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Abstract

Precise spatial and temporal regulation of proteolytic activity is essential to human physiology. Modulation of protease activity with synthetic
peptidomimetic inhibitors has proven to be clinically useful for treating human immunodeficiency virus (HIV) and hypertension and shows
potential for medicinal application in cancer, obesity, cardiovascular, inflammatory, neurodegenerative diseases, and various infectious and
parasitic diseases. Exploration of natural inhibitors and synthesis of peptidomimetic molecules has provided many promising compounds
performing successfully in animal studies. Several protease inhibitors are undergoing further evaluation in human clinical trials. New research
strategies are now focusing on the need for improved comprehension of protease-regulated cascades, along with precise selection of targets and
improved inhibitor specificity. It remains to be seen which second generation agents will evolve into approved drugs or complementary therapies.
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1. Introduction

Many biological functions rely on proteases, including food
digestion, lysosomal degradation, and signaling cascades. Since
the hydrolysis of the peptide bond catalyzed by proteases is
essentially irreversible, an extensive regulatory network of
protease inhibitors has evolved to ensure targeted spatial and
temporal control of their activity.

Naturally occurring protease inhibitors control proteolysis
within an organism, as well as inactivate proteases of competing
or predatory species. Inhibitors can be generally classified into 2
large groups based on their structural dichotomy: low molecular
weight peptidomimetic inhibitors and protein protease inhibi-
tors composed of one or more peptide chains. Protease
inhibitors can be further classified into 5 groups (serine,
threonine, cysteine, aspartyl and metalloprotease inhibitors)
according to the mechanism employed at the active site of
proteases they inhibit. Some protease inhibitors interfere with
more than one type of protease. For example, the serine family
of protease inhibitors (serpins) is generally thought of as active
against serine proteases, yet contains several important
inhibitors of cysteine proteases as well.

Proteolytic inhibition by protease inhibitors can occur via 2
mechanisms: irreversible trapping reactions and reversible tight-
binding reactions (Rawlings et al., 2004). Inhibitors which bind
through a trapping mechanism change conformation after
cleaving an internal peptide bond and “trap” the enzymemolecule
covalently; neither the inhibitor nor protease can participate in
further reactions. In tight-binding reactions, the inhibitor binds
directly to the active site of the protease; these reactions are
reversible and the inhibitor can dissociate from the enzyme in
either the virgin state, or after modification by the protease.

As therapeutic agents, protease inhibitors have been investi-
gated in the past decade chiefly for the treatment of human
immunodeficiency virus (HIV) and hypertension. They are
commonly used in combination therapywith reverse transcriptase
inhibitors to reduce the viral load in HIV positive individuals;
however, they show formidable efficacy even when used in
monotherapy (Arribas et al., 2005). The unique bonds cleaved by
the HIV protease, Phe-Pro, Phe-Leu, and Phe-Thr, enabled the
design of inhibitors that are highly selective for the viral protease
(Patick & Potts, 1998). The introduction of protease inhibitors
between 1995 and 1996 has been correlated with a significant
increase in survival time in acquired immune deficiency
syndrome (AIDS) patients, dwarfing the effect of previously
used antiretroviral agents (Schwarcz et al., 2000). Currently, there
are 8 approved protease inhibitors for HIV treatment, including
tipranavir, indinavir, saquinavir, and lopinavir. New generations
of inhibitors are designed to maximize efficacy and overcome
viral resistance to previously used drugs (Table 1). One of several
promising second-generation HIV protease inhibitors is TMC-
114 (Fig. 1), currently in phase III clinical trials.

Angiotensin-converting enzyme (ACE) inhibitors provide
another well-established example of protease inhibitors as
therapeutic agents. ACE catalyzes the hydrolysis of angiotensin
I to angiotensin II, a potent vasoconstrictor, and inactivates
bradykinin, a vasodilator (Ottaviani et al., 2005). ACE
inhibitors thus reduce blood pressure by decreasing peripheral
vascular resistance. It has also been found that ACE inhibitors
reduce proteinuria and stabilize renal function, making them
useful in treating diabetic nephropathy.

The use of ACE inhibitors began in 1977 with the approval of
captopril. Other ACE inhibitors have since joined the market
(Table 1). ACE inhibitors have similar blood pressure lowering
efficacy as other antihypertensives, but exhibit improved
tolerability, fewer side effects and desirable metabolic profiles
(Ibrahim, 2006). A novel combined ACE/neutral endopeptidase
inhibitor, omapatrilat (Fig. 1), is currently in clinical trials.
Aliskiren (SPP100), a renin inhibitor developed by Novartis
(Wood et al., 2003), may represent the first of a new family of
antihypertensive drugs that inhibit the renin–angiotensin system
at an earlier step than ACE inhibitors (Nussberger et al., 2002).
This new mechanism is unlikely to produce the cough or
angioedema side effects linked with ACE inhibitor use.

The success of HIV protease and ACE inhibitors has led to
interest in the development of protease inhibitors to treat other
conditions. Protease inhibitors show potential as antiviral agents
which can be engineered to inhibit specific essential viral
proteases while leaving the body's own cells unharmed. This
review will focus on the potential use of protease inhibitors in a
wide variety of disease states.

2. Infectious agents and diseases

2.1. Hepatitis C virus

The hepatitis C virus (HCV) is a member of the Flaviviridae
family. Hepatitis, caused by HCV, is a liver disease spread by
contact with infected blood. Persons harboring HCV may show
no symptoms, or may suffer from symptoms such as jaundice,
fatigue, nausea, and abdominal pain. Possible long term effects of
hepatitis C include chronic liver disease, cirrhosis, hepatocellular
carcinoma, and need for liver transplant HCV has become the
paramount target of antiviral protease inhibitor research,



Table 1
Protease inhibitors reported in advanced stages of clinical development and their corresponding therapeutic targets

Disease Enzyme Inhibitor name and status

AIDS HIV-1 aspartyl protease Amprenavir, fosamprenavir (Glaxo), tipranavir (Boehringer),
indinavir (Merck), saquinavir (Roche), ritonavir,
ritonavir+ lopinavir (Abbott), atazanavir (Bristol-Myers),
nelfinavir (Pfizer) — FDA approved
GW640385 (Glaxo and Vertex), phase II; TMC-114 (Tibotec),
phase III; PPL-100 (Procyon), phase I; RO033-4649 (Roche),
phase I

Hypertension,
congestive heart failure

ACE metalloprotease Captopril, fosinopril (Bristol-Myers), elanapril, lisinopril (Merck),
ramipril (Aventis), benazepril (Novartis), moexipril (Schwartz),
trandolapril (Abbott), perindopril (Servier), quinapril
(Parke-Davis) — FDA approved

ACE/ Neutral endopeptidase Omapatrilat (Bristol-Myers), phase II
Renin aspartyl protease SPP100 (Novartis), phase III

Ischemia Broad (serine proteases) Aprotinin — FDA approved (naturally occurring inhibitor)
Common cold 3C rhinovirus protease AG7088 (Agouron), phase II
Hepatitis C NS3/4a serine protease VX-950 (Vertex), phase II; SCH 503034 Shering),

phase II; SCH 6 (Shering), phase I
Caspase IDN-6556 (Idun), phase II

Cancer MMP 2, 9 COL-3 (Collagenex), phase II
Urokinase-plasminogen activator WX-UK1 (Wilex) phase I
MMPs 2, 9, 12 AE-941 (Aeterna), phase III (naturally occurring inhibitor)
Broad (serine proteases) BBI concentrate, phase II(naturally occurring inhibitor)
Broad (MMP) AG3340 (Agouron), phase III

CGS-27023A (Novartis), phase I/II
BMS-275291 (Bristol-Myers), phase III

Diabetes mellitus Dipeptidyl peptidase IV PSN9301 (Prosidion), phase II;NVP-LAF237 (Novartis),
phase II;NVP-DPP728 (Novartis), phase II; 823093 (Glaxo),
phase II; MK-0431 (Merck), phase II

Rheumatoid arthritis Caspase-1 3840/VX-740 (Vertex), phase II
Thromboembolism Thrombin Bivalirudin (Medicines), argatroban (Glaxo) — FDA approved

Dabigatran etexilate (Boehringer), phase III
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particularly HCV genotype 1. This virus affects the most people
worldwide and is considered the most challenging genotype to
treat; indeed, for the large number of patients who fail standard
therapies, there exists no alternative treatment. Protease inhibitors
may be the most promising candidates to fill this unmet medical
need.

The NS3/4A serine protease is integral to the virus life cycle.
Synthetic inhibitors which have shown efficacy against this
protease include thiazolidine derivatives (Sudo et al., 1997),
ribonucleic acid (RNA) aptamers (Kumar et al., 1997), eglin c
derivatives (Martin et al., 1998), and halogenated benzanilide
compounds (Kakiuchi et al., 1998).

BILN-2061 (Boehringer Ingelheim) is a peptidomimetic,
competitive inhibitor of HCV NS3 protease. Initial toxicological
studies in vivo and in vitro indicated that BILN-2061 was well-
tolerated, specific to the target protease, and slowly metabolized
by liver microsomes (Lamarre et al., 2003). A randomized,
double-blind, proof-of-concept study was conducted, using
patients with HCV genotype 1, over a 2-day period. BILN-
2061 showed high efficacy, causing rapid declines in viral load,
reaching undetectable levels in some subjects within 24–28 hr
after dosing. However, later studies of BILN-2061 indicated that
the protease inhibitor was less effective and showed greater
variability in patients with HCV genotype 2 or 3 (Hinrichsen
et al., 2004; Reiser et al., 2005). Further development of the
compound has been halted since cardiac toxicity was recorded in
rhesus monkeys given high doses of BILN-2061 for 4 weeks
(Reiser et al., 2005).

There are 2 successful peptidomimetic inhibitors of the NS3/
4A protease in clinical development: VX-950 (Vertex; Lin et al.,
2006) and SCH 503034 (Schering-Plough; Malcolm et al.,
2006). In a recent phase Ib clinical trial, VX-950 was able to
rapidly reduce the plasma viral load of patients chronically
infected with genotype 1 HCV, while Schering-Plough recently
reported that it has completed patient enrollment in the first part
of its ongoing phase II clinical study to determine the
appropriate dose range of SCH 503034 capsules.

Naturally occurring Bowman-Birk inhibitor (BBI) from
mung beans has been shown to inhibit the NS3 protease that
plays a critical role in Dengue hemorrhagic fever caused by the
Dengue virus (Murthy et al., 2000). Further investigation is
needed to determine the plausibility of using this natural
product for other members of the Flaviridae family.

2.2. Picornaviruses

Picornaviruses cause syndromes including respiratory tract
illnesses, aseptic meningitis, encephalitis, and myocarditis. The
picornavirus family includes human rhinoviruses (HRV), com-
posed of more than 100 serotypes, as well as 65 enteroviruses,
including poliovirus, coxsackievirus, and echovirus (Shafren
et al., 1999). While no effective antiviral treatments for HRV



Fig. 1. Examples of naturally occurring and peptidomimetic protease inhibitors which have been approved or are currently in advanced clinical trials.
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infection are available, compounds have been developed which
inhibit either viral attachment or subsequent uncoating (Patick &
Potts, 1998). Several protease inhibitors have been designed to
target the 3C picornavirus serine protease, which is both required
for viral replication, and highly conserved throughout diverse
picornavirus serotypes (Binford et al., 2005).

AG7088 (Fig. 1), now known as ruprintrivir, is an irreversible
inhibitor of the 3C protease which has shown efficacy in vitro
against 48 HRV serotypes, 4 enterovirus strains, and 46 untyped
field isolates of HRV (Patick et al., 1999; Kaiser et al., 2000).
Metabolic studies of AG7088 suggest that it may be most
effectively delivered locally into the nasal cavity, thus avoiding
significant first-pass metabolism and low bioavailability associ-
ated with oral delivery (Zhang et al., 2001). Ruprintrivir has been
found to reduce levels of inflammatory cytokines interleukin
(IL)-6 and IL-8 in vitro, even when introduced late in the cell
infection cycle (Zalman et al., 2000). This finding supports the
possibility that ruprintrivir could be useful not only as a
prophylactic against rhinovirus, but also when administered
after symptoms have begun. In both single-dose and multiple-
dose studies, 4- and 8-mg doses of ruprintrivir were safe and well
tolerated (Hsyu et al., 2002). In a phase II clinical evaluation that
included 3 double-blind, placebo-controlled studies in 202
healthy volunteers, ruprintrivir prophylaxis reduced the propor-
tion of subjects with positive viral cultures to 44% and 60% for
5×/day and 2×/day dosing groups, respectively; however, the
ruprintrivir treatment did not decrease the frequency of colds
(Hayden et al., 2003).

A novel orally bioavailable inhibitor of HRV 3C protease has
been described recently (Patick et al., 2005). Compound 1
demonstrated antiviral activity against all HRV and related
picornaviruses tested in in vitro cell-based assays. A phase I
study showed that single doses of Compound 1 up to 2000 mg
were safe and well tolerated (Patick et al., 2005).

2.3. Herpes viruses

Human cytomegalovirus (CMV), herpes simplex virus type 1
(HSV-1), and herpes simplex virus type 2 (HSV-2) are pathogens
that cause a variety of human health problems, primarily in
immunocompromised individuals. Currently, antiviral agents
used to treat CMV and HSV act through interfering with viral
deoxyribonucleic acid (DNA) synthesis. The approved agents
also cause serious side effects, and the development of resistant
virus strains is a constant concern (Patick & Potts, 1998).
Structural analyses have shown that CMV and HSV serine
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proteases exhibit considerable homology, such that a successful
inhibitor of CMV would likely work against the HSV protease as
well (Ogilvie et al., 1997). The crystal structures of proteases from
multiple herpes virus subfamilies have been reported. Consistent
with their unique amino acid sequences, the crystal structures
show that herpes virus proteases share a novel polypeptide
backbone fold and do not show homology with other proteins,
making them ideal therapeutic targets (reviewed in Tong, 2002).

Knowing the sequences of the 2 cleavage sites in the CMV
protease, Ogilvie et al. (1997) systematically synthesized a series
of peptidomimetic inhibitors, some of which showed activity in
vitro, but require further investigation. Tetrazines have been
shown to inhibit CMV protease through formation of disulfide
bonds between cysteine residues near the active site, yielding a
cross-linked enzyme (Di Grandi et al., 2003). Flavin analogues
and riboflavin inhibit CMV protease in the same manner (Baum
et al., 1996).

Through screening of a compound library, Matsumoto et al.
(2001) discovered 4 compounds, 1,4-dihydroxynaphthalene and
3 naphthoquinones, which effectively inhibit HSV-1 protease.
Further study indicated that these compounds were potent and
selective inhibitors of CMV protease, with extremely low IC50

values. Continued research into these compounds may lead to the
development of effective anti-CMVand anti-HSV therapies.

2.4. Severe acute respiratory syndrome coronavirus

Severe acute respiratory syndrome (SARS) is a highly
contagious and often fatal respiratory infection. Between late
2002 and early 2003, over 8000 people contracted the infection
in a worldwide outbreak originating in Asia. The etiologic agent,
severe acute respiratory syndrome-associated coronavirus
(SARS-CoV), was identified in 2003 (Ksiazek et al., 2003).

The SARS pathogen encodes a 3C-like cysteine protease
(3CL) that is required for C-proximal processing of 2 overlapping
polyproteins produced by translation of the viral RNA, similar to
the well-known picornavirus 3C proteases. In addition, the
coronavirus 3CL and picornavirus 3C proteins share a similar
polypeptide fold (Anand et al., 2002), suggesting that antipicor-
naviral therapeutic agents might be active in inhibiting SARS
virus replication. Indeed, 1 of 3 tested Pfizer picornaviral
inhibitors (AG7122) has shown moderate inhibition of the
SARS virus in cell culture (Matthews et al., 2002).

Evidence indicates that SARS-CoV may also be effectively
inhibited by other drugs. In vitro susceptibility experiments
show that SARS-CoV is inhibited by a combination of lopinavir
(4 μg/ml) and ritonavir (50 μg/ml), protease inhibitors often used
in HIV therapy. SARS patients treated with lopinavir/ritonavir in
combination with a standard antiviral showed fewer adverse
clinical outcomes and exhibited milder symptoms (Chu et al.,
2004). Tissue culture assays have also reported activity of
Cinanserin, a serotonin antagonist, against SARS-CoV (Chen
et al., 2005a,2005b).

Numerous other compounds have been reported to inhibit the
3CL protease, including synthesized isatin derivatives (Zhou
et al., 2006), hesperetin (Lin et al., 2005), glycyrrhizin (Cinatl
et al., 2003a), nelfinavir (Yamamoto et al., 2004), aurintricar-
boxylic acid (He et al., 2004), and interferon (Cinatl et al., 2003b).
Technological advances have accelerated the pace at which new
leads can be found and investigated. Genomic sequencing of
SARS-CoVindicated the presence of a cluster of 3 serine residues
near the active site of the 3CL protease. Bifunctional aryl boronic
acid compounds have shown effective inhibition, presumably by
reacting with the hydroxyl group in the serine residues (Bacha
et al., 2004). Using structure-based virtual screening and three-
dimensional quantitative structure–activity relationship (3D-
QSAR; Tsai et al., 2006) created a model which can estimate
activity of new inhibitors against the 3CL protease even prior to
biological testing.

2.5. Rotavirus

Rotaviruses are double stranded RNA viruses belonging to
the Reoviridae family. Rotavirus infections cause gastroenter-
itis, diarrhea and vomiting, most commonly in children and
infants. According to the Centers for Disease Control, rotavirus
infections kill 600,000 children worldwide each year.

Some studies have suggested that protease inhibitors may be
useful in preventing rotavirus infection. Specifically, soybean
trypsin inhibitor and E-64-c, a cysteine protease inhibitor, have
shown protection against rotavirus in mouse studies (Ebina &
Tsukada, 1991; Katyal et al., 2001). It is possible that protease
inhibitor treatment could diminish the ability of the virus to
evade the host immune system (Arias et al., 1996).

2.6. Protozoa

Many proteolytic enzymes play key roles in the life cycle of
Plasmodium parasites, which cause malaria. During the asexual
reproductive cycle, the parasite lyses red blood cells and
degrades hemoglobin. Hemoglobin hydrolysis appears to be a
cooperative process involving proteases of multiple catalytic
classes, including cysteine, aspartic, and metalloproteases. New
antimalarial drugs are urgently needed to surmount issues such
as increasing parasite resistance, low efficacy, toxicity and high
costs associated with current therapies.

Multiple studies demonstrated that cysteine protease inhibitors
such as peptidyl fluoromethyl ketone (Rosenthal, 2004), vinyl
sulfone (Olson et al., 1999), and aldehyde inhibitors (Lee et al.,
2004) blocked the development of cultured parasites and partially
or completely protected Plasmodium-infected mice against lethal
malaria. It was later suggested that cysteine protease inhibitor
resistance in Plasmodium can be avoided by synergistic use of
cysteine and aspartic protease inhibitors (Semenov et al., 1998).
Biotinylated dibenzyl aziridine-2,3-dicarboxylate was introduced
as an irreversible cysteine protease inhibitor capable of blocking
host erythrocyte rupture and subsequent merozoite release
(Gelhaus et al., 2005).

More recently, focus has turned to aspartic proteases as
antimalarial drug targets. Recent advances have focused chiefly
on inhibitors of the plasmepsin aspartic proteases (reviewed in
Ersmark et al., 2006), and it is likely that the recent release of data
from the sequenced P. falciparun genome will shed light on both
these proteases and novel drug targets. HIV aspartic protease
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inhibitors have shown activity against Plasmodium falciparum
and thus, their use may be investigated as potential antimalarial
drugs (Senior, 2005).

Protease inhibitors have also shown utility against other
infectious diseases caused by protozoans. Cathepsin L-like and
cathepsin B-like cysteine proteases found in all species of
Leishmania examined are required for parasite growth or
virulence. Inhibition of these proteases has been achieved with
both reversible and irreversible inhibitors. For example,
ZLIII43A and ZLIII115A, derivatives of oxalic bis[(2-hy-
droxy-1 naphthyl) methylene] hydrazide and vinylsulfonyl-
benzene compounds were bioavailable and effective in
ameliorating the pathology associated with a mouse model of
leishmaniasis (Selzer et al., 1999).

Toxoplasma is another obligate intracellular parasite which,
like Plasmodium, invades host cells. While protease inhibitors
active for malaria treatment failed to prevent Toxoplasma
infection, irreversible serine protease inhibitors 3,4-dichloroi-
socoumarin and 4-(2-aminoethyl)-benzenesulfonyl fluoride
prevented invasion of host cells (Conseil et al., 1999).

2.7. Fungi

Candida albicans, a pleomorphic yeast, is part of the normal
human gut flora and is a major cause of opportunistic fungal
infections. Fungal cells directly adhere to the human epithelial
surface and secrete isoforms of an aspartyl protease that have
been identified as major virulence factors. Because these belong
to the same superfamily as most abundant HIV proteases, the
effect of 3 HIV protease inhibitors (ritonavir, indinavir and
saquinavir) was studied on Candida adhesion to epithelial cells.
Ritonavir was found to be the most potent inhibitor of fungal
adhesion, however, future derivatives designed to treat mucosal
candidiasis in humans may require improvements. Protease
inhibitors for such fungal infections would benefit from
increased specificity for the fungal proteases, and preferably
broader efficacy against multiple protease isoenzymes (Bectic
et al., 2001).

3. Cancer

Cancer is a broadly defined group of more than 100 diseases
sharing several common characteristics, such as uncontrolled
growth and tissue invasion. As a primary tumor develops, its
nutrient needs increase in proportion to its growth rate.
Insufficient vasculature at the tumor site creates a hypoxic
environment that induces gene expression leading to angiogen-
esis. This process not only supplies cancer tissue with essential
nutrients but also provides a convenient escape route for
metastatic cells. Three families of proteases have been
implicated in cancer metastasis: serine, cysteine and metallo-
proteases (Koblinski et al., 2000). Inhibitor therapy design is
further complicated because different types of cancers utilize
diverse proteases at varying stages of cancer development. No
single inhibitor can be used on all 3 classes of proteases.

Zinc dependent matrix metalloproteases (MMP) are crucial to
tissue remodeling, playing integral roles in angiogenesis,
cirrhosis, arthritis and metastasis. They are expressed as
zymogens, enzyme precursors which must be activated before
performing regular catalytic functions. There are 23 knownMMP,
a quarter of which are membrane-bound. MMP zymogens are
naturally controlled by tissue inhibitors of matrix metallopro-
teases (TIMP). MMP have been shown to directly participate in
tumor metastasis and angiogenesis, yet their active centers are so
similar that finding specific inhibitors poses a major challenge.
The vast majority of known inhibitors for MMP are non-selective
(Whittaker et al., 1999) with the exception of few recent
developments (Brown et al., 2004). Most MMP inhibitors were
initially designed based on the collagen cleavage site of the
interstitial collagenase MMP-1. Orally active marimastat and
parenterally administered batimastat are early examples of broad
spectrum MMP inhibitors (Rasmussen & McCann, 1997). Two
sulfonamide compounds that contain zinc-chelating hydroxamate
groups, CGS-27023A (MacPherson et al., 1997) and AG3340
(prinomastat; Price et al., 1999) were the first non-peptidic MMP
inhibitors developed for cancer treatment; the former has entered
clinical trials. RO 32-3555 (Roche; Lewis et al., 1997) and
BAY12-9566 (Bayer; Heath et al., 2001) are other examples of
non-peptidic inhibitors.

Two more classes of MMP inhibitors have been studied, in
which the hydroxamate groupwas substituted for a carboxylate or
tiolatemoiety. Both groups showed improved in vivo stability and
performed successfully in animal models for cancer metastasis
butwerewithdrawn from early stages of human clinical trials. The
substitution of the hydroxamate group with thiirane moiety
resulted in a new class of irreversibleMMP inhibitors selective for
gelatinases MMP-2 and MMP-9. Despite some limited success,
on average, broad spectrum synthetic MMP inhibitors performed
poorly in humans. Lack of specificity, toxicity and inability to
assess sufficient inhibitory concentrations in the target tissues
were cited as plausible reasons (Massova et al., 1998). No
selective synthetic inhibitors against membrane-bound MMP
have been developed to date; however, a new class of natural plant
products containing sulfate groups was described as promising
MMP inhibitors (Fujita et al., 2003). Key issues which are
paramount in designing the next generation of MMP inhibitors
includes specificity to individual target proteases; the failure of
general MMP inhibitors to favorably affect patient prognosis was
in part because some MMP serve anti-tumor functions. Genomic
and proteomic analyses will be crucial to validating individual
MMP as drug targets for cancer, so that in the future the benefits of
MMP inhibition can be delivered without suppression of
protective functions (reviewed in Overall & Kleifeld, 2006).

A newer approach to cancer treatment involves proteasome
inhibition. Bortezomib (Velcade), the first approved proteasome
inhibitor, has shown promise in the treatment of multiple
myeloma, and supported the concept of proteasome inhibition
as an effective anticancer strategy (Cavo, 2006). Data have also
shown the potential benefit of using bortezomib in conjunction
with other therapies including DNA-damaging drugs, dexameth-
asone, thalidomide and lenalidomide; continued study in this area
will help deduce which sequence and combination of agents
achieves optimal patient outcomes (Hideshima et al., 2001;
Mitsiades et al., 2003). A nonpeptidic, orally bioactive
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proteasome inhibitor, NPI-0052, is yet to begin clinical trials but
shows efficacy against humanmultiplemyeloma cells in vitro and
prolongs survival time in a murine model (Chauhan et al., 2005).

Urokinase plasminogen-activating enzyme (uPA), a serine
protease important in the clotting cascade, is often associatedwith
invasive tumors. It has been suggested that high levels of uPA
increase active plasmin, which in turn cleaves pro-MMP into their
active forms. Inhibiting uPA may help impede cancer develop-
ment by limiting plasmin activation, therefore diminishing MMP
and growth factor release (reviewed in Noel et al., 2004).

Several synthetic urokinase inhibitors have been developed
based on aryl guanidine, aryl amidine, or acyl guanidine
backbones, however, all of them showed modest potency and
poor selectivity (Rockway&Giranda, 2003). The search for more
specific urokinase inhibitors resulted in discovery of peptidyl-
based inhibitors. One of them, cyclopeptide 19, inhibited
urokinase selectively in an irreversible manner. No inhibition
was observed for thrombin, plasmin, or tissue plasminogen
activator (Wakselman et al., 1993). Only one of the compounds, a
broad-spectrum inhibitor of serine proteases, has entered phase I
clinical trials (Sperl et al., 2001).

A major improvement in the potency of uPA aryl-amidine
inhibitors was described by Towle et al. (1993). Amidinobenzi-
midazoles or amidinoindoles have also been chosen by Celera as
templates for the development of small molecule uPA inhibitors
utilizing a structure-function based approach (Mackman et al.,
2002). Flavonoids, including flavones, flavanones, flavanols,
flavan-3-oles and isoflavones represent another group of natural
inhibitors of uPA. The most potent inhibition was exhibited by
quercetin with an IC50 value of 7 μM (Maliar et al., 2002).

Cathepsin B is a cysteine protease which is overexpressed in
many cancer tissues, localized in lysosomes and the extracel-
lular matrix (ECM). In addition, it has also been implicated in
many pathological processes such as Alzheimer's disease,
rheumatoid arthritis and osteoarthritis, multiple sclerosis,
muscular dystrophy, pancreatitis, liver and lung disorders,
diabetes and myocardial dysfunction (Jedinak & Maliar, 2005).
Natural regulators of cathepsin B activity include stefin B and
cystatin C. Reversible inhibitors of cathepsin B developed over
the years contained a peptide segment for recognition by the
enzyme. For example, a dipeptidyl nitrile compound showed
100-fold selectivity for cathepsin B over other cathepsin-like
proteases (Greenspan et al., 2003). Unfortunately, most of these
inhibitors have poor pharmacokinetics, likely due to instability
of the peptide segment. Replacing the peptide backbone with a
hydrazide moiety yielded a more stable selective cathepsin B
inhibitor with high inhibitory activity (Wieczerzak et al., 2002).

Halomethyl ketones are a separate class of compounds that
irreversibly inhibit cysteine proteases. However, they have
limited clinical utility due to the inherent chemical reactivity of
the moiety. Other irreversible cathepsin B inhibitors have
followed: vinylsulfones, broad spectrum cathepsin inhibitors
that also depress proteosome activity (Bromme et al., 1996); and
epoxysuccinate derivatives based on E-64, a plant-derived
cysteine protease inhibitor. Epoxysuccinates inhibit cathepsin B
in vitro and in vivo and prevent cell invasion in both murine and
human breast cancer cell lines (Bervar et al., 2003). New deri-
vatives of L-trans-epoxysuccinate and aldehyde were designed
as specific inhibitors of cathepsin L (Katunuma et al., 2002).
Pepstatin was also developed as a highly potent peptidomimetic
inhibitor of cathepsin D (Dumas et al., 1999). No specific
cathepsin B inhibitors have reached clinical trials to date.

Plant-derived protease inhibitors with strong trypsin/chymo-
trypsin inhibitory activity have been shown to suppress several
stages of carcinogenesis. Soybean-derived BBI (Fig. 1) quelled
the X-ray-induced transformation of mouse embryo fibroblast
cells (Yavelow et al., 1985). Potato protease inhibitors (PPI) I and
II showed similar in vitro effects (Billings et al., 1991). Potato
carboxypeptidase inhibitor suppressed growth of several human
adenocarcinoma cell lines, most probably due to its antagonistic
effect on epidermal growth factor expression (Blanco-Aparicio
et al., 1998). The chemoprotective activities of PPI I and II have
been attributed to blocking activation of transcription activator
protein 1, an inducible eukaryotic transcription factor (Liu et al.,
2001). A soybean extract enriched with BBI, called Bowman-
Birk inhibitor concentrate (BBIC), was granted investigational
new drug status by Food and DrugAdministration (FDA) in April
1992 (IND No. 34671; sponsor, Ann R. Kennedy). Phase I and
Phase IIa studies of BBIC in patients with oral leukoplakia have
demonstrated clinical activity without detectable side effects after
oral administration (Armstrong et al., 2000).

4. Diabetes mellitus

Current therapies for diabetes target insulin secretion, insulin
replacement, and counteraction of insulin resistance. However,
novel potential targets for protease inhibitor therapy for diabetes
have been discovered. One of them is dipeptidyl peptidase IV (DP
IV), a 110 kDa plasma membrane glycoprotein ubiquitously
expressed in epithelial and endothelial cells, especially in the
gastrointestinal tract (Low et al., 1991). Homodimerized DP IV
acts like a classic serine protease by rapidly degrading glucose-
dependent insulinotropic polypeptide and glucagon-like peptide-
1 that are involved in stimulating pancreatic beta cells. Oral
administration of DP IV inhibitors during glucose tolerance
testing has been shown to enhance insulin response and improve
glucose handling in rats, mice and humans (reviewed inMcIntosh
et al., 2005). TwoDP IVinhibitors, vildagliptin (Novartis; Pratley
et al., 2006) and sitagliptin (Merck; Kim et al., 2005), have been
submitted for FDA review, while several others are undergoing
clinical trials, including PSN9301 (Prosidion; Schmid et al.,
1998), denagliptin (GlaxoSmithKline), and saxagliptin (Bristol-
Myers Squibb; Augeri et al., 2005).

Diabetic foot syndrome is an important complication of
diabetes, related to elevated protease activity in wounded tissue
which causes high rates of wound infection and healing problems.
In contrast to normal wounds, poorly healing diabetic wounds
exhibit prolonged inflammation, which generates corresponding-
ly intensified metalloprotease and neutrophil elastase responses
(reviewed in Lobmann et al., 2005). Traditionally, chronic
diabetic foot ulcers are treated with doxycycline, a tetracycline
group antibiotic that acts as a competitive, nonspecific inhibitor of
wound metalloproteases (Lamparter et al., 2002). Future studies
will need to evaluate if combinations of protease inhibitor



361G. Fear et al. / Pharmacology & Therapeutics 113 (2007) 354–368
therapies developed for other health areas such as cancer
metastasis and ECM remodeling are beneficial in diabetic
wounds.

5. Energy balance

The discovery of soybean proteins which inhibit the activity
of trypsin led to the early conclusion that a protease inhibitor was
themajor cause for reduced utilization of raw soybeans as animal
feed (Westfall & Hague, 1948). Rats fed a diet containing raw
cowpeas, lupin seeds, or soybeans (high protease inhibitor con-
tent) showed a remarkable decrease in feed conversion effi-
ciency and growth rate during the initial 250 days of the study
(Grant et al., 1995).

In 6 healthy human subjects, intraduodenally administered
protease inhibitors increased pancreatic protease secretion and
raised plasma levels of cholecystokinin (CCK). This finding
supports the model of a complex duodenum-based system of
negative feedback regulation of food intake in humans (Reseland
et al., 1996). Subsequent studies suggest that ingestion of protease
inhibitors specifically induces the release of endogenous CCK,
which in turn acts as a feedback signal to decrease food intake
and, over time, body weight. A number of other physiologic
gastrointestinal functions are putatively involved, including the
stimulation of gallbladder contraction, intestinal motility, and
delayed gastric emptying (reviewed in Moran, 2000). CCK may
also enhance some of the satiety actions of adiposity signals such
as insulin and leptin, suggesting a role for CCK in regulation of
overall energy balance (Baskin et al., 1999).

Successful use of protease inhibitors to stimulate CCK re-
lease and the onset of satiety response in humans requires a
single inhibitor or a combination of inhibitors that diminish both
trypsin and chymotrypsin activity in the duodenum (Peikin
et al., 1987), and are resistant to the enzymatic activity of
stomach proteases. Indeed, the oral administration of PPI re-
duced energy intake in humans by 17% (Hill et al., 1990). The
oral use of protease inhibitors also delayed gastric emptying in
type II diabetic patients, while improving postprandial glucose
and insulin levels (Schwartz et al., 1994).

The major patent describing the use of protease inhibitors to
elicit satiety response in mammals (Peikin, 1985) expired in
2002, allowing pharmaceutical companies to use this technol-
ogy. Soon after, 2 dietary supplements were introduced to the
market. Satietrol (PacificHealth Laboratories, Inc.) contained a
drink mix of potato proteins and fatty acids. Satise (Kemin
Industries, Inc.) was manufactured in capsules; each dose was
standardized to 15 mg of potato protein extract. There is a lack
of published data to support the marketing claims of these
products, and both are currently unavailable.

6. Inflammation

The inflammatory response is clinically characterized by
changes in vascular permeability and activation of numerous
signaling cascades. The complex amplification system involves,
among others, the complement system, the kallikrein-bradyki-
nin system, coagulation and fibrinolytic cascades, and cytokine
pathways (Bilfinger & Stefano, 2002). Soon after the proin-
flammatory mediator release, an anti-inflammatory response is
warranted to avoid destruction by rampant inflammation.

Serine proteases play a central role in the body's inflammatory
response, as pancreatic enzymes, vasoactive enzymes, mediators
of clotting and fibrinolysis, and intermediates of the complement
system (Bilfinger & Stefano, 2002). Naturally occurring serpins
mediate and control each of these proteases. In instances when
inflammatory agents go unchecked or excess anti-inflammatory
response elicits immunosuppression, protease inhibitor therapy
may serve as a useful medicinal tool to restore balance.

Investigating the potential for use of protease inhibitors in
inflammatory disorders presents a formidable challenge, partially
due to the sheer multitude of inflammation-associated processes.
The pro-inflammatory and anti-inflammatory systems each utilize
a highly orchestrated network of enzymes, inhibitors and interme-
diates. Interfering with this system is additionally tenuous since
some agents can elicit either pro- or anti-inflammatory cascades.

6.1. Blood cell activation

Protease inhibitors can mediate inflammatory cascades via
several circulating agents. Kallikrein inhibitors have been shown
to mitigate the “whole body inflammatory response” elicited by
cardiopulmonary bypass. Specifically, this is achieved by
moderating complement and neutrophil activation, and reducing
neutrophil elastase release (Wachtfogel et al., 1994, 1995).
Aprotinin (Fig. 1), a serine protease inhibitor, has been docu-
mented to modulate platelet activation and aggregation, and blunt
the inflammatory release of tumor necrosis factor-alpha (TNF-α;
Bilfinger & Stefano, 2002). Serum levels of IL-6 and IL-8 are
reduced after aprotinin administration, but the underlying
mechanism for this reduction is unclear (Soeparwata et al.,
1996). Experiments with human neutrophils have also demon-
strated that gabexate mesilate, another protease inhibitor, has the
ability to accelerate phagocytosis, which could possibly improve
defense against infectious microorganisms (Mikawa et al., 1994).

Several protease inhibitors have also been introduced as
anticoagulants. By reversibly binding to thrombin, a serine
protease needed for clot formation, these agents are useful in the
prophylaxis and treatment of thromboembolism. Two approved
drugs, bivalirudin and argatroban (Table 1) fall into this family
of direct thrombin inhibitors. Bivalirudin consists of a twenty
amino-acid peptide, modeled after hirudin, a natural thrombin
inhibitor derived from leech. Due to its peptidic structure,
bivalirudin and other peptide inhibitors must be administered
intravenously to avoid degradation (Gladwell, 2002). Many
synthetic inhibitors have been published; however, few have
appropriate pharmacokinetic and pharmacodynamic profiles to
warrant further development. There has been recent progress
toward developing nonpeptidic, orally bioavailable small
molecules to directly inhibit key proteases.

Ximelagatran, the first orally available thrombin inhibitor
progressed favorably through clinical trials, yet was withdrawn
in early 2006 as findings indicated an increased risk for severe
liver problems. Dabigatran etexilate (Fig. 1) and rivaroxaban,
inhibitors of factor IIa and factor Xa, respectively, are currently
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progressing through phase III clinical trials (Bayes et al., 2006;
Eriksson & Quinlan, 2006). With several other compounds in
early stages of testing, it is possible that protease inhibitors may
become prominent as oral anticoagulant drugs with fewer
complications and dietary interactions than warfarin therapy.

6.2. Reperfusion injury

When tissues and organs are deprived of blood flow for more
than a few minutes, inadequate oxygen and nutrient availability
elicit detrimental changes. When reperfusion occurs and blood
flow is restored to the tissue, the damage is increased. Known as
reperfusion injury, the resultant generation of free radicals,
accompanied by an influx of inflammatory cells, causes cell
apoptosis. A large component of stroke-related brain injury and
myocardial infarction damage to heart tissue is due to reperfusion
injury, but it also affects kidney tissue or other sites in the body.

The nonspecific serine protease inhibitor aprotinin has been
found to minimize the extent of reperfusion injury damage to
kidney tissue in animal studies. Aprotinin significantly reduced
cell apoptosis, IL-1 and IL-6 production, and showed a trend of
lowering TNF-α levels (Kher et al., 2005). A similar animal
study on lung ischemia–reperfusion injury additionally con-
cluded that aprotinin attenuated neutrophil extravasation and
lessened free radical production (Shimoyama et al., 2005).

6.3. Cerebral inflammation

The inflammation that ensues following a brain injury is
recognized as playing dual roles, simultaneously protecting the
injured tissue and causing more extensive damage to the
vascular and neural tissue. Edema and hemorrhage are 2 natural
inflammatory consequences of stroke which often cause
significant damage to the brain. In the subacute phase, defined
as within hours of the ischemic event, MMP-2 and MMP-9 are
activated (Fagan et al., 2005). Inhibition of these metallopro-
teases has been suggested to reduce inflammatory damage after
ischemia as well as diminish the incidence of hemorrhage
associated with thrombolytic treatments (Lapchak et al., 2000;
Lapchak & Araujo, 2001).

6.4. Arthritis

The articular cartilage found in joints is composed of
collagen type II and aggrecan, a multidomain proteoglycan.
MMP and aggrecanases 1 and 2 (ADAMTS-4 and -5) cleave
aggrecan molecules leading to the joint inflammation and pain
which characterize arthritis (Mohammed et al., 2003). TIMP are
natural endogenous protease inhibitors which may be potential
novel treatments for rheumatoid arthritis. Of the 3 known TIMP,
TIMP-3 is most effective against aggrecanase-1, and also can
inhibit MMP-3-mediated aggrecan cleavage (Hashimoto et al.,
2001; Bokarewa et al., 2005).

Aggrecanase-1 is synthesized as a proform which only gains
catalytic activity after an N-terminal region is cleaved. This
activation can be performed by a few enzymes, includingMMP-9
and trypsin, but it is still unclear which protease or proteases
activate aggrecanase-1 in vivo (Tortorella et al., 2005). If MMP
are required for aggrecanase activation in vivo, then they may be
additional targets for inhibitor therapy.

Xiang et al. (2006) evaluated synthetic biphenylsulfonamide
carboxylate inhibitors of aggrecanase, several of which showed
promising oral bioavailability and inhibition of proteoglycan
cleavage in a cell-based assay. Compound 24, the most
promising lead, was most effective against MMP-13 as well
as against aggrecanase-1.

6.5. Atherosclerosis

Atherosclerosis is a chronic inflammatory disease affecting
blood vessels throughout the body. Proteases implicated in the
development and progression of atherosclerosis include MMP,
cathepsins S, K and L, and neutrophil elastase.

Arterial lesions characteristic of the disease show increased
levels of proteases and reduced levels of inhibitors when
compared to healthy tissue. This imbalance provides one
plausible target for future therapies. Cathepsins S and K are
increased in lesions, and may play a role by degrading the
arterial wall. Cathepsin L, another collagen and elastin de-
grading protease, has been shown to be elevated in serum from
patients with coronary artery stenosis (Liu et al., 2006). An
endogenous inhibitor of cathepsins, cystatin C, is found to be
reduced in lesions, compared to normal arteries.

These enzymes provide several potential targets for
intervention with protease inhibitors. Overexpression of TIMP
has been found in rat models to reduce the progression of vessel
damage, presumably through a reduction in MMP degradation
of vessel walls. Cathepsins can also be targeted by the cysteine
protease inhibitor E64d, and morpholinurea leucine-homophe-
nylalanine-vinylsulfone-phenyl, a selective cathepsin S
inhibitor.

While protease inhibitor therapy may benefit some aspects of
cardiovascular disease, it should be noted that HIV protease
inhibitors are well-documented to raise serum lipid levels,
promote atherosclerosis, and increase risk of myocardial
infarction (Hui, 2003). Until the underlying mechanism of
this risk is known, caution is needed when developing protease
inhibitors for cardiovascular disease.

6.6. Pulmonary inflammation

In the lungs, acute inflammation causes neutrophils to secrete
proteases including elastase, collagenase, and cathepsin G which
cause further damage tissue and perpetuate inflammation. These
proteases, particularly elastase, have been implicated in the
destruction of alveoli and subsequent impaired respiratory
function found in pulmonary emphysema, chronic bronchitis,
cystic fibrosis, and acute respiratory distress syndrome (Griese
et al., 2001; Hiemstra, 2002; Sallenave et al., 2003). Several
protease inhibitors regulate these enzymes to protect lung tissue,
chiefly secretory leukocyte protease inhibitor (SLPI), elafin, and
alpha1-protease inhibitor (α1-PI, also known as α1-antitrypsin).
Aside from inhibition of elastase, these inhibitors have shown
other mechanisms of anti-inflammatory action. SLPI, for
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example, has been shown to decrease the pro-inflammatory effect
of bacterial lipopolysaccharide by reducing activation of the
transcription factor nuclear factor kappa B (NF-κB) (Hiemstra,
2002). The blocking effect of SLPI on NF-κB limits the
accumulation of neutrophils and the leaking of albumin from
the vasculature into the lung (Mulligan et al., 2000).

Another transcription factor, TNF-α, has also been of interest as
clinical target for its role in chronic bronchitis and chronic ob-
structive pulmonary disease. TNF-α converting enzyme, also
known as TACE, functions synergistically with MMP in many
inflammatory disease states; specifically, elevated levels ofMMP-9
and MMP-12 have been correlated with lung damage. Dual
inhibition of these enzymes has become an interesting target, and
several active compounds have been published (reviewed in
Supuran et al., 2003).

Deficiency of α1-PI is a rare genetic disorder which causes
early-onset emphysema due to proteolytic damage to lung
tissue. Augmentation therapy with human α1-PI effectively
slows the loss of lung function in these patients (Wencker et al.,
2001). The same inhibitor was shown to reduce proteolytic lung
injury when used in cystic fibrosis patients (Griese et al., 2001).
It has been suggested that protease inhibitor therapy can benefit
cystic fibrosis patients by improving impaired bacterial
clearance (Alexis et al., 2006). Urinary trypsin inhibitor,
derived from human urine, and ONO-5046, a synthetic
inhibitor, have both shown efficacy against elastase-induced
lung damage. Not only do these compounds inactivate elastase
secreted by neutrophils, they appear to work on the neutrophils
themselves to reduce elastase production and secretion
(Nakatani et al., 2001).

6.7. Gastrointestinal inflammation

Digestive secretions contain several proteases which serve to
degrade dietary proteins prior to absorption. These enzymes,
including the serine proteases trypsin and chymotrypsin and the
aspartic protease pepsin, can damage the lining of the gastro-
intestinal tract if natural protective mechanisms fail. Esophagitis
can occur when digestive proteases reflux and irritate
esophageal tissue. Commonly, this problem affects individuals
after gastrectomy. Oral administration of camostat mesilate, a
trypsin inhibitor, has been shown to reduce reflux esophagitis
severity in patients who have undergone this procedure (Kono
et al., 2005).

Chronic pancreatitis is a continuing or relapsing inflamma-
tory disease of the pancreas that may be caused by either
increased proteolytic activity or decreased protease inhibition in
the pancreas. Kazal type 1 serine protease inhibitor, also known
as pancreatic secretory trypsin inhibitor, protects the pancreas
from autodigestion by trypsin (Witt et al., 2000). Although
various synthetic protease inhibitors such as gabexate mesilate
and aprotinin have been used to treat pancreatitis for more than 3
decades, only 10 clinical studies adhered to proper randomized
controlled trial guidelines. Meta-analysis of these studies
concluded that protease inhibitor treatment did not significantly
reduce mortality in patients with acute or mild pancreatitis, but
may reduce mortality in patients with moderate or severe
pancreatitis (Seta et al., 2004). The effectiveness of protease
inhibitors in the treatment of pancreatitis remains unclear.

7. Alzheimer's disease

Two enzyme-catalyzed steps are necessary for the formation of
β-amyloid peptide, a protein fragment which accumulates into
plaques implicated in the pathogenesis of Alzheimer's disease.
These steps rely on aspartyl proteases known as β- and γ-
secretase, which cleave the amyloid precursor protein consecu-
tively to generate β-amyloid peptide. Inhibitors of these enzymes
are potential drugs for treating Alzheimer's disease, but the
development of secretase inhibitors for this purpose must
overcome several hurdles. Chiefly, compounds for neurodegen-
erative diseases must be small enough to penetrate the blood–
brain barrier. Additionally, concerns have been raised about the
implications of interfering with secretase activity. Various
compounds have been identified which inhibit β-secretase in
vitro, however few have shown in vivo efficacy and none to date
have reached clinical trial. Because deletion of the gene encoding
β-secretase in rodents does not appear to cause negative
consequences, this protease remains the most promising target
of many research groups.

In contrast, interfering with γ-secretase activity is more
problematic, as this protease complex participates in the pro-
cessing of substrates other than amyloid precursor protein,
including a subset of cell-surface receptors and proteins
involved in embryonic development and cell adhesion (Evin
et al., 2006). Administration of a potent γ-secretase inhibitor to
mice resulted not only in decreased plasma and brain β-amyloid
levels, but also in defective development of lymphocytes and
intestinal mucosa, likely due to inhibition of Notch processing
(Wong et al., 2004).

The γ-secretase is a complex composed of 3 integral mem-
brane proteins, and the recent discovery of structurally diverse
inhibitors indicates that several distinct mechanisms of
inhibition are possible. Future studies may uncover promising
inhibitors which are selective for amyloid precursor protein over
other substrates, and are able to permeate the blood–brain
barrier. Eli Lilly has developed a promising γ-secretase inhi-
bitor, LY450139, which is currently being evaluated in phase II
clinical trials. Initial clinical data on this compound indicated
that LY450139 was well tolerated and produced decreased
β-amyloid peptide levels in plasma and cerebrospinal fluid,
indicating that it may have beneficial clinical effects (Siemers et
al., 2004).

8. Botanical protease inhibitors

Plants are particularly good sources of protease inhibitors, as
these compounds protect against diseases, pests, and consump-
tion by herbivores. Since humans utilize seeds, fruits, beans, and
grains as food, the protease inhibitor content of these tissues has
implications for nutritional status, particularly in populations
which rely on a limited variety of staple grains or legumes. Crops
which have been identified as sources of protease inhibitors
include soybeans and other beans, potatoes, squash, barley,
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wheat, millet, tomatoes, corn, kohlrabi and buckwheat. It is
common to find several protease inhibitors present in the same
tissue and species, presumably acting synergistically as an
integrated defense system. These natural inhibitors vary in
concentration, heat stability, and protease specificity, and indi-
vidual study is needed to determine the potential effect of each
on human health. Diversity and abundance of protease inhibitors
in plants make them excellent sources for discovering novel
protease inhibitors with specific pharmacological effects.

Transformation of crops with protease inhibitor genes may
reduce pest-related loss and result in higher agricultural yields,
helping to feed the ever-expanding global population (Lawrence
& Koundal, 2002). Transgenic expression of protease inhibitor
genes can also increase the amount of a homologous or
heterogenous protease inhibitor, so that pharmacologically active
doses are delivered in food.

For example, a natural plant protease inhibitor with human
activity has been extracted from Leucaena leucocephala seeds.
Named L1TI, this peptide inhibits human plasmin and exhibits
anticoagulant properties in vivo (Oliva et al., 2000). Amento-
flavone, a compound found in Ginkgo biloba and Hypericum
perforatum, is a natural inhibitor of cathepsin B, and may have
potential for anticancer and anti-arthritis treatments (Pan et al.,
2005). BBI, a well-characterized soybean peptide, has exhibited
broad anticancer activities in clinical trials and cell-based
assays. Soybean extract enriched with BBI has been shown in
vitro to inhibit tumor cell proliferation, invasion and survival in
several models of prostate cancer without adversely affecting
normal cells (Kennedy & Wan, 2002). The chemopreventive
properties of BBI have been attributed to proteasome inhibition,
presumably via an antichymotrypsin mechanism (Chen et al.,
2005a,2005b).

9. Conclusion

There have been substantive advances in our understanding
of the use of protease inhibitors as therapeutic agents. Several
synthetic protease inhibitors have been approved by the FDA
for therapy of HIV and hypertension. A number of natural and
peptidomimetic inhibitors performed well in different phases of
clinical testing to treat other human disorders, including cancer,
inflammation, cardiovascular, neurodegenerative, and various
infectious diseases.

Despite this impressive progress, there is much to learn about
the cross talk between signal transduction pathways and protease
activation cascades. Additionally, development of successful
protease inhibitors for clinical use is reliant on maximizing
bioavailability, specificity, and potency of inhibition of the target
enzyme. Ideally, localizing protease inhibitors to a single target
area of the body may also help minimize the potential for
complications and detrimental side effects.

Discovery of novel selective inhibitors can proceed only
through combination of screening of chemical libraries, rational
design, computational technology, and exploration of natural
compounds. Furthermore, future research into the synergistic
capabilities of inhibitors will help elucidate the most effective
combination therapies. Protease inhibitor research should be
viewed as a promising field in which medical advances are
likely to be realized.
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