. In 

particular, we found that economic growth and better income distribution help reduce the number of 

malaria cases. Similarly, an increase in public health expenditures towards prevention and treatment of 

malaria significantly reduces malaria cases. 

Thus policies that stimulate economic growth, reduce income inequality and increase public health 

expenditures would mitigate the impact of malaria. However, longer term climate policies are also 

desirable. These policies would include policies addressing greenhouse gas emissions reductions and 

those directed toward disseminating malaria related disease reduction practices plus research on 

eradication of malaria in Africa. 

There are a few limitations to this study. Due to the lack of detailed meteorological information in 

the region, we assumed that all regions within each country are homogeneous and have same 

temperature and precipitation levels. The study also assumes that the disease response with respect to 

climatic factors will not change. Future research in understanding the impact of climate factors on 

malaria and other vector-borne disease may require more collaboration between biophysical scientists 

and economists. 
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Future research, could address economic growth, income distribution and changes in the level of 

public expenditure on healthcare in order to measure the impact of changes in socio-economic and 

disease control variables on projected malaria prevalence. This would extend work by Tol et al. [48] 

which investigates likely reduction of climate change impact on children mortality from various 

economic development scenarios using data for a fewer African countries. Also the use of spatial data 

on malaria such as those collected in MARA/ARMA project [12] would help provide more spatial 

details on specific countries. 

References 

1. IPCC. Climate Change 2001. Impacts, Adaptations and Vulnerability. Contribution of Working 

Group 2 to the Third Assessment Report of the Intergovernmental Panel on Climate Change; 

Cambridge University Press: Cambridge, UK and New York, NY, USA, 2001; pp. 1-970. 

2. Githeko, A.; Lindsay, S.; Confalonieri, U.; Partz, J. Climate change and vector borne diseases:  

A regional analysis. Bull. World Health Organ. 2000, 78, 1136-1147. 

3. World Malaria Report; World Health Organization: Geneva, Switzerland, 2009; pp. 1-33. 

4. Goodman, A.C.; Coleman, P.; Mills, A. Changing the first line drug for malaria treatment:  

Cost-effectiveness analysis with high uncertainty inter-temporal trade-offs. Health Econ. 2001, 10, 

731-749. 

5. Malaria and HIV Interaction and Their Implication for Public Health Policy; World Health 

Organization: Geneva, Switzerland, 2004; pp. 1-122. 

6. IPCC. Climate Change 2007. Impacts, Adaptations and Vulnerability. Contribution of Working 

Group 2 to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; 

Cambridge University Press: Cambridge, UK and New York, NY, USA, 2007; pp. 1-976. 

7. Zhou, G.; Noboru, M.; Githeko, A.; Yan, G. Association between climate variability and malaria 

epidemic in the east African highlands. Proc. Natl. Acad. Sci. USA 2003, 101, 2375-2380. 

8. Wandiga, S.; Opondo, M.; Olago, D.; Githeko, A.; Githui, F.; Marshall, M.; Downs, T.; Opere, A.; 

Oludhe, C.; Ouma, G.; Yanda, P.; Kangalawe, R.; Kabumbuli, R.; Kathuri, J.; Apindi, E.;  

Olaka, L.; Ogallo, L.; Mugambi, P.; Sigalla, R.; Nanyunja, R.; Baguma, T.; Achola, P. 

Vulnerability to epidemic malaria in the highlands of lake Victoria basin: the role of climate 

change/variability, hydrology and socio-economic factors. Climatic Change 2010, 99, 473-497. 

9. Hay, S.; Cox, J.; Rogers, D.; Randolph, S.; Stern, D.; Shanks, D.; Myers, M.; Snow, R. Climate 

Change and the Resurgence of Malaria in East Africa Highlands. Nature 2002, 415, 905-909. 

10. Pascual, M.; Ahumada, J.; Chaves, L.; Bouma, M. Malaria Resurgence in the East African 

Highlands: Temperature Trends Revisited. Proc. Natl. Acad. Sci. USA 2006, 103, 5829-5834. 

11. Parham, P.; Michael, E. Modeling Climate Change and Malaria Transmission. Adv. Exp. Med. 

Biol. 2010, 673, 184-199. 

12. MARA/ARMA. Towards an Atlas of Malaria Risk in Africa; Albany Print Ltd.: Durban, South 

Africa, 1998; pp. 1-31. 

13. Mutabingwa, T.K. Artemisinin-based combination therapies (acts): Best hope for malaria 

treatment but inacassible to the needy. Acta Trop. 2005, 95, 305-315. 

14. World Malaria Report; World Health Organization: Geneva, Switzerland, 2008; pp. 1-56. 



Int. J. Environ. Res. Public Health 2011, 8         

 

929 

15. Goodman, A.C.; Colman, P.; Mills, A. Economic Analysis of Malaria Control in Sub-Saharan 

Africa; World Health Organization: Geneva, Switzerland, 2000; pp. 1-182. 

16. van Lieshout, M.; Kovats, R.S.; Livermore, M.T.J.; Martens, P. Climate change and malaria: 

Analysis of the SRES climate and socio-economic scenarios. Global Environ. Chang. 2004, 14,  

87-99. 

17. Tanser, F.C.; Charp, B.; Le Sueur, D. Potential Effect of Climate Change on Malaria 

Transmission in Africa. Lancet 2003, 632, 1792-1798. 

18. Thomas, C.J.; Davies, G.; Dunn, C. Mixed picture for changes in stable malaria distribution with 

future climate in Africa. Trends Parasitol. 2004, 20, 216-220. 

19. Githeko, A. Malaria, Climate Change and Possible Impacts on Populations in Africa. In 

International Studies in Population. HIV Resurgent Infections and Population Change in Africa; 

Carael, M., Glynn, J.R.; Eds.; Springer: New York, NY, USA, 2008; pp. 67-77. 

20. Hay, S.; Omundo, J.; Craig, M.; Snow, R. Earth observation, geographic information systems and 

plasmodium falciparum malaria in Sub-Saharan Africa. Adv. Parasitol. 2000, 47, 173-215. 

21. IPCC. Climate Change 2007. The Physical Science Basis. Contribution of Working Group 1 to the 

Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge 

University Press: Cambridge, UK and New York, NY, USA, 2007; pp. 1-996. 

22. Ebi, K.; Hartman, J.; Chan, N.; McConnell, J.; Schlesinger, M.; Weyany, J. Climate suitability for 

stable malaria transmission in Zimbabwe under different climate change scenarios. Climatic 

Change 2005, 73, 375-393. 

23. Thomson, M.C.; Mason, S.J.; Phindela, T.; Connor, S.J. Use of Rainfall and sea surface 

temperature monitoring for malaria early warning in Botswana. Am. J. Trop. Med. Hyg. 2005, 73, 

214-221. 

24. Ndiaye, O.; Le Hesran, J.-Y.; Etard, J.-F.; Diallo, A.; Simondon, F.; Ward, M.; Robert, V. 

Variations Climatiques Et Mortalité Attribuée Au Paludisme Dans La Zone De Niakhar, Sénégal 

De 1984 À 1996. Santé 2001, 11, 25-33. 

25. Jaenisch, T.; Patz, J. Assessment of association between climate and infectious diseases. Global 

Change Hum. Health 2002, 3, 67-72. 

26. Hastie, T.; Tibshirani, R. Generalized Additive Models; Chapman & Hall: Boca Raton, FL, USA, 

1990; pp. 221-269. 

27. Hastie, T.; Tibshirani, R. Varying-coefficients models. J. Roy. Stat. Soc. B 1993, 55, 757-796. 

28. Li, Q.; Racine, J.S. Nonparametric Econometrics: Theory and Practice; Princeton University 

Press: Princeton, NJ, USA, 2007; pp. 221-348. 

29. Pagan, A.; Ullah, A. Nonparametric Econometrics; Cambridge University Press: New York, NY, 

USA, 1999; pp. 121-190. 

30. Yatchew, A. Semiparametric Regression for the Applied Econometrician; Cambridge University 

Press: Cambridge, UK, 2003; pp. 1-197. 

31. Tseng, W.; Chen, C.; Chang, C.; Chu, Y. Estimating the economic impacts of climate change on 

infectious diseases: A case study on Dengue Fever in Taiwan. Climatic Change 2009, 92, 123-140. 

32. Robinson, P.M. Root-N consistent semiparametric regression. Econometrica 1988, 56, 931-954. 

33. Cameron, A.; Trivedi, P. Microeconometrics: Methods and Application; Cambridge University 

Press: Cambridge, UK and New York, NY, USA, 2006; pp. 1-1034. 



Int. J. Environ. Res. Public Health 2011, 8         

 

930 

34. Baltagi, B. Econometric Analysis of Panel Data; Jon Wiley: Chicheker, UK, 2008; pp. 13-34. 

35. Hausman, J. Specification tests in econometrics. Econometrica 1978, 46, 1251-1271. 

36. Hausman, J.; Taylor, W. Panel data and unobserved individual effects. Econometrica 1981, 49, 

1377-1398. 

37. Ullah, A.; Mundra, K. Semiparametric Panel Data Estimation: An Application to Immigrants’ 

Homelink Effect on US Producer Trade Flows. In Handbook of Applied Econometrics and 

Statistical Inference; Ullah, A., Alan, T., Wanand, K., Chaturvedi, A., Eds.; Marcel Dekker:  

New York, NY, USA, 2002. 

38. Mitchell, T.D.; Carter, T.R.; Jones, P.D.; Hulme, M.; New, M. A Comprehensive Set of  

High-Resolution Grids of Monthly Climate for Europe and the Globe: The Observed Record  

(1901–2000) and 16 Scenarios (2001–2100); Tyndall Centre for Climate Change Research: 

Norwich, UK, 2003; pp. 1-25. 

39. Mitchell, T.D.; Hulme, M.; New, M. Climate data for political areas. Area 2002, 34, 109-112. 

40. WDI. Countries’ Information, 2010. Available online: http://www.nationmaster.com/graph/ 

peo_pop-people-population&date=1995 (accessed on 19 October 2010). 

41. CIA. The World Factbook. Central Intelligence Agency 2010. Available online: 

https://www.cia.gov/library/publications/the-world-factbook/ (accessed on 19 October 2010). 

42. OECD. Hospital Beds by Country. Organisation for Economic Cooperation and Development 

2010; Available online: http://www.nationmaster.com/index.php (accessed on 19 October 2010). 

43. Wood, S.N. Generalized Additive Models: An Introduction with R; Chapman & Hall: Boca Raton, 

FL, USA, 2006; pp. 12-132. 

44. IPCC. Climate Change 2001. Impacts, Adaptations and Vulnerability. Contribution of Working 

Group 2 to the Third Assessment Report of the Intergovernmental Panel on Climate Change; 

Cambridge University Press: Cambridge, UK and New York, NY, USA, 2001; pp. 1-1005. 

45. Sources and Prices of Selected Products for the Prevention, Diagnosis and Treatment of Malaria; 

World Health Organization: Geneva, Switzerland, 2004; pp. 1-66. 

46. Ayieko, P.; Akumu, A.; Griffiths, U.; English, M. The Economic burden of inpatient paediatric 

care in Kenya: Household and provider costs for treatment of pneumonia, malaria and meningitis. 

Cost Eff. Resour. Alloc. 2009, 7, 1-13. 

47. Faye, O.; N’dir, O.; Gaye, O.; Fall, M.; Diallo, S.; Billon, C. Charge en Soins et Couts Directs 

Liés a L’hospitalization Des Neuropaludismes De L’enfant Sénégalais. Etudes De 76 Cas a 

L’hopital Albert-Royer De Dakar En 1991-1992. Cahiers Santé 1995, 5, 315-318. 

48. Tol, R.; Ebi, K.; Yohe, G. Infectious disease, development, and climate change: A scenario 

analysis. Environ. Dev. Econ. 2007, 12, 687-706. 

© 2011 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/3.0/). 


