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Abstract: Neuronal loss (death) occurs selectively in vulnerable brain regions after ischemic insults.
Astrogliosis is accompanied by neuronal death. It can change the molecular expression and morphology
of astrocytes following ischemic insults. However, little is known about cerebral ischemia and reperfusion
injury that can variously lead to damage of astrocytes according to the degree of ischemic injury, which
is related to neuronal damage/death. Thus, the purpose of this study was to examine the relationship
between damage to cortical neurons and astrocytes using gerbil models of mild and severe transient
forebrain ischemia induced by blocking the blood supply to the forebrain for five or 15 min. Significant
ischemia tFI-induced neuronal death occurred in the deep layers (layers V and VI) of the motor cortex:
neuronal death occurred earlier and more severely in gerbils with severe ischemia than in gerbils with
mild ischemia. Distinct astrogliosis was detected in layers V and VI. It gradually increased with time
after both ischemiae. The astrogliosis was significantly higher in severe ischemia than in mild ischemia.
The ischemia-induced increase of glial fibrillary acidic protein (GFAP; a maker of astrocyte) expression
in severe ischemia was significantly higher than that in mild ischemia. However, GFAP-immunoreactive
astrocytes were apparently damaged two days after both ischemiae. At five days after ischemiae,
astrocyte endfeet around capillary endothelial cells were severely ruptured. They were more severely
ruptured by severe ischemia than by mild ischemia. However, the number of astrocytes stained with S100
was significantly higher in severe ischemia than in mild ischemia. These results indicate that the degree
of astrogliosis, including the disruption (loss) of astrocyte endfeet following ischemia and reperfusion
in the forebrain, might depend on the severity of ischemia and that the degree of ischemia-induced
neuronal damage may be associated with the degree of astrogliosis.

Keywords: astrocyte endfeet; blood–brain barrier; cortical layer; glial fibrillary acidic protein;
ischemia and reperfusion injury; S100
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1. Introduction

Cerebral ischemic insults can lead to irreversible brain damage, loss of neuronal
functions and neurologic impairments [1–3]. Especially, a temporary hindrance of blood
supply in the brain triggers ischemia and reperfusion (IR) injury and it leads to a selective
pattern of neurodegeneration in neurons (i.e., pyramidal neurons in the hippocampus and
cerebral cortex) for a few days (2–5 days) after IR injury [4–8]. Many factors, such as age,
sex, ischemic duration and brain/body temperature, can affect the pattern and degree of
ischemic damage [9–11]. Among these factors, ischemic duration has been thought to be
one of the major factors leading to ischemic injury, including neuronal damage, gliosis
(astrocytosis and microgliosis) and blood–brain barrier (BBB) damage [12,13]. It has been
studied on the patterns of neuronal death in the hippocampus following 5 min (mild),
15 min (severe) and 20 min (lethal) of ischemic duration in gerbils [13]. In this study, mild
IR injury brings neuronal death in the hippocampal cornu ammonis (CA) 1 area; severe
IR leads to neuronal death not only in the CA1-3 areas but also in the dentate gyrus, and
animals subjected to lethal IR injury show high mortality [13].

It is well known that astrocytes are reactive to various central nervous system (CNS)
damages (i.e., trauma, infection, stroke, autoimmune responses or neurodegenerative
disease) called astrogliosis or reactive astrogliosis [13–16]. Astrogliosis can change the
morphology and molecular expression of astrocytes in response to damage or infection
of the CNS [16,17]. In healthy neural tissues, astrocytes play diverse and critical roles in
the maintenance of ion homeostasis, neurotransmitter recycling, synapse formation and
blood–brain barrier (BBB) function [18–20]. It has been generally accepted that cerebral
ischemic insults can lead to astrogliosis, showing that a more serious ischemic injury can
develop much higher astrogliosis [13,20,21]. Recently, it has been reported that IR injury
can lead to damage/dysfunction of astrocytes, and it is closely associated with IR-induced
neuronal damage or death (loss) [21–23].

Many previous studies have reported neuronal damage or death in the cerebral cortex
using various animal models of cerebral ischemia [4,5,7,24,25]. However, cerebral IR-
induced neuronal death/damage and its related mechanisms in the cerebral cortex have
not been fully elucidated yet. Therefore, the objective of this study was to examine the
relationship between IR-induced neuronal damage or death and astrogliosis, which is
closely related to BBB disruption in the cerebral motor cortex of gerbil, as one suitable
model for studying transient forebrain ischemia (tFI) to investigate the relationship between
neuronal damage/death and astrogliosis. Gerbil models of mild and severe tFI were used.

2. Results
2.1. Change in Motor Behavior

To examine the tFI-induced change in motor behavior, spontaneous motor activity
(SMA) was examined on day 1 after tFI in all groups (Figure 1). SMA (581 ± 38 m) in the
mild tFI group was significantly higher (2.5-fold) than that (233 ± 13 m) in the mild sham
group. SMA (910± 43 m) in the severe tFI group was significantly increased: it was 3.9-fold
as compared to the sham group and 1.6-fold when compared to the mild tFI group.

2.2. Neuronal Damage/Death (Loss)
2.2.1. Cresyl Violet (CV)-Stained Cells (CV-Cells)

To examine tFI-induced cell damage in the motor cortex, CV staining was performed.
CV-cells were similarly distributed in all layers (layer I-VI) in the motor cortex of all sham
groups (Figure 2A,E). In the mild tFI group, CV-cells were apparently decreased in numbers
and damaged in morphology in layers V and VI on day 5 after tFI (Figure 2D). In the severe
tFI group, a slight decrease in CV-cell numbers and their morphological damage were
shown in layers V and VI on day 2 after tFI (Figure 3G), and, on day 5 after tFI, a heavy
decrease in CV-cell numbers and their damage were found in the layers (Figure 2H).
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Figure 1. Change in spontaneous motor activity (SAM). SMA is evaluated in the traveled entire 
distance (meters) in 60 min at one day after tFI (n = 5 or 7, respectively; * p < 0.05, significantly dif-
ferent from the mild and severe sham group, and † p < 0.05, significantly different from the mild tFI 
group at the corresponding time). The bars indicate the means ± SEM. 
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To examine tFI-induced cell damage in the motor cortex, CV staining was per-
formed. CV-cells were similarly distributed in all layers (layer I-VI) in the motor cortex of 
all sham groups (Figure 2A,E). In the mild tFI group, CV-cells were apparently decreased 
in numbers and damaged in morphology in layers V and VI on day 5 after tFI (Figure 
2D). In the severe tFI group, a slight decrease in CV-cell numbers and their morphologi-
cal damage were shown in layers V and VI on day 2 after tFI (Figure 3G), and, on day 5 
after tFI, a heavy decrease in CV-cell numbers and their damage were found in the layers 
(Figure 2H). 

 
Figure 2. CV staining in the motor cortex of mild sham (A,a1,a2), mild tFI (B–D,b1–d1,b2–d2), se-
vere sham (E,e1,e2), and severe tFI (F–H,f1–h2,f2–h2) groups at one day (B,b1,b2,F,f1,f2), 2 
(C,c1,c2, G,g1,g2) and five days (D,d1,d2,H,h1,h2) after tFI. At five days after tFI, CV-cells are ap-
parently decreased and damaged in layers V and VI (d1,d2,h1,h2) in both of the tFI groups: more 

Figure 1. Change in spontaneous motor activity (SAM). SMA is evaluated in the traveled entire
distance (meters) in 60 min at one day after tFI (n = 5 or 7, respectively; * p < 0.05, significantly
different from the mild and severe sham group, and † p < 0.05, significantly different from the mild
tFI group at the corresponding time). The bars indicate the means ± SEM.
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Figure 2. CV staining in the motor cortex of mild sham (A,a1,a2), mild tFI (B–D,b1–d1,b2–d2), severe
sham (E,e1,e2), and severe tFI (F–H,f1–h2,f2–h2) groups at one day (B,b1,b2,F,f1,f2), 2 (C,c1,c2,
G,g1,g2) and five days (D,d1,d2,H,h1,h2) after tFI. At five days after tFI, CV-cells are apparently
decreased and damaged in layers V and VI (d1,d2,h1,h2) in both of the tFI groups: more reduction
and damage of CV-cells are shown in the severe tFI group (h1,h2) than the mild tFI group. Scale
bars = 200 µm (A–H) and 50 µm (a1–h1,a2–h2).
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On day 2 after tFI, some F-J B-cells were found in the two layers in the mild tFI group 
(Figure 3Ac,Ag,C,D), and, in the severe tFI group, many F-B-cell were shown in the two 
layers (Figure 3Bc,Bg,C,D). On day 5 after tFI, the numbers of F-J B-cells was more in-
creased in the two layers, showing that the F-J B-cell number of the severe tFI group was 
3.9 and 3.5-fold, respectively, of the mild tFI group (Figure 3Ad,Ah,Bd,Bh,C,D). 

2.3. Astrogliosis 
2.3.1. Glial fibrillary acidic protein (GFAP)-Immunoreactive Astrocytes 

GFAP immunohistochemistry was done to evaluate astrogliosis after tFI (Figure 4). 
GFAP-immunoreactive astrocytes (GFAP-astrocytes) with small cell bodies and thin 
processes were distributed throughout layers V and VI in the motor cortex of the mild 
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sham group) at that point in time after tFI (Figure 4B,F,I,J). On day 2 after tFI, GFAP 

Figure 3. (A,B) F-J B histofluorescence staining in layers V and VI of the motor cortex in the mild
sham (Aa,Ae), mild tFI (Ab–Ad,Af–Ah), severe sham (Ba,Be), and severe tFI (Bb–Bd,Bf–Bh) groups
at one day (Ab,Af,Bb,Bf), two days (Ac,Ag,Bc,Bg) and five days (Ad,Ah,Bd,Bh) after tFI. A few F-J
B-cells are detected in the mild tFI group two and five days after tFI. In contrast, many F-J B-cells
are found in the severe tFI group two and five days after tFI. Scale bars = 200 µm. (C,D) Numbers
of F-J B-cells in layers V and VI, respectively (n = 7, respectively; * p < 0.05, significantly different
from mild and severe sham group, # p < 0.05, significantly different from pre-time point group and
† p < 0.05, significantly different from mild tFI group at corresponding time point). The bars indicate
the means ± SEM.

2.2.2. Fluoro-Jade B (F-J B)-Positive Cells (F-J B-Cells)

Histofluorescence staining using F-J B was performed to examine tFI-induced neuronal
degeneration (death or loss) in the motor cortex. No F-J B-cells in the motor cortex were
found in all sham groups (Figure 3Aa,Ae,Ba,Be). On day 1 after tFI, F-J B-cells in the
mild tFI group were not shown at one day after tFI (Figure 3Ab,Af,C,D); however, a few
F-J B-cells were detected in layers V and VI in the severe tFI group (Figure 3Bb,Bf,C,D).
On day 2 after tFI, some F-J B-cells were found in the two layers in the mild tFI group
(Figure 3Ac,Ag,C,D), and, in the severe tFI group, many F-B-cell were shown in the two
layers (Figure 3Bc,Bg,C,D). On day 5 after tFI, the numbers of F-J B-cells was more increased
in the two layers, showing that the F-J B-cell number of the severe tFI group was 3.9 and
3.5-fold, respectively, of the mild tFI group (Figure 3Ad,Ah,Bd,Bh,C,D).

2.3. Astrogliosis
2.3.1. Glial Fibrillary Acidic Protein (GFAP)-Immunoreactive Astrocytes

GFAP immunohistochemistry was done to evaluate astrogliosis after tFI (Figure 4).
GFAP-immunoreactive astrocytes (GFAP-astrocytes) with small cell bodies and thin pro-
cesses were distributed throughout layers V and VI in the motor cortex of the mild and
severe sham groups, showing that GFAP immunoreactivity was not different between
the two sham groups (Figure 4A,E,I,J). GFAP immunoreactivity in the mild tFI group
GFAP-astrocytes was slightly increased in the two layers on day 1 after tFI, but GFAP im-
munoreactivity in the severe group was significantly increased (167% for the sham group)
at that point in time after tFI (Figure 4B,F,I,J). On day 2 after tFI, GFAP immunoreactivity in
both groups was increased in the two layers (165% versus 250% in layer V and 180% versus
275% in layer VI) compared with the sham group (Figure 4C,G,I,J). On day 5 after tFI, GFAP
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immunoreactivity was increased (234% versus 351% in layer V and 265% versus 361% in
layer VI compared with the sham group), showing that the GFAP immunoreactivity in the
severe group was significantly higher (1.5-fold in layer V and 1.4-fold in layer VI) than
that in the mild group (Figure 4D,H,I,J). At this point in time, the cell bodies and processes
of GFAP-astrocytes became larger and thicker in both groups; however, the ends of their
processes became blunt, which seemed to be damaged (collapsed) (Figure 4d1,d2,h1,h2).
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was similar to the change in GFAP immunoreactivity (Figure 5). The GFAP level in the 
mild tFI group was significantly increased from two days after tFI and was 177% at two 
days and 216% at five after tFI compared with the sham group. The GFAP level in the 
severe tFI group was significantly increased from one day after tFI, showing that the level 
was 166% at one day, 210% at two days, and 253% at five days after tFI as compared to 
the mild tFI.  

Figure 4. (A–H) GFAP immunohistochemistry in layers V and VI of the motor cortex in the mild
sham (A,a1,a2), mild tFI (B–D,b1–d1,b2–d2), severe sham (E,e1,e2), and severe tFI (F–H,f1–h2,f2–h2)
groups on day 1 (B,b1,b2,F,f1,f2), day 2 (C,c1,c2,G,g1,g2) and day 5 (D,d1,d2,H,h1,h2) after tFI. In
the mild tFI group, GFAP immunoreactivity is increased from 2 days after tFI. However, GFAP
immunoreactivity in the severe group is significantly enhanced from one day after tFI. On day 5 after
tFI, the cell bodies and processes of GFAP-astrocytes are larger and thicker than those of the sham
groups, showing that GFAP immunoreactivity in the severe tFI group is higher than that in the mild
tFI group. Scale bars = 200 µm (A–H) and 50 µm (a1–h2). (I,J): ROD as % of GFAP-immunoreactive
structures in layers V and VI (n = 5 or 7, respectively; * p < 0.05, significantly different from mild or
severe sham group, # p < 0.05, significantly different from corresponding former time group, and
† p < 0.05, significantly different from mild tFI group at the corresponding time). The bars indicate
the means ± SEM.

2.3.2. GFAP Protein Level

The changing pattern of GFAP protein level in the motor cortex of both tFI groups was
similar to the change in GFAP immunoreactivity (Figure 5). The GFAP level in the mild
tFI group was significantly increased from two days after tFI and was 177% at two days
and 216% at five after tFI compared with the sham group. The GFAP level in the severe tFI
group was significantly increased from one day after tFI, showing that the level was 166%
at one day, 210% at two days, and 253% at five days after tFI as compared to the mild tFI.
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bars indicate the means ± SEM (n = 5, respectively; * p < 0.05, significantly different from mild or 
severe sham group, # p < 0.05, significantly different from corresponding former time group, and † 
p < 0.05, significantly different from mild tFI group at the corresponding time). The bars indicate the 
means ± SEM. 
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6Aa,Ae,Ba,Be,C,D). On day 1 after tFI, the numbers of S100-astrocytes were slightly (not 
significantly) increased in both tFI groups (Figure 6Ab,Af,Bb,Bf,C,D). However, the 
numbers of S100-astrocytes in both layers were gradually and significantly increased in 
both groups from two days after tFI, showing that no significant difference in the num-
bers was shown between the two groups (Figure 6Ac,Ad,Ag,Ah,Bc,Bd,Bg,Bh,C,D): on 
day 5 after tFI, the number of the astrocytes was 2.4-fold in layer V and 2.2-fold in layer 
VI as compared to the sham group (Figure 6C,D).  

Figure 5. (A) Representative blot image and quantitative analysis of GFAP protein level in the
motor cortex of the mild sham, mild tFI, severe sham and severe tFI groups on days 1, 2 and 5 after
tFI. (B) Densitometric analysis of GFAP protein level by normalization to the level of β-actin. The
bars indicate the means ± SEM (n = 5, respectively; * p < 0.05, significantly different from mild or
severe sham group, # p < 0.05, significantly different from corresponding former time group, and
† p < 0.05, significantly different from mild tFI group at the corresponding time). The bars indicate
the means ± SEM.

2.3.3. S100-Immunoreactive Astrocytes

S100 immunohistochemistry was performed to evaluate the change in numbers of
astrocytes after tFI (Figure 6). In both sham groups, S100-immunoreactive astrocytes (S100-
astrocytes) were similarly detected in layers V and VI of the motor cortex
(Figure 6Aa,Ae,Ba,Be,C,D). On day 1 after tFI, the numbers of S100-astrocytes were slightly
(not significantly) increased in both tFI groups (Figure 6Ab,Af,Bb,Bf,C,D). However, the
numbers of S100-astrocytes in both layers were gradually and significantly increased in
both groups from two days after tFI, showing that no significant difference in the numbers
was shown between the two groups (Figure 6Ac,Ad,Ag,Ah,Bc,Bd,Bg,Bh,C,D): on day 5
after tFI, the number of the astrocytes was 2.4-fold in layer V and 2.2-fold in layer VI as
compared to the sham group (Figure 6C,D).

2.4. Damage to Astrocyte Endfoot
2.4.1. Double Immunofluorescence for GFAP and Glucose Transporter 1 (GLUT-1)

In GFAP immunohistochemical findings at five days after tFI, the ends of GFAP-
astrocyte processes became blunt. To examine the tFI-induced changes of astrocyte end-
feet (AEf), we performed double immunofluorescence for GFAP and GLUT-1. In both
sham groups, GFAP-immunoreactive AEf (GFAP-AEf) were detected around GLUT-1-
immunoreactive endothelial cells (Figure 7Aa,Ae,Ba,Be). On day 1 after tFI, GFAP-AEf were
not significantly altered in both groups (Figure 7Ab,Af,Bb,Bf). On day 2 after tFI, GFAP-AEf
tended to be blunt (damaged) altered in the severe tFI groups (Figure 7Ac,Ag,Bc,Bg). On
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day 5 after tFI, GFAP-AEf were apparently lost (damaged) around GLUT-1-endothelial
cells in both tFI groups (Figure 7Ad,Ah,Bd,Bh).
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2.4.2. Ultrastructural Finding

To confirm the tFI-induced damage of AEf, we investigated the changes of AEf in
layers V/VI after tFI using a transmission electron microscope (TEM) (Figure 8). In both
sham groups, the fine structure of AEf was easily distinguished: AEf had many mitochon-
dria and surrounded the basal membrane of endothelial cells, which were relatively thin
(Figure 8A,E). However, the structure of the AEf was markedly changed with time after
tFI. On day 1 after tFI, AEf became pale in the mild tFI group (Figure 8B); in contrast,
AEf in the severe tFI group was paler and had fewer mitochondria than in the mild tFI
group (Figure 8F). On day 2 after tFI, AEf in the mild tFI group became paler and had
fewer mitochondria, and, fortunately, we found that microglia (as resident macrophage
cells) contacted AEf (Figure 8C). In the severe tFI group, AEf was almost destroyed, and
mitochondria were severely damaged (Figure 8G). On day 5 after tFI, AEf looked like
a vacuole and with no mitochondria in both groups, showing that endothelial cells and
pericytes were severely damaged in the severe tFI group (Figure 8D,H).
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Figure 8. Electron micrographs of AEf around a blood vessel using TEM in the mild sham (A), mild
tFI (B–D), severe sham (B), and severe tFI (F–H) groups at one day (B,F), two days (C,G) and five
days (D,H) after tFI. In both sham groups, AEf has many mitochondria and surrounds the basal
membrane of endothelial cells (EC). AEf becomes damaged with time after tFI: in the severe tFI group,
the damage is more significant. On day 5 after tFI, AEf looks like a vacuole and no mitochondria were
in both groups: in the severe group, EC and pericyte (P) are severely damaged. Scale bar = 2.5 µm.
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3. Discussion

Histopathological assessment has revealed neuronal loss (death) in vulnerable regions
in the forebrain, such as the striatum, sensory and motor cortex, and hippocampus after
tFI [6–8,13]. Further, tFI in gerbils can lead to motor hyperactivity, such as an increase in
locomotion and rotation. The most remarkable change in motor behaviors is shown one
day after tFI in gerbils [3,26]. In the present study, one day after tFI, SMA was significantly
increased in the mild tFI group compared to that in the sham group. In addition, SMA
in the severe tFI group was significantly higher (1.6-fold) than that in the mild tFI group.
These findings indicate that increased SMA is closely associated with a transient response
following tFI.

The degree of neuronal damage or death (loss) in the forebrain following IR injury
is different according to the brain structure or regions. Studies using monkeys [27] and
rats [28,29] have shown that neurons in the cerebral motor cortex are damaged following
IR injury in the forebrain. However, these neurons are significantly more resistant to IR
injury than neurons located in the hippocampal CA1 region. In addition, neuronal loss
(death) in the motor cortex is more delayed than that in the mouse hippocampus after IR
injury [30]. Moreover, cerebral cortical injury in the forebrain following IR is significantly
different according to the duration of tFI. For example, in a mouse model of transient global
cerebral ischemia, Chen et al. (2009) have shown that the severity of cortical injury tends to
be increased according to ischemic duration [12]. Additionally, Murakami et al. (1998) have
reported that tissue injury in the cerebral cortex is more severe after increasing ischemic
duration in a rat model of transient focal cerebral ischemia [31]. In our current study,
tFI-induced neuronal death occurred mainly in layers V and VI of the motor cortices of
both mild (5-min) and severe (15-min) tFI groups, with neuronal loss in the severe tFI group
being significantly higher than that in the mild tFI group. Studies using gerbils have shown
that the number of neurons located in the cerebral motor cortex is significantly reduced
compared to that in the sham group after tFI is induced by unilateral or bilateral common
carotid artery occlusion [5,25,26]. In particular, Ahn et al. (2019) reported that many and
numerous F-J B-cells (dead cells) were detected in layers II-III and V-VI, respectively, in
the gerbil motor cortex on day 5 after 30 min of ligation of the unilateral common carotid
artery [4]. Furthermore, in gerbil models of tFI for 5 min and 15 min, the number of F-J
B-cells in the somatosensory cortex, following a 15-min tFI, is significantly higher than
that in the 5-min tFI [7]. Findings of the present study indicate that tFI-induced neuronal
death in the motor cortex occurs layer-specifically and primarily in the deep layers and that
tFI-induced neuronal death in the deep layers might occur even earlier and more severely
in the severe tFI group than in the mild tFI group.

Astrogliosis is also referred to as reactive astrogliosis, which is an abnormal increase
in the number of astrocytes with the destruction of neurons due to CNS damages or
diseases [32,33]. Other terms, such as “activation of astrocytes” or “activated astrocytes”
are used to refer to astrocyte responses to damage or diseases in the CNS [33]. In this
paper, we used “astrogliosis” and “reactive astrocytes” for astrocyte responses associated
with tFI. The position of reactive astrocytes has been a controversial subject. According
to many studies, reactive astrocytes have double-sidedness (both beneficial and harmful
effects) [32,34]. Emerging data in ischemic stroke suggest that reactive astrocytes can exert
both beneficial and detrimental effects following an ischemic stroke: (1) reactive astrocytes
can provide neuroprotective effects and contribute to the restoration, and (2) they can also
secrete inflammatory modulators, leading to exacerbation of an ischemic lesion [3]. Some
studies have shown that, in gerbil models of IR injury, GFAP-astrocytes are hypertrophied
and significantly increased in their number in the ipsilateral primary motor cortex on day
5 after unilateral common carotid artery occlusion [4]. In addition, reactive astrocytes
are more significantly increased in the hippocampus after a longer duration of tFI [4,13].
Lee et al. (2013) have reported that GFAP expression in astrocytes is stronger in the
gerbil somatosensory cortex after a 15-min tFI than that after a 10-min tFI, indicating that
astrogliosis and neuronal death/damage were apparently increased following a longer time
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of IR [7]. In the present study, GFAP expression in the gerbil motor cortex was significantly
higher in severe tFI than in mild tFI. However, only a few papers have shown that the
degeneration of astrocytes occurs in ischemic areas following IR injury. Ito et al. (2009)
reported that the processes of astrocytes were degenerated in cerebral cortical regions after
IR injury in gerbils and suggested that the heterogeneity of their disintegration might
be closely associated with selective neuronal loss (death) following IR injury [35]. In the
present study, tFI-induced changes of astrocytes in layers V and VI, where neuronal death
occurred in both tFI groups, showed that GFAP-astrocytes became enlarged and GFAP
immunoreactivity was significantly higher in the severe tFI group than in the mild tFI
group; however, numbers of astrocyte processes were significantly reduced and the ends
of these processes seemed to be cut (blunt). In addition, the number of S100-astrocytes
was gradually increased in layers V and VI after tFI. This finding could be supported by
previous studies reporting that the proliferation of astrocytes occurs within a few days after
ischemic insults and that proliferating astrocytes play a critical role in the development of
astroglial scar [36–38].

It is well known that the BBB in normal CNS is composed of four main cellular
elements: endothelial cells, AEf, pericytes and microglial cells. In particular, AEf can
support capillary endothelial cells to contribute to BBB integrity in normal CNS. Disruption
of BBB components and/or BBB damage can occur following an ischemic injury [39,40].
Therefore, maintenance of BBB integrity has been thought to be very important to reduce
brain damage following an ischemic injury [41–43]. As described above, in this study,
ends of GFAP-astrocyte processes (AEf) were blunt at five days after tFI. When they (AEf)
were examined around capillaries using double immunofluorescence for GFAP/GLUT-1
and TEM, they were damaged early and severely in the mild tFI group after tFI when
compared with the severe tFI group. Mitochondria in AEf were more severely destroyed in
the severe tFI group than in the mild tFI group. AEf in both groups was hardly detected at
five days after tFI and from two days after tFI, respectively. For the change of mitochondria
following ischemic insults, it has been reported that mitochondria in the astrocyte processes
degenerate in cerebral cortical regions after IR injuries in gerbils [35].

4. Materials and Methods
4.1. Animals

The protocol of all animal experiments in this study was approved (approval no., KW-
2000113-1) on 13 January 2020 by the Ethics Committee of Kangwon National University
(Chuncheon, Korea). We did our best to minimize animal suffering during the whole
experiment. We used male gerbils (Meriones unguiculatus; six months of age, 75–85 g
of body weight) in order to minimize the effects of hormones. They were housed in a
pathogen-free environment under standard conditions, such as controlled temperature
(about 23 ◦C) and humidity (about 60%) on a 12:12 h light–dark cycle.

The gerbils (total n = 142) were grouped as follows: (1) mild sham group (n = 26)
which was given the sham tFI operation for five minutes, (2) mild tFI group (n = 45) which
was given the tFI operation for five minutes, (3) severe sham group (n = 26) which was
given the sham tFI operation for 15 min, and (4) severe tFI group (n = 45) which was
given the tFI operation for 15 min. In all tFI groups, the gerbils (n = 7, respectively, for
immunohistochemistry; n = 5, respectively, for Western blotting; n = 3, respectively, for
ultrastructure) were sacrificed on one day, two days and five days after tFI (Figure 9). In all
sham groups, the gerbils (n = 5, respectively, for immunohistochemistry; n = 5, respectively,
for Western blotting; n = 3, respectively, for ultrastructure) were sacrificed at 0 h and five
days after sham tFI to reduce the numbers.
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Figure 9. Experimental procedure. Gerbils are given five- and 15-min tFI, respectively, for mild and
severe ischemia and reperfusion injury. Open field test (for change of motor activity) was performed
on day 1 after tFI, and the gerbils were sacrificed on days 1, 2 and 5 after tFI for the examination of
histopathological and biochemical changes.

4.2. Induction of tFI

The surgical procedure of tFI was carried out, as described in our previous study [13].
In short, the gerbils were anesthetized with isoflurane (4 L/min, 2.5%). Under the anesthe-
sia, bilateral common carotid arteries (BCCA) were isolated from the carotid sheath and
ligated with clips (0.69 N; Yasargil FE 723 K; Aesculap Inc., Tuttlingen, Germany) for five
minutes to develop mild tFI and 15 min to develop severe tFI. Using a HEINE K180 ophthal-
moscope (Heine Optotechnik, Herrsching, Germany), right and left central arteries located
in the retinae were observed in order to confirm the complete blockade of BCCA. The clips
were removed after perfect tFI. During the tFI induction, body temperature was controlled
at normothermic conditions (37 ± 0.1 ◦C) using a TR-100 rectal temperature probe (Fine
Science Tools, Foster City, CA, USA). For the sham tFI operation, an identical surgical
procedure was carried out without BCCA ligation. After the sham and tFI operation, the
operated gerbils were kept under 24 ± 1 ◦C temperature and 55 ± 5% relative humidity.

4.3. Open Field Test

The open field test is a test used to evaluate general locomotor activity levels in
animals (usually rodents) in scientific research. In this experiment, SMA was evaluated
to investigate the change in tFI-induced hyperactivity one day after tFI. As described
previously [13], each gerbil was placed in the open field cage (44 cm at its width, 44 cm at
its length, and 30 cm at its height; Ugo Basile S.R.L., Gemonio, Italy) for one hour. The total
traveled distance was recorded using an Ethovision XT 9 automatic video system (Noldus
Information Technology, Wageningen, The Netherlands). In this experiment, the cage was
wiped with 70% ethyl alcohol after each test to obliterate body odor, which could affect the
movement of the other gerbils.

4.4. Tissue Preparation for Histopathology

Brain tissue sections were prepared, as previously described [4,44]. In brief, the
gerbils were deeply anesthetized by intraperitoneal injection of 200 mg/kg pentobarbital
sodium. Under the deep anesthesia, the gerbils were washed (six mL/min of flow rate
and 60 mL of total perfused volume) with 0.1 M phosphate-buffered saline (pH 7.4) and
fixed with 4% paraformaldehyde (in 0.1 M phosphate buffer, pH 7.4). The removed brains
were more fixed in the same fixative and infiltrated with 25% sucrose to protect the tissue
from freezing-induced damage. Using an SM2010 R sliding microtome (Leica Biosystems,
Wetzlar, Germany) equipped with a BFS-40 MP freezing stage (Physitemp Instruments Inc.,
Clifton, NJ, USA), 30-µm coronal sections were made.
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4.5. Stainings for Cell Damage/Death
4.5.1. CV Histochemistry

CV staining was conducted to investigate cellular change (damage) in the motor cortex
following tFI. As previously described [4], the sections were incubated in 0.1% CV acetate
(Sigma-Aldrich Co., St. Louis, MO, USA) for 25 min at room temperature. After washing,
the sections were decolorized in 50% ethyl alcohol for five minutes. Thereafter, the sections
were dehydrated through a series of ethanol (ending in 100% ethanol) and cleared in xylene.
Lastly, the stained sections were coverslipped with Canada balsam (Kanto Chemical Co.,
Inc., Tokyo, Japan).

The CV-stained cells were captured using a BX53 microscope (Olympus, Tokyo, Japan)
equipped with a DP72 digital camera (Olympus, Tokyo, Japan) and cellSens imaging
software (Olympus, Tokyo, Japan).

4.5.2. F-J B Histofluorescence

F-J B histofluorescence was carried out to examine tFI-induced neuronal loss (death)
in the motor cortex. As described in previous studies [4,45], in brief, the sections were
drenched in 0.06% potassium permanganate (Sigma-Aldrich Co., St. Louis, MO, USA) for
30 min at 25 ◦C and concisely rinsed with distilled water. Thereafter, the sections were
incubated with 0.0004% F-J B (Histo-chem Inc., Jefferson, AR, USA) in 0.1% acetic acid for
40 min at room temperature. After washing, the sections were fully dried in a WiseVen®

WOC High Clean Air Oven (Daihan Scientific Co Ltd., Wonju, Korea) at 45 ◦C for six
hours. Finally, the sections were cleared in xylene and coverslipped with dibutyl phthalate
polystyrene xylene (DPX; Sigma-Aldrich Co., St. Louis, MO, USA).

To count the F-J B positive cells, five sections per gerbils were used. According to a
previous report [46], the F-J B positive cells were observed using a BX53 epifluorescent
microscope (Olympus, Tokyo, Japan). The F-J B positive cells were captured and counted
in 140 × 140 µm at the center of layers V and VI, respectively. The mean number of F-J B
cells was calculated using NIH Image 1.59 software (NIH, Bethesda, Rockville, MD, USA).

4.5.3. Immunohistochemistry for Astrocytes

Immunohistochemical staining was performed to investigate changes in astrocytes
in the motor cortex following tFI. In brief, as described using the avidin-biotin complex
method [4,45], the sections were washed with 0.1 M phosphate-buffered saline (pH 7.4) and
immersed in 0.3% hydrogen peroxide for 20 min at room temperature to reduce endogenous
peroxidase activity. After washing, the sections were incubated in 5% normal horse or
goat serum for 30 min at room temperature in order to block non-specific immunoreaction.
After washing, the sections were immunoreacted with primary antibodies (GFAP and S100
protein) for astrocytes (Table 1) for 48 h at 4°C. Subsequently, the sections were incubated
in each biotinylated secondary antibody (Table 1) for two hours at room temperature
followed by avidin-biotin complex (diluted 1:300; Vector Laboratories, Burlingame, CA,
USA) for two hours at room temperature. After washing, the sections were soaked in
0.06% 3,3′-diaminobenzidine tetrahydrochloride (DAB; Sigma-Aldrich Co, St Louis, MO,
USA) (in 100 mM phosphate-buffered saline containing 0.1% H2O2). Finally, the sections
were dehydrated through a series of ethanol and cleared in xylene, and coverslipped with
Canada balsam (Kanto Chemical Co., Inc., Tokyo, Japan).

To quantitatively evaluate the immunoreactivity of GFAP-immunostained structure,
its digital image was taken using a BX53 upright microscope (Olympus, Japan) and ana-
lyzed according to our published protocol [4]. Briefly, the captured GFAP-immunostained
structure was represented as relative optical density (ROD) using Adobe Photoshop 8.0
(Adobe Inc., San Jose, CA, USA) and NIH Image software 1.59 (NIH, Bethesda, MD, USA).
ROD was calibrated as % compared to the sham group (100%).

The numbers of S100-immunostained cells were evaluated, as previously described [21].
Briefly, the digital images of the cells were captured using a BX53 upright microscope (Olym-
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pus, Japan). The captured cells were counted and evaluated using Optimas 6.5 (an image
analyzing system; CyberMetrics, Scottsdale, AZ, USA).

Table 1. Primary and secondary antibodies for immunohistochemical staining.

Primary Antibodies Dilution Suppliers

Mouse anti-glial fibrillary acidic protein (GFAP) 1:800 Merck-Millipore, Burlington, MA, USA
Rabbit anti-S100 protein (S100) 1:1000 Abcam, Cambridge, UK

Secondary Antibodies Dilution Suppliers

Biotinylated horse anti-mouse IgG 1:250 Vector Laboratories Inc., Burlingame, CA, USA
Biotinylated goat anti-rabbit IgG 1:250 Vector Laboratories Inc., Burlingame, CA, USA

4.6. Western Blotting of GFAP

Western blot analysis for GFAP was performed in the motor cortex according to
previously described methods [8,45]. In short, the gerbils were deeply anesthetized by
intraperitoneal administration of 200 mg/kg pentobarbital sodium and sacrificed. Immedi-
ately, their brains were removed, and cortical tissues were collected, homogenized and total
protein was extracted using RIPA buffer (CoWin Biosciences Inc., Cambridge, MA, USA).
The BCA Protein Assay kit (QuantiPro™, Sigma-Aldrich Inc., St Louis, MO, USA) was used
in order to measure the GFAP protein concentration. Total protein (30 µg) was separated
using 10% SDS-PAGE and then transferred onto nitrocellulose membranes of Pall Co. (East
Hills, NY, USA). To block non-specific staining, the membranes were incubated in 5%
defatted milk for 60 min. Subsequently, the membranes were immunoreacted with mouse
anti-GFAP (diluted 1:1100; Chemicon International, Temecula, CA, USA) for 24 h at 4 ◦C
and then incubated in peroxidase-conjugated secondary antibody as donkey anti-mouse
IgG (diluted 1:4000; Santa Cruz Biotechnology, Santa Cruz, CA, USA) for 60 min. The
signals were developed using a luminol-based chemiluminescence kit by Pierce (Thermo
Fisher Scientific Inc., Waltham, MA, USA).

The protein bands were visualized using a Bio-Rad imaging system obtained from
Bio-Rad Laboratories Inc. (Hercules, CA, USA) and quantified using ImageJ (version 1.52)
of the National Institutes of Health (Bethesda, MD, USA).

4.7. Double Immunofluorescence for GFAP/GLUT-1

To distinguish astrocyte endfeet from endothelial cells in BBB, double immunofluorescence
was conducted, as previously described [8,47]. In brief, the sections were immunostained with
primary antibodies: mouse anti-GFAP (diluted 1:1000; Merck-Millipore, Burlington, MA, USA)
and rabbit anti-GLUT-1 (a marker for endothelial cells) (diluted 1:100; Chemicon, Temecula,
CA, USA) at 4 ◦C for nine hours. After briefly washing, the sections were incubated in the
mixture of goat anti-rabbit IgG conjugated with IgG Alexa Fluor® 546 (diluted 1:500; Invitrogen,
Waltham, MA, USA) and donkey anti-mouse IgG conjugated with Alexa Fluor® 488 (diluted
1:500; Invitrogen). Thereafter, the sections were washed and dehydrated. The immunostained
sections were finally coverslipped with DPX (Sigma-Aldrich Co., St. Louis, MO, USA).

The double immunoreaction of GFAP and GLUT-1 was observed using a Zeiss LSM510
confocal microscope (Carl Zeiss, Oberkochen, Germany), which was located in the Korea Basic
Science Institute (KBSI; Chuncheon, Korea).

4.8. Ultrastructural Examination of Astrocyte Endfeet

The gerbils were perfused intracardially with normal saline and fixed rapidly with 4%
glutaraldehyde (in phosphate-buffered saline) at 4 ◦C. The motor cortices were isolated and
post-fixed with 1% osmium tetroxide for two hours. Subsequently, the tissues were dehydrated
through the ethanol series and acetone and embedded in Epon812 epoxy resin (PELCO Eponate
12TM Kit; Clovis, CA, USA) according to general methods. Thereafter, the embedded tissues
were cut into 50-nm thickness using a UC-7 ultramicrotome (Leica Biosystems, Wetzlar, Ger-
many) and placed on copper grids. Thereafter, the sections were stained using uranyl acetate,
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and ultrastructural changes following tFI were observed using a Philips EM400 transmission
electron microscope (Koninklijke Philips N.V., Amsterdam, The Netherlands).

4.9. Statistical Analysis

Statistical analyses were performed using SPSS software 15.0 (SPSS Inc., Chicago, IL, USA)
for statistical analysis. In addition, the Kolmogorov–Smirnov test was used to measure normal
distributions, and Bartlett’s test was used to evaluate the identical standard error of the mean
(SEM). Furthermore, all data were taken for the normality test. The statistical significances of
the means were determined by two-way ANOVA, followed by a post hoc Tukey’s test for all
pairwise multiple comparisons. A value of p-value less than 0.05 was considered significant.

5. Conclusions

In conclusion, this study showed that astrogliosis (reactive astrocytes) occurred before
neuronal damage/death in layers V and VI of gerbil cerebral motor cortices after tFI and that
tFI-induced changes were more advanced in severe tFI than in mild tFI. In particular, AEf
damage/disruption preceded neuronal damage/death in both mild and severe tFI, showing
that AEf damage following severe tFI was more significant than that following mild tFI. These
results indicate that the severity of neuronal damage/loss following ischemic insults might be
closely associated with the degree of AEf damage/disruption under various ischemic impacts.
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