
Acta Physiologica. 2022;236:e13888.	 ﻿	    |  1 of 14
https://doi.org/10.1111/apha.13888

wileyonlinelibrary.com/journal/apha

Received: 7 June 2022  |  Revised: 9 September 2022  |  Accepted: 18 September 2022

DOI: 10.1111/apha.13888  

R E V I E W  A R T I C L E

Uremic toxins in chronic kidney disease highlight a 
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Abstract
Chronic kidney disease (CKD) and cardiovascular disease (CVD) have an esti-
mated 700–800 and 523 million cases worldwide, respectively, with CVD being 
the leading cause of death in CKD patients. The pathophysiological interplay be-
tween the heart and kidneys is defined as the cardiorenal syndrome (CRS), in 
which worsening of kidney function is represented by increased plasma concen-
trations of uremic toxins (UTs), culminating in dialysis patients. As there is a high 
incidence of CVD in CKD patients, accompanied by arrhythmias and sudden car-
diac death, knowledge on electrophysiological remodeling would be instrumental 
for understanding the CRS. While the interplay between both organs is clearly of 
importance in CRS, the involvement of UTs in pro-arrhythmic remodeling is only 
poorly investigated, especially regarding the mechanistic background. Currently, 
the clinical approach against potential arrhythmic events is mainly restricted to 
symptom treatment, stressing the need for fundamental research on UT in rela-
tion to electrophysiology. This review addresses the existing knowledge of UTs 
and cardiac electrophysiology, and the experimental research gap between fun-
damental research and clinical research of the CRS. Clinically, mainly absorbents 
like ibuprofen and AST-120 are studied, which show limited safe and efficient us-
ability. Experimental research shows disturbances in cardiac electrical activation 
and conduction after inducing CKD or exposure to UTs, but are scarcely present 
or focus solely on already well-investigated UTs. Based on UTs data derived from 
CKD patient cohort studies, a clinically relevant overview of physiological and 
pathological UTs concentrations is created. Using this, future experimental re-
search is stimulated to involve electrophysiologically translatable animals, such 
as rabbits, or in vitro engineered heart tissues.

K E Y W O R D S

cardiac electrophysiology, cardiorenal syndrome, chronic kidney disease, uremic toxins

www.wileyonlinelibrary.com/journal/apha
https://orcid.org/0000-0002-6621-148X
mailto:﻿￼
https://orcid.org/0000-0002-4775-5924
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:a.a.b.vanveen@umcutrecht.nl


2 of 14  |      van HAM et al.

1   |   INTRODUCTION

Global prevalence of chronic kidney disease (CKD) 
is estimated at 700–800 million cases worldwide.1–3 
Simultaneously, cardiovascular disease (CVD) is esti-
mated to include 523 million cases,2 with CVD accounting 
for approximately 50% of all deaths in CKD patients.4 In 
advanced staged CKD patients, the incidence of cardiac 
arrhythmias and sudden cardiac death (SCD) is estimated 
around 25%.5–7 Under pathophysiological conditions, this 
bidirectional interaction between the heart and kidneys is 
defined as the cardiorenal syndrome (CRS).8,9 In CRS, the 
bidirectional dysfunction of heart and kidneys initiates 
a cascade of neurohormonal adaptations, hemodynamic 
changes, inflammation, and oxidative stress, resulting in 
progressive damage to both organs (Figure  1).4,10,11 The 
five ascending stages of CKD emphasize a gradual loss 
of kidney function, eventually deteriorating to end-stage 
renal disease (ESRD). Characteristic of CKD progression 
is the elevation of uremic toxin (UTs) concentrations and 
other damaging proteins, such as fibroblast growth fac-
tors.12–14 Due to the damaged kidneys, uremic solutes can-
not be filtered and excreted sufficiently, with potentially 
pathological consequences that result from their accumu-
lation.15 Therefore, ESRD patients are mainly depending 
on dialysis, as transplantable kidneys are scarcely avail-
able. However, during dialysis small molecules diffuse 
rather quickly when compared to the larger molecules or 
protein-bound uremic toxins (PBUTs), resulting in the ac-
cumulation of these toxins in the blood as they fail to be 
removed.16,17

The potential involvement of UTs in cardiac electro-
physiological remodeling and its underlying molecular 

mechanisms remain poorly understood. Increased inci-
dence of arrhythmias in dialysis patients has also been 
linked to fluid shifts and fluctuation of potassium con-
centrations,5,18 whereas correlations of elevated UT lev-
els with worsened patient outcomes are also shown.19–21 
However, elaborative experimental studies investigating 
molecular and functional electrophysiological pathology 
are scarcely performed.

This review discusses electrophysiological research 
performed on UTs and CKD. First by briefly describing 
UTs and cardiac electrophysiology, the occurrence of ar-
rhythmias in CKD and the roles of potassium concentra-
tions and the autonomic nervous system. Then, clinically 
orientated studies will be listed, which mainly focus on 
improving UT filtering during dialysis in ESRD patients. 
Subsequently, experimental studies investigating electro-
physiological mechanics are discussed, containing both in 
vivo and in vitro designs. Finally, there is an increasing 
need for future experimental UT research on cardiac elec-
trophysiology to effectively address the consequences of 
UTs which ultimately would allow to develop treatment 
improvements for CKD patients.

2   |   PROTEIN-BOUND UREMIC 
TOXINS

In the past decade, UTs were uncovered as important 
regulators in the CRS, especially PBUTs.12,15,20 PBUTs 
are relatively small solutes (<500 Dalton) which have a 
high affinity to plasma proteins such as albumin. While 
the majority of research is focused on two PBUTs, being 
indoxyl sulfate (IS) and p-cresyl sulfate (pCS), many 

F I G U R E  1   Progressive co-dysfunction of heart and kidneys defines the cardiorenal syndrome. Chronic kidney dysfunction progressively 
causes injury to the kidneys, while also leading to accumulation of uremic toxins and electrolyte disturbances, worsening functionality of the 
heart. Continuous dysfunction of the heart subsequently can cause vascular damage and hypoperfusion in the kidneys, further establishing 
this vicious cycle of disease.
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other PBUTs exist.22 Most of the PBUTs are liver or 
intestinal-derived metabolic products that are released 
into the circulation and subsequently filtered from the 
blood by the kidneys.23 Several review manuscripts have 
been published describing the pathological effects of se-
lected UTs in both heart and kidney, including increased 
inflammation, fibrosis formation, oxidative stress, and 
hypertrophy.12,23,24

UTs, specifically IS, have been shown to increase both 
gene expression and protein levels of tumor necrosis fac-
tor alpha (TNF-α) and the interleukins 1β and 6 (IL-1β and 
IL-6).25,26 Additionally, elevated gene expression of trans-
forming growth factor beta (TGF-β) and connective tissue 
growth factor (CTGF) substantiated the increased fibro-
sis formation in the heart, as well as in the kidneys.23,27 
Markers of myocardial hypertrophy, such as α-skeletal 
muscle actin and β myosin heavy chain, are also increased 
in nephrectomized rats and isolated cardiomyocytes.27,28 
All these processes are activated by signaling nodes that 
involve the nuclear factor kappa-light-chain-enhancer of 
activated B cells (NFκB) and mitogen-activated protein 
kinase (MAPK),26–28 as a consequence of elevated oxida-
tive stress.23,29,30 Although the effects evoked through el-
evation of individual concentrations of UTs are not often 
investigated in animal studies, as the serum contains an 
array of UTs and non-standardized concentrations, these 
pathological effects are directly associated with the detri-
mental activity of elevated levels of at least IS, pCS, but 
also indole-3 acetic acid (IAA).31

2.1  |  Uremic concentrations in patients

Based on studies implementing clinical cohorts,24,32–34 
as well as a comprehensive literature analysis by the 
European Uremic Toxin Work Group,14,22 concentration 
ranges can be made of physiological and pathological UT 
levels. While increasing UT concentrations can already be 
measured in early CKD stages,32 serum analysis is mainly 
performed in ESRD and dialysis patients. Based on these 
datasets, an overview of several PBUTs and their respec-
tive total concentrations was designed (Figure  2). Both 
physiological (shown in green) and pathological (shown 
in red) concentrations can highly vary between patients, 
complicating the establishment of a definitive toxic con-
centration of most UTs. The UTs with the highest patho-
logical concentrations, including IS, pCS, and hippuric 
acid (HIP), also claim the majority of recognition in the 
scientific research field. This also accounts for the non-UT 
fibroblast growth factor 23 (FGF23). However, it could be 
advantageous to investigate UTs of which the physiologi-
cal and pathological concentrations are relatively close, as 
the border to toxicity is crossed more easily.

3   |   C A R D I AC 
E L ECT RO P H Y S I O LO GY A N D 
A R R H Y T H M I A S

Alterations in cardiac electrophysiology underlying in-
creased arrhythmic risk can be investigated at different 
levels. The initiation and morphology of cardiac action 
potentials (APs), the intracellular calcium homeostasis, 
or the propagation of the APs from cell to cell can all be 
disturbed. Establishing the influence of PBUTs on any 
of the molecular pathways is valuable to understand the 
pro-arrhythmic risk in CKD patients. In the past decade, 
the atria have been the most intensively investigated tis-
sue regarding the relation between elevated UTs and ar-
rhythmias, as the prevalence of atrial fibrillation (AF) is at 
least twice as high in CKD patients compared to non-CKD 
populations,21,35 and especially, this applies to the dialysis 
population.36–38

3.1  |  Action potentials, calcium 
transients, and impulse propagation

The cardiac action potential is the summation of multiple 
ion currents, originating from ions passing the cell mem-
brane through specific ion channels, where shortening 
or prolongation of the action potential duration (APD) 
is the consequence of alterations in density of these cur-
rents (Figure  3).39 The resting membrane potential of a 
cardiomyocyte is mainly stabilized by the inward recti-
fier potassium current (IK1) and is the main characteristic 
influencing excitability of a single cell (phase 4). Influx 
of Na+ through sodium channels (INa) rapidly depolar-
izes the cell membrane, which is the first step of the AP 
(phase 0). The transient outward potassium current (Ito) 
causes a small period of initial repolarization (phase 1), 
directly followed by the influx of Ca2+ (ICa,L), which tem-
porarily leaves the membrane potential at a plateau phase 
because of a balance due to the simultaneous initiation of 
potassium efflux currents (phase 2). Further conductance 
of these rapid and slow delayed rectifier potassium cur-
rents (IKr and IKs, respectively) repolarizes the membrane 
potential (phase 3), which is ultimately accomplished by 
the IK1 current that brings the cell back to its initial rest-
ing membrane potential. The sodium/calcium exchanger 
(NCX) and the sodium/potassium ATPase (NKA) both 
support IK1 in maintaining the resting membrane poten-
tial until the next depolarization (phase 4).

Simultaneously its role in the plateau phase, ICa,L trig-
gers the Ca2+ release from the sarcoplasmic reticulum 
(SR) via activation of the ryanodine receptor (RyR), a 
phenomenon which is described as calcium-induced cal-
cium release (phase A). The subsequent large increase in 
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cytosolic Ca2+, reflected through the calcium transient 
(CaT), facilitates the calcium-dependent contraction of 
the sarcomeres. Lowering cytosolic Ca2+ during relax-
ation is mainly achieved by pumping the Ca2+ back into 
the SR, via the sarco/endoplasmic reticulum Ca2+ ATPase 
(SERCA), or out of the cell via NCX (phase B).40

Propagation of APs between cardiomyocytes facil-
itates the organized contraction of the myocardium. 
Pathophysiological remodeling resulting in an increased 
heterogeneity between cardiomyocytes, either in elec-
trical or mechanical coupling, can affect conductivity.41 
The specific subcellular region that regulates electrome-
chanical coupling between cardiomyocytes is named the 
intercalated disk (ID).42,43 The ID consists of adherens 
junctions and desmosomes, which provide structural sup-
port between cardiomyocytes and gap junctions, that pro-
vide electrical and metabolic coupling of cardiomyocytes. 
The gap junctions are formed by two connexon hemichan-
nels, each one delivered by the two connecting cells. These 

connexons are composed of six connexin (Cx) proteins, 
with Cx43 being the main isoform found in the ventricu-
lar myocardium.44 The normal spatio-temporal pattern of 
conduction throughout the heart is initiated in the sinus 
node in the right atrium and runs via the atrio-ventricular 
node, through the ventricular septum, towards the free 
wall of both ventricles. The subsequent electrical activa-
tion of different parts of the heart in space and time is 
represented in an electrocardiogram (ECG), in which the 
direction and intensity of the electrical activity are shown 
in respect to electrodes attached to body.

3.2  |  Arrhythmias

Impaired integrity of the protein complexes at the ID and 
a reduction in intercellular electrical communication 
hampers coupling causing a decreased conductivity across 
the myocardium. Increased fibrosis formation, consisting 

F I G U R E  2   Overview of clinically relevant experimental total uremic toxin concentrations. Physiological (in green) and pathological 
(in red) serum concentrations of uremic toxins in patients vary extremely, but can be used to create an experimental (in blue) concentration 
range that spans both conditions. Using these concentrations, experiments can be designed to specifically define pathologic concentrations 
for individual uremic toxins.
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of relatively poorly conductible tissue, can electrically in-
sulate cardiomyocytes, which forms physical conduction 
barriers in addition to slowing intercellular AP propaga-
tion.45 This might lead to a conduction path that no longer 
follows the traditional propagation route, but rather dis-
perses autonomously and repeatedly through a limited 
region, which is named a reentry arrhythmia.

Ion channel expression and protein levels impeded intracel-
lular trafficking and insertion into the sarcolemma, and chan-
nel kinetics or blockade all impact current densities, thereby 
influencing the morphology of the AP. An important example 
of channels that are sensitive to modulation are channels con-
ducting IKr, as many chemicals and biological products have a 
high affinity for these channels.46 Blockade of this channel de-
creases IKr, which prolongs the repolarization phase and thus 
APD. During this period of prolongation, INa and ICa,L can flow 
due to re-activated channels, giving rise to spontaneous early 
after depolarizations (EADs), often a characteristic of ectopic 
activity which is considered being pro-arrhythmic. Due to this, 
electrical activation can occur at locations other than the sinus 
node, indicating by an electrical storm on the ECG. Fortunately, 
under physiological conditions other potassium currents can 
compensate for the lack of, for example, IKr, which is considered 
as a ‘repolarization reserve’ of the myocardium.

Although prolonged existence of sodium or calcium 
currents during the repolarization can cause EADs, SR 
calcium leakage via RyR or calcium influx via Cx43 
hemichannels during the resting phase can cause de-
layed afterdepolarizations (DADs).47,48 While DADs can 

trigger ectopic activity similar to EADs, the premature 
activation of cardiac tissue can also cause electrical con-
duction block, which is, similar to a physical conduction 
block by increased collagen deposition, an instigator of 
reentry.

4   |   ARRHYTHMOGENICITY IN 
CHRONIC KIDNEY DISEASE

Alternative disturbances introduced by CKD that af-
fect cardiac electrophysiology are also important pro-
arrhythmic factors. In particular, imbalance in serum 
potassium concentrations and autonomic nervous system 
dysfunction indirectly can also partially be contributed to 
the accumulation of UTs. Before describing clinical and 
experimental research on cardiac electrophysiology in-
duced by UTs, these mechanisms will be described to fully 
cover arrhythmogenicity in CKD.

4.1  |  Hypokalemia and hyperkalemia

High intracellular and low extracellular potassium are 
the main determinants of the negative resting mem-
brane potential, which prevents spontaneous excit-
ability of cardiomyocytes. Simultaneously, this balance 
establishes an outward driving force for potassium cur-
rents. Fluctuation of serum potassium concentrations 

F I G U R E  3   Representation of cardiac ion currents, orchestrating the morphology of action potentials and calcium transients. The 
cardiac action potential starts with an inflow of sodium ions (INa) depolarizing the cardiomyocyte (phase 0). As the sodium channels 
inactivate, the transient outward potassium current (Ito) causes an initial repolarization (phase 1). This is followed by the influx of calcium 
ions (ICa,L), as well as an efflux of potassium ions (IKr and IKs), which brings the membrane potential at a plateau (phase 2). Further 
conductance of IKr and IKs strongly repolarizes the membrane potential (phase 3). Finally, the cell is brought to a resting membrane 
potential by the inward rectifier potassium current (IK1), with support of the sodium/calcium exchanger (NCX) and the sodium/potassium 
pump (phase 4). Simultaneously to causing the plateau phase, ICa,L triggers the calcium release from the sarcoplasmic reticulum (SR) via 
activation of the ryanodine receptor (RyR), a phenomenon which is described as calcium-induced calcium release, reflected through the 
rise of a calcium transient (phase A). Decay of cytosolic calcium is mainly achieved by pumping the calcium back into the SR, via the sarco/
endoplasmic reticulum Ca2+ ATPase (SERCA), or out of the cell via NCX (phase B). Propagation of action potentials to neighboring cells is 
partly facilitated by connexon hemichannels.
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to abnormal low and high extremes is a problematic 
clinical manifestation, especially in CKD patients.49 The 
kidney plays a pivotal role in the regulation of serum po-
tassium levels, with a diminished kidney filtration being 
a predictor of hyperkalemia (>5.0 mEq/L potassium).50 
Additionally, nutrition, medication, and dialysis also 
significantly influence serum potassium51 and can sway 
it to both hyperkalemia and hypokalemia (<4.0 mEq/L 
potassium). Interestingly, while hyperkalemia is a 
widely acknowledged issue in CKD, the prevalence 
of both hyper-  and hypokalemia is similar and esti-
mated around 12–20% in the CKD population.49,50 
Consequently, alterations in potassium metabolism can 
result in detrimental cardiac rhythm abnormalities. As 
in ESRD patients, blood volume and electrolyte levels 
alternate often after dialysis, this could partly explain 
the high incidence of arrhythmias in that population.5,18

During hypokalemia, the resting membrane potential 
is hyperpolarized, and a larger outward driving force for 
potassium is present. However, repolarization currents 
such as IK1 and IKr have alternate methods of regulation 
which result in a decreased outward current. IK1 is nat-
urally blocked by voltage-dependent polyamines and 
magnesium, which in turn can be removed by extracel-
lular potassium.52 Low extracellular potassium would 
therefore stabilize IK1 block. The inactivation rate of IKr 
as well as its ion channel expression are influenced by 
potassium, with hypokalemia resulting in enhanced in-
activation and decreased expression.53,54 These decreased 
currents lower the repolarization reserve and prolong the 
APD, thereby increasing susceptibility to EADs and trig-
gered activity.55 Alternatively, the hyperpolarization of 
the membrane potential and lowered extracellular potas-
sium inhibit NKA activity. This leads to increased cyto-
solic sodium, which diminishes NCX activity, eventually 
leading to increased cytosolic calcium.56 Ultimately, 
this calcium overload may induce DADs and associated 
rhythm abnormalities.

Opposite to that, during hyperkalemia the resting 
membrane potential depolarizes, initially leading to in-
creased excitability due to the potential being closer to the 
activation potential of INa. However, the inactivation of 
sodium channels also increases at depolarizing potentials, 
leading to less channels contributing during every depo-
larization. Supplementary and opposed to hypokalemia, 
the repolarization reserve is increased, with a shorter APD 
as the consequence. Irregular activation of sodium chan-
nels and a chronic increase of the repolarization reserve 
can prolong the period of inexcitability of cardiomyocytes. 
In combination, this culminates into altered excitation, 
electrical recovery, and decreased conduction between 
cardiomyocytes,55,57 which in turn can lead to conduction 
block and reentrant arrhythmias.

4.2  |  Autonomic nervous system 
dysfunction

The communication between the autonomic nervous sys-
tem (ANS) and the kidneys is crucial for an appropriate 
kidney function, for example, regulating blood osmolarity 
and maintaining the sodium balance.58 The direct sympa-
thetic innervation of the heart is mainly mediated by nor-
epinephrine in concert with circulating adrenaline being 
produced by the adrenal gland, both targeting adrenergic 
receptors. Elevated sympathetic stimulation thereby leads 
to an increased heart rate and contractility. This is achieved 
via the effects on the sinoatrial node and the individual car-
diomyocytes,59,60 where cyclic adenosine monophosphate 
(cAMP) enhances ion channel activity and other positive 
inotropic effects after adrenergic stimulation. This is coun-
teracted by the parasympathetic nervous system, through 
acetylcholine binding to muscarinic receptors. A major 
player in autonomic modulation is acetylcholine signaling, 
being instigated by nitric oxide (NO).61 cGMP levels are 
mediated by NO, increasing cAMP breakdown via phos-
phodiesterases, resulting in negative inotropic effects.62

During CKD, NO bioavailability is reduced, due to both 
increased oxidative stress and increasing asymmetric di-
methylarginine (ADMA) levels,59,63,64 which results in a 
sympathetic overdrive.64,65 This is especially observed in 
ESRD patients.66 While oxidative stress can be promoted 
by elevated UT levels, UTs are also presumed to directly 
increase sympathetic activity by inducing inflammation 
and NO deficiency in the central nervous system.59 While 
further electrophysiological mechanisms are scarcely 
available in the setting of CKD, examples of increased 
NCX activity providing spontaneous calcium triggers 
are also observed.67 Augmented sympathetic activity can 
cause, or aggravate, existing rhythm disturbances leading 
to arrhythmias such as AF,60,68,69 again partially explaining 
high SCD rates in the ESRD and dialysis populations.36–38

5   |   CURRENT CLINICALLY 
ORIENTATED UREMIC TOXIN 
RESEARCH

The correlations between increased levels of PBUTs and 
diminished kidney function as well as cardiac dysfunction 
have been well established.12,20,32 Therefore, research on 
those UTs has mainly been focused on improving clini-
cal outcome by adapting dialysis, but also through addi-
tionally decreasing UT concentrations in ESRD patients, 
through instrumentation of adsorbent and displacing 
chemicals. Investigations regarding the improvement of 
the applied dialysis method range from adjusting speed 
and frequency of dialysis sessions, to adjustments of the 
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dialysate or physical conditions within the dialyzer.70 
Additionally, alternative filtration techniques such as he-
modiafiltration are studied to improve removal of PBUTs, 
for example, in the recently initiated CONVINCE study.71

5.1  |  Clinical improvements

The addition of liposomes to the regimen of dialysis has 
experimentally been shown to increase the removal of 
PBUTs.72,73 These liposomes remain in the dialysate and 
act as adsorbent, taking up PBUTs. While still in the ex-
perimental phase, the natural components of the tech-
nique offer a potentially safe and efficient addition to 
dialysis. The adsorptive effect of sevelamer, already pre-
scribed for prevention of hyperphosphatemia in CKD 
patients, was also investigated in a trial with advanced 
staged CKD patients.74 However, a 12-week treatment 
with sevelamer did not show a decline in concentrations 
of IS, pCS, and IAA. Another well-investigated chemi-
cal absorbent is AST-120 (Kureha Company, Japan).75–78 
AST-120 is an oral carbon absorbent that binds UTs and 
retains them in the intestines, to decrease their concen-
trations in the circulation by limiting their uptake. It has 
been shown to effectively decrease concentrations of, 
for example, IS and pCS in patients,75 subsequently fol-
lowed by decreased concentrations of IL-1β and NFκB.79 
While it's not for optimal clearance of all UTs, AST-120 
remains one of the most effective methods of reducing 
UT concentrations,80,81 but the effect on CKD progres-
sion remains uncertain thus far.82,83

Alternative to absorbents are displacing agents like 
ibuprofen, which shares the binding site for albumin with 
PBUTs.84 By displacing the UTs on albumin, their free frac-
tion increases, allowing a more easily filtration during reg-
ular hemodialysis. Unfortunately, the high concentration 
of ibuprofen that is needed to increase the free fraction of, 
for example, IS and pCS just 3-fold, can result in additional 
complications in CKD patients.85 On top of that, the bind-
ing site is not shared with all PBUTs, meaning that several 
displacing agents are needed for the entire set of PBUTs. 
Other more recently investigated displacing agents are sal-
vianolic acids.86 While their mechanistic concept is similar 
to that of ibuprofen, the most effective salvianolic acids 
share a different binding site for albumin, which could 
also be beneficial. However, these chemicals also need to 
be cleared by the kidneys after their administration, which 
eventually could become detrimental for CKD patients.

As many UTs are dietary metabolites produced in the 
intestines, decreased protein intake and plant-based diets 
result in lower UT concentrations, potentially caused 
by modification of the gut microbiota.87–89 Therefore, 
supplementation of the gut microbiota using probiotics 

to decrease UT production has also been investigated. 
Unfortunately, the supplement did not lower UT concen-
trations, but adversely increased serum potassium and urea 
levels.90 In conclusion, some additional clinical modes of 
intervention, and multiple absorbents and displacers are 
capable to improve PBUT filtration from the circulation. 
However, no methods have been established yet that are 
both safe and efficient.85 A more complete understanding 
of specific PBUTs and their contribution to disease pathol-
ogy could aid in targeting their effects in patients.

6   |   CURRENT 
ELECTROPHYSIOLOGICAL 
RESEARCH

Arrhythmogenicity as the consequence of pathological 
cardiac electrical remodeling is rarely investigated in ex-
perimental studies of CKD, especially regarding the af-
fected electrophysiological mechanisms which are at the 
basis of the arrhythmias seen in patients.23,91 In vivo ex-
periments mainly consist of ECG data, sometimes with 
a follow-up on cellular electrophysiology, while in vitro 
studies that are considered as completely cell culture-
based experiments are mostly lacking. Despite of that they 
would allow for a more detailed investigation into patho-
physiology of single UTs. Mouse and rat models are often 
used for their reasonably low housing costs and increased 
availability compared to larger animals. While cardiomyo-
cytes from these animals can technically be used very well 
for electrophysiological experiments, their species-specific 
electrophysiology significantly differs from human cardio-
myocytes, whereas cellular electrophysiology in rabbits, 
dogs, and pigs is much more similar to humans.92 An over-
view of studies that specifically included relevant param-
eters for arrhythmogenicity in CKD is shown in Table 1 (in 
vivo, see Section 6.1) and Table 2 (in vitro, see Section 6.2).

6.1  |  In vivo CKD studies on cardiac 
electrophysiology

The most common approach to establish animal mod-
els of CKD is nephrectomy, either subtotal (SNx) or 
unilateral (UNx), removing 5/6 or 1/2 of the kidneys, 
respectively.93–100 This abrupt reduction in nephron num-
bers causes kidney insufficiency, often followed by an in-
flammatory response and fibrosis formation, potentially 
systemically. Another approach is genetically inducing 
CKD, either by causing a defect in the samcystin gene, 
causing polycystic kidney disease (Cy/+),101,102 or a defect 
in type 4 collagen alpha-3, resulting in increased FGF23 
levels and renal fibrosis (Col4a3−/−).103 Both initiate the 
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substitution of functional kidney tissue, either with or by 
increased collagen deposition. These CKD models show 
pro-arrhythmic parameters such as prolonged QTc, single 
cell APD prolongation, slowed conduction velocity, and 
increased tachyarrhythmias. Interestingly, mechanistic 
investigations always indicate a hampered calcium han-
dling, fibrosis formation, and a decreased Cx43 expression 
as the main potentiators of the pro-arrhythmic paramete
rs.93–95,97–99,102,103 Perfusion of a single toxin is an alterna-
tive method to specifically investigate its effects, which in 
case of the non-toxin FGF23 revealed to lead to increased 
arrhythmogenicity, via disturbed calcium handling.94,104

Unfortunately, the main drawback of these studies is 
that there are no data available on specific culprits for the 
electrophysiological changes and the mechanisms behind 
the effects have rarely been investigated. Ultimately, estab-
lishing a CKD model with consistent electrophysiological 
remodeling would be highly beneficial in the search for 
pharmacological interventions to treat or prevent the oc-
currence of arrhythmias.

6.2  |  In vitro CKD studies on cardiac 
electrophysiology

To study the maladaptive effects of individual UTs prefera-
bly should also be performed in in vitro experiments, where 

no systematic disease can be instigated that would influence 
the results. This has been performed, to a limited extend, in 
cardiomyocytes isolated from animals and in immortal cell 
lines (e.g. H9c2).48,105–110 IS has been shown to cause Cx43 
disruption, leading to a compromised intercellular gap 
junction communication.48,105 IS and pCS both decrease 
repolarizing potassium currents in a dose-dependent man-
ner,107,108 which was subsequently proposed to prolong 
the APD in computer simulations.108 Chronic exposure to 
FGF23 can lead to calcium leakage from the SR, giving rise 
to uncontrolled calcium waves and contractions.109,110

In general, these alterations in conduction proper-
ties, AP formation and calcium handling, represent the 
pro-arrhythmogenicity corresponding to results from in 
vivo studies. Application of single toxins on cell cultures 
should be used to augment knowledge on molecular 
changes caused by each toxin, in parallel to striving for 
development of effective interventions.

7   |   FILLING THE GAP IN 
KNOWLEDGE: FUTURE 
EXPERIMENTAL STUDIES

Currently, CKD patients are highly prone to cardiac ar-
rhythmias, without existing preventive therapies being 
available. In the last two decades, clinical CVD treatment 

T A B L E  1   Studies on the effect of CKD and uremic toxins on cardiac electrophysiology in vivo

Animal CKD Toxin Outcome References

Mouse DOCA – Increased occurrence of arrhythmia, decreased conduction velocity, 
decreased Cx43 expression

[93]

Mouse SNx – Increased occurrence of arrhythmia, decreased Cx43 expression [93]

Mouse SNx – No contractile dysfunction
Hampered calcium handling

[94]

Rat SNx – Prolonged QTc, increased ventricular arrhythmogenesis
Hampered calcium handling

[95]

Rat UNx – Prolonged QTc
Increased action potential duration

[96]

Rat SNx – Increased occurrence of atrial fibrillation
Cx43 redistribution
Fibrosis formation

[97]

Rabbit SNx – Increased occurrence of atrial arrhythmia
Increased LA action potential duration and fibrosis formation

[98]

Rabbit SNx – Increased ventricular arrhythmogenesis, fibrosis formation [99]

Dog SNx – Prolonged QTc, increased hypertrophy [100]

Rat Cy/+ – Increased occurrence of arrhythmia and sudden cardiac death [101]

Rat Cy/+ – Increased action potential duration, increased occurrence of 
ventricular fibrillation, hampered calcium handling

[102]

Mouse Col4a3−/− Contractile dysfunction, hampered calcium handling [103]

Mouse – FGF23 Hampered calcium handling [94]
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in CKD patients has improved importantly, with the 
exception of SCD.111 Clinically orientated research and 
experience show only treatments of symptoms, like ap-
plication of antiarrhythmic drugs, atrial ablation strate-
gies, and implantable cardioverter-defibrillator (ICD) 
therapy.91 However, with limited understanding of the 
pathological mechanisms behind SCD in CKD patients, 
the applied clinical approaches to control deterioration 
of the disease remain rather non-specific and not always 
successful, as has been seen in the discontinued ICD2 
trial.112 In this trial, it was shown that prophylactic ICD 
implantation in dialysis patients did not decrease SCD 
occurrence, but resulted in an additional increased risk of 
adverse events related to the procedure of implantation. A 
major advantage for clinical progress would be a detailed 
and in-depth knowledge of UTs and their specific effects 
on the heart. Low-protein diets decrease the production 
of UTs, but they remain high in serum concentrations, es-
pecially in dialysis patients. Pro-fibrotic characteristics of 
UTs have already been investigated more extensively, but 
electrophysiological knowledge on the cause of ventricu-
lar arrhythmia triggering SCD remains elusive.12,15,23

To design future electrophysiological experiments, clin-
ically relevant UT concentrations should also be applied 
in vitro. Based on the overview of PBUTs and their respec-
tive total plasma concentrations as shown in Figure 2, an 
experimental concentration range (shown in blue) can be 
established, covering both clinical conditions. By doing 
this, not only effects of UTs can be investigated, but more 
refined clinical concentration boundaries can also be es-
tablished. Importantly, in experimental designs of PBUTs 
it is of relevance to include 35–50 gr/L albumin in the ex-
perimentally applied protocols, as only the free fraction is 
effective,113 which is established after including albumin 
with the concentrations as depicted in Figure 2.

To specifically investigate electrophysiologically rel-
evant parameters, such as APD and calcium handling 
and their underlying mechanisms, experimental models 
should be carefully selected. While conduction disorders 
and rhythm abnormalities can be explored in mice, the 
proposed approach for mechanistic background studies 
is preferably performed in cardiomyocytes from rabbit, 
dog, or pig hearts, especially regarding repolarization of 
the action potential.92 Moreover, the differences in natural 
sympathetic drive in different animals should be acknowl-
edged. Beneficial in these in vivo models is the analysis of 
systemic effects after CKD initiation, on top of the subse-
quent cellular analysis. However, this method only allows 
to study the overall effects of CKD on cardiac electrophysi-
ology, thereby still not elucidating the effects of individual 
UTs. Due to costs, availability, and ethical constraints for 
animal studies, it is of significant value to design and im-
prove relevant in vitro models.

Induced pluripotent stem cell-derived cardiomyocytes 
(iPSC-CMs) are often used as alternative electrophysio-
logical relevant cell system. iPSC-CMs are spontaneously 
active, contract, and parameters such as action potentials, 
calcium transients, and individual ion currents can be 
measured, with additional protein and gene analysis that 
can further explore the effects caused by exposure to in-
dividual or cocktails of clinically relevant concentrations 
of UTs. Drawback of these models is that iPSC-CMs still 
have a rather immature electrical and morphological phe-
notype, which requires a skeptical perspective on their 
translational capabilities.114 Additionally, preparation, 
culture, and differentiation of these cells remain gener-
ally inconsistent, lowering output both qualitatively and 
quantitatively.

Robust steps in the field of tissue engineering have led 
to improved maturation and applicability of iPSC-CMs, 

T A B L E  2   Studies on the effect of CKD and uremic toxins on cardiac electrophysiology in vitro

Cell type CKD Toxin Outcome References

Rat neonatal cardiomyocytes – Indoxyl sulfate Cx43 redistribution, disruption of gap 
junction communication

[105]

Rat neonatal cardiomyocytes – P-cresol Cx43 disassembly, disruption of gap 
junction communication

[106]

Rat ventricular cardiomyocytes (H9c2) – P-cresyl sulfate Dose-dependent decrease of IKr [107]

Rat ventricular cardiomyocytes (H9c2) – Indoxyl sulfate Dose-dependent decrease of IK [108]

Rat adult ventricular cardiomyocytes – FGF23 Increased occurrence of spontaneous 
calcium waves, SR calcium leak

[109]

Rat adult ventricular cardiomyocytes – FGF23 Increased occurrence of spontaneous 
calcium waves, contractile dysfunction, 
decreased L-type calcium current

[110]

Rabbit atrial and pulmonary vein 
cardiomyocytes

– Indoxyl sulfate PV: Increased afterdepolarizations, SR 
calcium leakage

Atrial: increased occurrence of fibrillations

[48]
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producing engineered heart tissues (EHTs) and ventric-
ular heart chambers.115–117 EHTs can consist of com-
binations of multiple iPSC-derived cell types, such as 
cardiomyocytes, fibroblasts, and endothelial cells, and 
are much more reproducible compared to regular and 
commonly used (2-dimensional, only cardiomyocytes) 
cultures of iPSC-CMs. Contraction of such constructs is 
unidirectional, improving cardiomyocyte orientation.118

8   |   CONCLUSION

This review describes the fundamental knowledge gap of 
the effects of uremic toxins on cardiac electrophysiology 
and arrhythmogenesis (see Central Illustration). The ac-
cumulation of UTs during advancing stages of CKD, espe-
cially PBUTs that are not filtered during dialysis, proved to 
be maladaptive with regard to cardiac structural remod-
eling. Apprehension of the involvement of UTs in remod-
eling of cardiac electrophysiology remains scarce, despite 
high prevalence of arrhythmias and SCD in CKD patients. 
Clinical UT research focusses mainly on adapting and im-
proving dialysis. In contrast, pro-arrhythmic molecular 
mechanisms evoked by individual or combinations of UTs 
require unmet detailed investigations, preferably in state-
of-the-art engineered cardiac tissues and relevant animal 
models.
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