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Cell therapy as a means to cure ischemic heart
disease and end-stage heart failure has been
under investigation for several years. Many clini-
cal studies have been conducted with different
cell types: skeletal myoblasts (SM), bone
marrow-derived mononuclear cells (BM-MNC),
mesenchymal stromal cells (MSC), and resident
cardiac stem cells (CSC), to name a few [1, 2].
The efficacy results obtained so far are inconclu-
sive, and cell therapy has never entered into clin-
ical practice. In particular, there are still a few
issues hampering an effective translation from
the promising preclinical results to the bedside.
Among the challenges, the most relevant are the
low engraftment rate and the incapacity of the
cells to differentiate into fully mature cardio-
myocytes, resulting in a lack of heart regenera-
tion which was the original goal that scientists
aimed to accomplish when they started testing
cell therapy. Despite this apparent unsuccess,
much has been learned from the first clinical tri-
als, and these now well-established concepts
must drive our choices when designing new cell
therapy protocols if we want to eventually suc-
ceed in repairing failing hearts.

The most recent lesson comes from an obser-
vational study, appearing in this issue of STEM
CELLS Translational Medicine, in which the (very)
long-term fate of SM transplanted into a human
heart is described [3]. I like to think about this
work as the natural closure of a circle, as the
senior author, Philippe Menasché, was the first to
transplant SM in a patient back in 2001 [4].
Thanks also to this new study, we now have
enough elements to critically retrace the history
of SM use for heart disease and to draw final con-
clusions. The history started in 1996, when Murry
and colleagues demonstrated for the first time
that neonatal SM could graft into an injured
mouse heart and that the engrafted cells initially
proliferate and then begin to form multinucleated
myotubes that, with time, can differentiate into
mature myofibers [5]. They also showed that it
was possible to stimulate the contraction of the
newly formed muscle ex vivo. However, in vivo,
the myotube grafts were isolated from the
remaining myocardium and failed to form electri-
cal connections. Based on this positive preclinical

evidence (but in hindsight underestimating the
negative), Menasché’s group performed the first
intramyocardial injection of SM in a human failing
heart during an aortic coronary artery bypass graft
(CABG) intervention [4]. The reassuring safety
data yielded by this pilot study led to the execu-
tion of the placebo-controlled, double-blind
MAGIC trial [6], in which 97 patients with heart
failure were randomly assigned to receive either a
low or a high dose of autologous SM or placebo.
At 6 months, the high-dose cell group showed a
significant decrease in left ventricle volumes com-
pared with the placebo group. However, the study
did not achieve its primary endpoint, which was
the improvement in left ventricular ejection frac-
tion (LVEF). Moreover, concerns were expressed
regarding a potential pro-arrhythmic effect played
by SM therapy, likely due to the lack of electrical
coupling. Meanwhile, other clinical trials tested
the use of SM transplant with results similar to
those reported in the MAGIC [7]. For these rea-
sons, the development of therapies based on SM
was basically abandoned. Despite this unhappy
ending, thanks to the foresight of a few investiga-
tors who collected and analyzed the hearts of
patients (when they died or received transplant)
previously treated with SM, we have learned
important concepts from this journey.

In 2003, two independent studies described
the fate of SM at an intermediate [8] and at a
long-time point [9] after intramyocardial trans-
plantation. The first study was a phase I clinical
trial investigating the feasibility and safety of
autologous SM transplant in patients affected by
ischemic heart disease undergoing left ventricular
assist device (LVAD) implantation as a bridge to
orthotopic heart transplantation. Four hearts
were collected at the time of transplant, per-
formed after an average time of 4 months from
LVAD implant. Few areas of engrafted SM were
identified in trichrome-stained sections and con-
firmed by immunohistochemistry for the skeletal
muscle-specific myosin heavy chain. Additionally,
evidence of SM differentiation with expression of
slow-twitch myosin isoform was reported. Even
though the cells were located in large scarred
areas, the majority demonstrated healthy mor-
phology and was mostly aligned in parallel with
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the host myocardial fibers. Unfortunately, the presence of
cardiac-specific proteins was not verified, including connexin 43.
Of note, in some cases there was a significant increase in the
number of blood vessels associated with the graft sites. The sec-
ond study described the case of a patient enrolled in the MAGIC
trial who died 1.5 years after the treatment with SM. The grafted
cells showed the morphology of well-developed multinuclear
skeletal myotubes with a morphologically developed contractile
apparatus. The grafts were identified inside scarred tissue and
not surrounded by inflammatory cells. Approximately 35% of
myotubes stained positive for the fast-twitch myosin isoform and
32% stained positive for the slow myosin, while 33% coexpressed
the slow and fast-twitch isoforms. Importantly, staining for the
cardiac-specific antigens pan-cadherin and connexin 43 was nega-
tive. The absence of gap junction with recipient cardiomyocytes
make unlikely, if not impossible, the hypothesis that the grafted
myotubes can contract synchronously with the rest of the heart
and actively contribute to cardiac function.

Menasché’s group now reports new histological findings from
another patient enrolled in the MAGIC trial [3, 6]. This case report
was made possible because the patient, 16 years after receiving
CABG and SM implantation, underwent heart transplant for end-
stage heart failure. Of note, 1 year after the intervention the car-
diac performance of the patient was remarkably improved, with
the LVEF increasing from 22% to 45%. Most importantly, the
patient was asymptomatic and in good cardiovascular compensa-
tion for approximately 9 years before his clinical condition and
heart performance started to decline. The most relevant finding
of this work is that a few engrafted cells were still present after
all those years and displayed the typical pattern of myotubes,
most of them expressing the fast isoform of myosin heavy chain
and only a few expressing the slow isoform. The immunohisto-
chemistry analysis showed that the myotubes were not con-
nected to the neighboring cardiomyocytes and did not express
connexin 43, thus confirming the absence of electrical connection
with the recipient’s myocardium. As the authors correctly stated
in their conclusions, these findings support the concept that, if
the engrafted SM contributed (in combination with CABG) to the
initial improvement of heart function, they did it through para-
crine mechanisms. Strong evidence from preclinical studies and
secretome profiling of SM is in agreement with this hypothesis
[7]. Like in the case of other cell types, cardioprotection, neovas-
cularization, improved cardiac metabolism, prevention of LV neg-
ative remodeling, and stimulation of endogenous cardiac
regeneration are the main reparative mechanisms activated by
progenitor cells’ secretome [1, 2, 10, 11].

Overall, the take-home messages of these studies are
(a) SM are capable of permanently engrafting in the human

heart, even though the percentage of cells surviving is
extremely low, (b) SM fail to transdifferentiate into mature
cardiomyocytes, (c) SM fail in forming electro-mechanical cou-
plings with native cardiomyocytes and do not integrate with
the rest of the contracting cardiac mass, and (d) the positive
effects reported by the MAGIC and other clinical trials in terms
of ventricular remodeling and revascularization are very likely
mediated by paracrine effects.

Keeping in mind these messages will be very important to
develop more effective cell therapies. The issue of poor cell
engraftment is common to all the other cell types tested in
clinical trials: BM-MNC, MSC, and CSC [1]. Several approaches
have been proposed to overcome this hurdle, from the overex-
pression of protective genes to cell preconditioning [2]. More
recently, administration of cells together with degradable bio-
materials or the use of other tissue engineering techniques
has been tested in animal models with promising results [1, 2,
12]. Also, the incapacity to robustly differentiate into cardio-
myocytes is a problem shared with BM-MNC, MSC, and CSC
[1, 2, 13]. This is obviously the most relevant limitation for
heart regeneration. There are a couple of possibilities that sci-
entists are considering in order to overcome this problem:
either optimize the use of pluripotent cells, such as embryonic
stem cells (ESC) [14] and induced pluripotent stem cells (iPSC)
[15], or develop effective strategies to potentiate the limited
innate regenerative capacity of the heart [1, 2, 16]. In particu-
lar, iPSCs are not burdened by ethical issues and have been
shown to differentiate into cardiac-like cells both in vitro and
in vivo [15]. The characteristics of these cardiac cells are simi-
lar, but not identical, to human cardiomyocytes also in their
ion channel apparatus, as demonstrated by disease-modeling
studies [17, 18]. Efforts to obtain standardized protocols to
produce iPSC lines possibly committed toward cardiac lineage
and to induce the maturation of iPSC-derived cardiomyocytes
are needed. As shown by several investigators, induction of
endogenous CSC proliferation/differentiation and of cardio-
myocyte replication can be obtained through administration
of progenitor cell’s secretome, proteins, or noncoding RNA
[11, 16, 19–21]. These strategies also need to be optimized
and their efficacy improved. As already shown, the profiling
and comparison of cell secretome may certainly be helpful to
identify putative molecules with cardioreparative potential
[13, 22, 23].

In conclusion, the hope of using SM to cure heart failure
has probably vanished, but the possibility of regenerating bro-
ken hearts is still the dream of many scientists and clinicians
who are continuously learning important lessons from the past
to build a brighter future.
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