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Matrix metalloproteases (MMPs) are crucial components of a
complex and dynamic network of proteases. With a wide range
of potential substrates, their production and activity are tightly
controlled by a combination of signalling events, zymogen
activation, post-translational modifications and extracellular
inhibition. Slight imbalances may result in the initiation
or progression of specific disease states, such as cancer
and pathological inflammation. As glycosylation modifies the
structures and functions of glycoproteins and many MMPs
contain N- or O-linked oligosaccharides, we examine, compare
and evaluate the evidence for whether glycosylation affects
MMP catalytic activity and other functions. It is interesting that
the catalytic sites of MMPs do not contain O-linked glycans,

but instead possess a conserved N-linked glycosylation site. Both
N- and O-linked oligosaccharides, attached to specific protein
domains, endow these domains with novel functions such as the
binding to lectins, cell-surface receptors and tissue inhibitors of
metalloproteases (TIMPs). Validated glycobiological data on N-
and O-linked oligosaccharides of gelatinase B/MMP-9 and on O-
linked structures of membrane-type 1 MMP/MMP-14 indicate
that in-depth research of other MMPs may yield important
insights, e.g. about subcellular localizations and functions within
macromolecular complexes.
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INTRODUCTION

In recent years, research on matrix metalloproteases (MMPs) has
grown exponentially due to increasing interest from biomedical
scientists, in both academia and industry. The scientific
excitement about MMPs originates from their involvement in
several physiological and pathological processes. When first
discovered, MMPs were defined as secreted proteases, able
to degrade extracellular matrix (ECM) proteins (e.g. collagens
and elastins) during ECM remodelling events [1,2]. This
vision has now been broadened because MMPs also modulate
intracellular, pericellular and extracellular signalling pathways
and networks, by activating or inactivating other molecules
such as chemokines, proteases, protease inhibitors, cell-surface
receptors and intracellular proteins [3–5]. Small changes in the
activity, specificity or levels of MMPs can result in
the development of both localized and systemic pathological
conditions such as cancer [6], inflammation [7,8], autoimmune
diseases [9,10], vascular diseases [7] and neurological disorders
[11–14]. Therefore, MMPs are tightly controlled enzymes and
this control is hierarchically organized at various levels. At the
cellular level, MMP expression is transcriptionally regulated by
signalling pathways, triggered through a wide range of receptors,
e.g. MMP production is mediated by mitogen-activated protein
kinase (MAPK) pathways, which are triggered by mitogens,
phorbol esters, cellular stress signals and inflammatory cytokines
[15]. Whereas, originally, these mechanisms of action were
proven by demonstration of specific transcription factors acting
on genetic cis elements in the promoter regions of MMP
genes, more recently, epigenetic control mechanisms have been

added in the form of DNA methylation/demethylation and
histone acetylation/deacetylation events. Furthermore, once MMP
mRNAs have been synthesized, their levels are altered post-
transcriptionally by many control RNA mechanisms, including
miRNAs [1,16–22].

During and after mRNA translation, several modifications occur
that alter specific parts of a protein/enzyme after synthesis, thereby
inducing an extra level of structural and functional diversity. A
great variety of co- and post-translational modifications exist,
so that almost all amino acids can be altered by one of
these processes. One such modification is glycosylation [23].
By a complex series of enzymatic steps, oligosaccharides can
be attached to glycoproteins. Most often, glycans are formed
by common N-glycosidic and O-glycosidic bonds. N-Glycans
are attached to asparagine residues and the O-glycans can be
linked to every amino acid with a hydroxy functional group
(often serine or threonine). Whereas N-glycans are attached
during translation [24], O-glycans are attached in the Golgi and
trans-Golgi complexes after protein folding [25]. An important
tuning function of N-linked sugars in the endoplasmic reticulum
(ER) is protein folding [23,26]. Once folded, the glycoproteins
move through the Golgi system, where a series of transferases
sequentially attach and modify, at the luminal side, O-linked sugar
structures on serines or threonines. Throughout the present review
we follow the paradigm that oligosaccharides impose fine-tuning
functions on glycoproteins, including MMPs [27–31].

Once synthesized, most MMPs exist as inactive pro-enzymes,
which become active on proteolytic removal of the pro-peptide
or modification of the chelating cysteine residue, located in the
pro-domain [7]. Proteolytic removal of pro-peptides is done by
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Figure 1 Domains and glycosylation of pro-MMP-9

(A) Multi-domain structure of pro-MMP-9 in a refined model of MMP-9 based on compositional and site-specific glycan analysis, sedimentation data and atomic force microscopy structures
(PDB codes 1L6J and 1ITV). The MMP-9 domains are shown in different colours: pro-peptide (green), active site (yellow), three fibronectin repeats (blue), Zn2 + -binding domain (orange), OG
domain (black), haemopexin domain (red) and Zn2 + (brown). (B) Localization in the pro-MMP-9 model of the validated N-glycosylation positions Asn38 and Asn120 (dark green) and the possible
O-glycosylated sites (orange) predicted by NetOGlyc 4.0: Ser26, Ser66, Ser250, Ser257, Thr258, Thr259, Ser273, Ser298, Thr316, Thr317, Thr455, Thr456, Thr457, Thr458, Thr462, Thr466, Thr470, Thr474, Ser478,
Thr482, Thr486, Ser490, Thr494, Thr498, Ser502, Thr503, Thr505, Thr506 and Ser510.

many proteases, including plasmin, meprins, furins and even
activated MMPs. Modification of the chelating cysteine residue
includes processes such as S-nitrosylation and S-glutathiolation.
Both modes of activation can happen intracellularly and
extracellularly [4]. The core function of the cysteine residue in
this activation process is known as the cysteine-switch mechanism
[32]. Once in the activated state, MMP activity can be blocked by a
range of inhibitors. Whereas in plasma the main inhibitor of MMP
activity is α2-macroglobulin [33], in tissues four MMP inhibitors,
named the tissue inhibitors of metalloproteases (TIMPs) [34],
execute such a function.

Finally, MMPs that possess one or more free cysteine
residues may form disulfide bonds in both a homotypical and
a heterotypical way, e.g. MMP-9 forms a covalent complex with
neutrophil gelatinase B-associated lipocalin [35,36]. Although
the functional consequences of this complex formation are not
yet clear, it proves that MMPs may form covalent complexes
via disulfide bridges. This mechanism was also discovered for
homotypical interactions in MMP-9 trimers. The covalent trimer
of MMP-9 molecules results in a new structural entity that is
differentially inhibited by TIMP-1, when compared with the
monomer [37]. The relationship between structure and function is
critical for biology. Therefore, in the present review, we evaluate
the presence and effects of both O-glycans and N-glycans on the
functions of MMPs.

MMP STRUCTURE

MMPs are multi-domain enzymes with designated functions
for each domain (Figure 1A) [1]. The pro-peptide domain is
shared by all MMPs and functions as a regulator of enzyme
activity. This domain contains a signature amino acid sequence
(PRCXXPD), in which the conserved cysteine residue can interact
with the catalytic Zn2 + ion and thereby keep the enzymes
inactive. On proteolytic removal of the pro-peptide or chemical
modification of the conserved cysteine residue, MMPs become
active, via the ‘cysteine switch’ [32]. The catalytic part is formed
by the catalytic domain and the Zn2 + -binding domain, and is
highly conserved within the MMP family [38]. The fibronectin
repeats are present only in gelatinases (MMP-2 and MMP-9)
and they assist these enzymes in the catalysis of large substrates
such as gelatins [39]. Membrane-type MMPs (MT-MMPs) are
characterized by having a membrane anchor and some MMPs also
have a cytoplasmic tail at the C-terminus. Several MMPs also have
a linker domain that is situated between the Zn2 + -binding domain
and the haemopexin domain. In MMP-9 the linker domain is rich
in the amino acids serine, threonine and proline, and was found
to be highly O-glycosylated (Figure 1B). For this reason this
domain was renamed the O-glycosylated domain [40]. Finally,
the haemopexin domain is present in several MMPs and has a
range of functions. Although this domain assists in binding to
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substrates, it also mediates binding to inhibitors and cell-surface
receptors, and was found to induce autoactivation of the enzyme
[41–43]. Consequently, soluble MMPs, such as MMP-9, may
become attached to cell surfaces by protein–protein interactions,
e.g. MMP-9 binds to α4β1 integrin [42], or by protein–sugar
interactions, e.g. MMP-9 binds to cell-surface galectins (see
below) [44].

GLYCOSYLATION

Glycosylation is one of the many post-transcriptional
modifications that can be found in MMPs. The implications
of glycosylation in this protease family are just starting to
be understood. N-Glycosylation occurs when the consensus
sequences Asn-Xaa-Ser or Asn-Xaa-Thr (Xaa is any amino
acid except proline) are generated in the ER. A large
enzyme complex [45] transfers en bloc and at the luminal
side a dolichol pyrophosphate-linked branched oligosaccharide
(GlcNAc2Man9Glc3) to the nascent protein [46]. The biosynthesis
of this oligosaccharide and the topology of the enzymes involved
are complex. For many of these enzymes, rare genetic defects
have been discovered and classified as congenital diseases of
glycosylation (CDGs). The fact that these CDGs are rare diseases
points towards the importance of N-linked glycosylation in
biology [47]. Furthermore, some organisms (e.g. most bacteria)
live without these enzymes, resulting in a lack of N-linked
glycosylation patterns. This finding places glycosylation as a
next step in evolution. Indeed, by diversification of proteins
into glycoproteins, a basis is formed for the generation of new
molecules and eventually new species.

Glycans attached to proteins are often the first point of
contact between molecules in cellular interactions, making these
modifications essential for the correct physiological functioning
of molecules. O-Glycosylation has several physiological
functions [25], e.g. mucins are heavily O-glycosylated molecules
which function as a protective layer in epithelia and control
properties such as the interactions with the environment
and the immune system (cell binding through lectins) [48].
Recognition of sugars by lectins is a common theme in immune
functions, as observed for selectins and siglecs [49]. Alterations
in O-glycosylation patterns have also been associated with
diseases. As an example, the glycosylation pattern in cancer
cells varies significantly from that of normal cells [50,51],
and therefore aberrant O-glycosylation is considered to be
a hallmark of cancer. Cancer-associated O-glycans are often
truncated, highly sialylated and less sulfated, and contain N-
acetylgalactosamine (GalNAc) and Galβ1–3GalNAc, also known
as Tn and T antigens because they can trigger an immune
response [25,48]. In addition, N-acetylgalactosaminyltransferase
14 (GALNT14), which catalyses the initial step of O-
glycosylation, is heterogeneously expressed in, for example,
breast cancers, and was associated with invasion and migration
of breast cancer cells [52]. Moreover, a similar effect was
witnessed for β1,3-N-acetylglucosaminyltransferase-8 (β3GnT8),
which catalyses the formation of polylactosamine on β1–6-
branched N-glycans in U251 glioma cells [53].

MMPs AND THEIR GLYCOSYLATIONS

In this section we list separately what is known about the
glycosylation of each MMP. For MMP-7, -8, -10, -11, -12, -
15, -16, -24 and -25 no literature is available on glycosylation.
We used the NetNGlyc and NetOGlyc tools [54] to estimate
the glycosylation status of these MMPs. An alignment of

all MMPs with their potential and proven glycosylation sites
can be found in Supplementary Figure S1, which illustrates
that all MMPs have potential glycosylation sites. Across the
MMP family, conserved glycosylation sites appear mainly as N-
glycosylations in the active site, a feature that becomes even more
evident when comparing MMP active sites in 3D (Figure 2).
In contrast, glycosylation might also introduce an extra level of
interfamily diversification by conferring different functionalities
to otherwise similar protein domains. This becomes evident
when comparing glycosylation patterns of the haemopexin
domains of, for example, the gelatinases MMP-2 and MMP-
9 (Figure 1), and other MMPs such as MMP-1, MMP-12
and MMP-13, as exemplified in Figure 3.

MMP-1

MMP-1 is secreted by human skin fibroblasts and from, for
example, HT-1080 fibrosarcoma cells in two forms: a less abund-
ant N-glycosylated form (∼57 kDa) and a more abundant non-
glycosylated form (∼52 kDa). Two potential N-glycosylation sites
are found at Asn120 and Asn143; however, only glycosylation of
Asn120 has been experimentally proven [55–57] (Figures 2 and 3).
In fibroblasts, these N-glycans are mainly α2,3-sialylated complex-
type diantennary glycans, whereas, in HT-1080 fibrosarcoma
cells, the N-glycosylation pattern is more heterogeneous with
diantennary glycans carrying Lewis X, LacdiNAc, sialylated
LacdiNAc and GalNAcβ1,4(Fucα1,3)GlcNAc [57]. Many of these
glycan structures contain motifs that are recognized by selectins
and thus may have biological consequences, e.g. the α1,3-
fucosylated LacdiNAc structure inhibits E-selectin-mediated
cell adhesion [58]. Therefore, it is thought that glycosylated
MMP-1 may bind to the surface of activated cells through a
selectin/glycan interface and therefore contribute to tumour cell
invasion and angiogenesis. By comparison of glycosylated and
non-glycosylated MMP-1, it was shown that both enzyme forms
have similar substrate specificity, specific activity and are equally
well inhibited by TIMP-1 [57].

MMP-2

GALNT14 catalyses the initial step of the common form of O-
glycosylation and is increased in breast cancers [59]. Increased
GALNT14 expression results in up-regulation of MMP-2 in
MCF-7 cells, and silencing of GALNT14 results in decreased
expression of MMP-2 [52]. Although the mechanism behind this
observation is unclear, if MMP-2 would be O-glycosylated, it may
be better stabilized, secreted and protected against degradation,
and thus increase to higher steady-state levels than aglycosyl
MMP-2. Site-specific analysis is not available, but the pro-peptide
of MMP-2 has two potential O-glycosylated sites, namely Ser32

and Thr96 (see Supplementary Figure S1). The catalytic domain
has no predicted glycosylation sites and the haemopexin domain
has two potential sites for N-glycosylation (Asn573 and Asn642).
More potential O-glycosylation sites are located in the fibronectin
domain (Thr262) and between the Zn2 + -binding and haemopexin
domains, in the so-called linker domain (Thr458 and Thr460). A
structural model of pro-MMP-2, with indication of the potential
glycosylation sites, is shown in Figure 3.

MMP-3

Similar to MMP-1, MMP-3/stromelysin-1 is also secreted as
a glycosylated (60 kDa) and a non-glycosylated (57 kDa)
form in human skin fibroblasts [60]. However, there are no
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Figure 2 Comparisons and conservation of glycosylation in the active sites of MMPs

The active sites of MMPs consist of the catalytic domain and the Zn2 + -binding domain, which are both devoid of O-linked oligosaccharides (see Table 1). Validated N-glycosylation (dark green),
predicted by the NetNGlyc1.0 Server but not yet validated (lime green), and potential sequences not predicted by the program (pale green) are shown in the crystal structures of the catalytic domains of
MMPs [PDB codes 966C (MMP-1), 1CK7 (MMP-2), 1SLN (MMP-3), 1MMR (MMP-7), 2OY4 (MMP-8), 1GKC (MMP-9), 1Q3A (MMP-10), 1HV5 (MMP-11), 4H49 (MMP-12), 23PJT (MMP-13),
1BUV (MMP-14) and 1RM8 (MMP-16)]. Zn2 + is indicated in brown. In human MMP-1, Asn143 and in human MMP-9, Asn127 are not occupied (asterisks).

reports on the exact site and structure of glycosylations of
stromelysin-1. Computational analysis revealed several potential
glycosylation sites. One potential N-glycosylation site is located
in blade III of the haemopexin domain (Asn398). In addition,
there are three possible O-glycosylated residues: Ser57 (in the
pro-peptide), Ser269 and Thr277 (in the linker domain). Based
on the consensus sequence for N-glycosylations, Asn120 is also
a potential glycosylation site, but was not predicted by the
computational analysis (Figure 2).

MMP-9

Of all MMPs, MMP-9 is most extensively glycosylated. An
estimated 85% of the human neutrophil gelatinase B sugars

are O-linked and attached to 14 potential O-glycosylation sites
(Figure 1). These sites are all clustered in a single stretch
of 50 amino acids (full-length MMP-9 is ∼700 amino acids)
which contains a proline-rich section (P445RPEPEPRPP) followed
by eight Pro-Thr and three Pro-Ser couples (14 potential O-
glycosylation sites), each spaced by two residues, thereby being a
highly probable attachment region for clustered O-linked glycans
[1,25,29,40,61]. On the basis of the presence of O-linked glycans
in this short stretch, we called this segment the O-glycosylated
domain and suggested that the glycosylation would elongate this
structure in the form of a corkscrew [1,40]. Subsequent analysis
by small-angle X-ray spectroscopy provided further experimental
evidence for this mucin-like structure [62], and this helped to
generate a better model of the MMP-9 monomer [1]. Chemically,
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Figure 3 Comparison of domain structures and glycosylation sites of MMPs

Specific domains endow proteins with specific functions and there are variations in glycosylation sites and patterns within the MMP family. Consequently, glycosylation superimposes additional
functionalities on MMPs. Domains, and validated and predicted glycosylation sites, are indicated in the crystal structures of MMP-1, pro-MMP-2, MMP-12 and MMP-13 (PDB codes 2CLT, 1CK7,
3BAO and 4FU4, respectively). The following domains are shown: pro-peptide (green), active site (yellow), three fibronectin repeats (blue), Zn2 + -binding domain (orange), haemopexin domain (red)
and Zn2 + (brown). Validated N-glycosylated sites are indicated in dark green, sites predicted by the NetNGlyc1.0 program are in lime green, and potential sequences not predicted by the program
are in pale green. The O-glycosylated sites predicted by NetOGlyc 4.0 are indicated in orange.

these O-glycans consist of a mixture of type 1 core disaccharide
(Galβ1–3GalNAc), but foremost elongated type 2 core structures
with Galβ1–4GlcNAc (N-acetyl-lactosamine) extensions, with or
without sialic acid or fucose [63].

The pro-MMP-9 sequence also contains three potential N-
glycosylation sites, one in the pro-peptide (Asn38-Leu-Thr)
and two in the active site (Asn120-Ile-Thr and Asn127-Tyr-Ser).
Experimentally it was proven that only Asn38 (in the pro-
peptide) and Asn120 (in the active site) are glycosylated [40]. By
performing HLPC-based experiments, Rudd et al. [29] showed
that more than 95% of the N-linked glycans of natural neutrophil
MMP-9 are partially sialylated core-fucosylated biantennary
structures, with and without outer-arm fucose linked to N-
acetylglucosamine (GlcNAc). Recombinant pro-MMP-9, derived
from Sf9 insect cells, also contains Man3GlcNAc2 structures with
core fucosylation [40]. These results are in line with the data
obtained with natural human MMP-9 [30] and recombinant MMP-
9 expressed in HeLa cells [64].

To study the function of the attached oligosaccharides, various
tests were used. In vitro tests showed that the activation
rate of pro-MMP-9 by MMP-2 and MMP-3 and the catalytic
activity of MMP-9 towards gelatin were not changed after
N-deglycosylation [30]. However, desialylation (with sialidase
from Streptococcus sp.) alters the interaction of MMP-9 with

TIMP-1, consequently lowering MMP-9’s inhibition by TIMP-
1. After desialylation, the net activity of MMP-9 is increased
significantly in the presence of equimolar or excess amounts of
TIMP-1 [30]. An N120S point mutant showed reduced secretion
by retention in the ER, probably due to stronger binding of
aglycosyl MMP-9 to ER-resident calreticulin. This points to a
possible function of the oligosaccharide in secretion, although
influence by modification of the amino acid cannot be excluded.
In addition, the oligosaccharide at position 38 helps in proper
protein folding and secretion. In the latter the function of the
oligosaccharide can be mimicked by small, but not large, amino
acids. Also in this case the secretion effect cannot be fully
attributed to the sugar side chain [65]. More functions for
the N-linked glycans should be explored, e.g. the influence on
MMP-9 stability, resistance against proteolysis/degradation, and
interactions with its substrates or ECM components. Also, the
finding that the pro-peptide of MMP-9 contains one N-linked
glycan opens the possibility that this sugar is involved in pro-
MMP-9 activation and activity.

For O-linked glycans, several functions have been suggested:
extending and increasing the rigidity of a polypeptide chain,
recognition, modulation of the activity of signalling molecules
and enzymes, increasing stability and protection against proteases
[25]. None of these possible functions have been experimentally
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proven for MMP-9. Protection against proteolysis might be
important for MMP-9 because it is released at inflammatory
sites, where other proteases are likely to be abundant.
MMP-9-deletion mutants, lacking the O-glycosylated domain,
show similar activation by MMP-3. In addition, the catalytic
activity towards several known substrates was not altered, on
deletion of the O-glycosylated domain, but these mutants were
unable to bind to Helix pomatia agglutinin, a lectin specific for
serine- or threonine-linked GalNAc [40]. This suggests that lectin
binding, as proposed for galectins, may contribute to anchoring
MMP-9 to cell-surface-bound galectins or other supramolecular
complexes. For an illustration of this, the reader is referred to a
published model of MMP-9 and four molecules of galectin-3 [44].
At present, the unique O-glycosylated domain is also suggested
to function as a protease-resistant spacer that extends the enzyme,
separating the haemopexin from the other domains. Thereby,
the abundant glycosylation of the O-glycosylated domain
has considerable implications for the domain organization of
MMP-9 [63]. The presence of this O-glycosylated domain
results in completely different structures between gelatinase
A/MMP-2 and gelatinase B/MMP-9 [61]. More specifically, the
O-glycosylated domain co-determines the bioavailability of active
MMP-9, together with the haemopexin domain, by correctly
orienting the haemopexin domain for inhibition by TIMP-1 and
internalization by low-density lipoprotein receptor-related protein
(LRP)-1 and LRP-2/megalin [40]. In addition, the O-glycosylated
domain lends the MMP-9 molecule a high degree of interdomain
flexibility believed to be important in finding cleavage sites on
long substrates [66].

MMP-9 glycosylation has been associated with several
pathological conditions, e.g. by comparison of MMP-9 glycans
from MCF-7 breast cancer cells, THP-1 myeloid leukaemia cells
and natural neutrophils, Fry et al. [67] revealed cancer-associated
glycoforms that exhibit decreased binding to galectin-3. It needs
to be stressed here that the glycosylation patterns differed between
normal and transformed myeloid cells (neutrophils compared with
THP-1 cells) and between various types of cancers (leukaemic
THP-1 compared with MCF-7 breast cancer cells). O-linked
glycans of neutrophil MMP-9 are mainly galactosylated core
2 structures, 46% of which are ligands for galectin-3; 11%
contained two to three N-acetyl-lactosamine repeating units
which are high-affinity ligands for this lectin. Glycans provide
MMP-9 with both high-affinity and high-avidity interactions
with galectin-3. In contrast, the O-linked glycans released from
MMP-9 expressed in MCF-7 and THP-1 cells are sialylated
core 1 structures, of which only 10% are ligands for galectin-
3 and contained only a single N-acetyl-lactosamine repeat.
Consequently, these cancer-associated glycoforms bind galectin-
3 with significantly reduced affinity and avidity. The fact that it
has been suggested that galectin-3 tethers MMP-9 to the cell
surface under normal conditions implies that, in the tumour
environment, altered glycans could allow cells to detach from
the ECM, providing evidence that MMP-9 contributes to cancer-
associated processes of invasion and metastasis [67].

A feature of endometriosis is the existence of autoantibodies
against endometrial and serum antigens. Certain carbohydrate
moieties, including the disaccharide Thomsen–Friedenreich an-
tigen (Galβ1–3GalNAc), a type-1-core O-linked oligosaccharide,
are crucial for endometriotic sera to bind their antigens [68].
Multiple T antigens are present on MMP-9 and, although no
data were shown, it was mentioned that natively glycosylated
pro-MMP-9 multimers reacted to serum from patients with
endometriosis [69]. Nevertheless, structural comparisons of the
glycans present on monomeric and trimeric MMP-9, after
recombinant expression in insect cells, showed that both forms

contain the same type of glycosylations [37]. Additional studies
will be needed to determine whether monomers and multimers
always carry similar oligosaccharides or whether structural
differences are imposed under specific conditions in particular
cell types.

As conclusions for MMP-9 one can summarize that: (i) the
presence of both N- and O-linked structures has been defined
and validated; (ii) alterations of these structures lead to functional
differences in the interactions with TIMP-1 and galectin-3; and
(iii) this information can be placed in a biological context. In
particular, the O-glycosylated domain of gelatinase B/MMP-9
yields a completely different structure from gelatinase A/MMP-
2, and contributes to subcellular localizations, and as a binding
partner in macromolecular complexes.

MMP-13

MMP-13 contains two asparagine residues predicted to be N-
glycosylated by the NetNGlyc 1.0 program: Asn117 and Asn152.
The presence of glycans was experimentally validated at Asn117

[70]. Two serines with potential O-glycosylation are Ser24 and
Ser62 (see Supplementary Figure S1). No functions of MMP-13
glycosylation have been described. A structural model of MMP-
13, with an indication of potential glycosylation sites, is shown in
Figure 3.

MMP-14/MT1-MMP

Membrane-type 1 MMP (MT1-MMP), also referred to as MMP-
14, has only two potential N-glycosylated sequences at Asn229

(catalytic domain) and Asn311 (linker domain). In addition, the
proline-rich hinge region of MMP-14 contains six potential
O-glycosylation sites: Thr291, Thr299, Thr300, Ser301, Ser304 and
Thr313. By performing enzymatic deglycosylation experiments,
site-directed mutagenesis and lectin precipitation assays, Wu et al.
[71,72] presented experimental evidence that MMP-14 contains
O-linked complex carbohydrates on Thr291, Thr299, Thr300 and/or
Ser301. Ser304 is not glycosylated and the O-glycosylation pattern
of MMP-14 is influenced by a dileucine motif (Leu571-Leu572)
in the cytoplasmic tail of the protein [73]. In contrast to most
other MMPs, MMP-14 is activated intracellularly in the trans-
Golgi network, thereby being an important trigger of proteolytic
cascades [74,75]. Zymogen activation and interstitial collagenase
activity are not impaired in glycosylation-defective MMP-14.
However, loss of O-glycosylation prevents proper interaction of
MMP-14 with TIMP-2, the inability to recruit TIMP-2 to the
cell surface and, consequently, defective formation of the MMP-
14–TIMP-2–pro-MMP-2 trimeric activation complex (in COS-7
cells) [71]. As this complex mediates activation of pro-MMP-2
[76], aberrant glycosylation of MMP-14 has a direct effect on
MMP-2 and consequently also on pericellular proteolysis [71]. In
a second study, using a different cell system, it was suggested that
this effect can also be due to increased autolysis of glycosylation-
deficient MMP-14 [77]. Indeed, the MMP-14 hinge region,
containing the O-linked glycans, and in particular the region
around Gly284 and Gly285, is highly susceptible to proteolysis [78],
e.g. at the cell surface, MMP-14 undergoes autocatalysis to form a
membrane-associated 44-kDa form, lacking the catalytic domain
[73].

Several authors postulated that O-glycosylation protects MMP-
14 from autocatalysis by increasing its stability [77], although
in other studies similar autocatalysis products in O-glycosylated
and aglycosyl forms were seen [73]. It was suggested that
this dissimilarity is due to a differential affinity of the
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detection antibody used (anti-hinge antibody) depending on
the glycosylation status of MMP-14. However, a similar
stabilizing effect of O-glycosylation was reported for MMP-
9 [64]. MMP-14 is also found as an intermediate form,
suggesting that it is an incomplete glycosylated pro-enzyme
form, which is present mostly intracellularly. The intermediate is
transported inefficiently to the plasma membrane, suggesting that
N-glycosylation affects MMP-14 cell-surface presentation [77].

Alterations in glycosylation of MMP-14 were found between
different cell types [77] and different cancer cell lines [71]. Also,
in vivo, mouse prostate tumour-associated MMP-14, and MMP-14
from mouse prostate epithelial cells deficient in the phosphatase
and tensin homologue deleted on chromosome 10 (PTEN), have
a slightly higher molecular mass than normal mouse prostate
MMP-14, due to differential O-glycosylation. This results in the
accumulation of MMP-14 at the cell surface, because of either
reduced autocatalytic processing or diminished internalization of
the enzyme [79].

As a conclusion, also in the case of MMP-14, the presence of
O-linked oligosaccharides has been validated and is important for
interactions with TIMP-2. The latter is known as a critical event
in cell-surface proteolysis of cancer cell invasion and metastasis.

MMP-17/MT4-MMP

MMP-17 is anchored in membranes by glycosylphosphatidylin-
ositol and has two predicted N-glycosylation sites at Asn137

and Asn318, located in the catalytic domain and hinge region,
respectively. Deglycosylation studies show that MMP-17 is
modified by N-glycosylation. Treatment with tunicamycin (an
inhibitor of N-linked glycosylation) causes a significant reduction
in overall MMP-17 expression levels: the electrophoretic
abundance of the 57-kDa form, and to a lesser extent the 72-
kDa form, of MMP-17 is reduced, compared with the untreated
control. Although 11 potential O-glycosylation sites are present,
enzymatic treatment to modify O-glycans (O-glycanase and
sialidase A) had no effect on MMP-17 functions, in line with
the suggestion that, in this system, MMP-17 is not modified
with O-linked glycans [80].

MMP-23/CA-MMP

MMP-23 or cysteine array MMP (CA-MMP) has four potential
N-glycosylation sites (Asn93, Asn149, Asn233 and Asn317) and eight
potential O-glycosylation sites (see Supplementary Figure S1).
By performing experiments with tunicamycin, it was shown that
N-glycosylation contributes 6–10 kDa to the molecular mass of
cell-associated MMP-23/CA-MMP [81].

INDIRECT EFFECTS OF GLYCOSYLATION ON MMPs

Both molecules that function upstream (regulators) and those that
function downstream (e.g. substrates) of MMPs are subject to
glycosylation. Alterations in the glycosylation status of these
molecules might have direct or indirect implications on MMP
function. Important regulators of MMP function are the TIMPs,
which are endogenous inhibitors of the proteolytic activity of
MMPs. Inhibition is accomplished by the co-ordination of the
catalytic Zn2 + ion of the MMP active site with the N-terminal
cysteine residues of each TIMP [82,83]. Of the four human
TIMPs, TIMP-1 and TIMP-3 contain N-linked glycans. TIMP-1
has highly heterogeneous fucosylated N-linked oligosaccharides
attached to two asparagine residues in the N-terminal domain:
Asn30 and Asn78 [84]. In colon cancer cells, aberrant glycosylation

of TIMP-1 has a direct effect on MMP-2 and MMP-9 by
interfering with their interaction [85]. Highly glycosylated TIMP-
1 with extensive outer fucosylation is expressed by human
embryonic kidney (HEK)-293 cells, resulting in a reduced binding
and inhibitory activity to MMPs [86]. Similar effects were
observed for TIMP-3 [87–89]. These data provide evidence that
extensive glycosylation and outer-arm fucosylation can interfere
with the inhibitory capacity of TIMPs.

Other glycosylated upstream regulators of MMPs include
the ECM metalloprotease inducer (EMMPRIN)/CD147/basigin
[90,91] and reversion-inducing cysteine-rich protein with Kazal
motifs (RECK) [92]. Glycosylation of EMMPRIN is crucial
for the formation of homophilic EMMPRIN interactions [93].
Native glycosylated CD147 exists exclusively as oligomers in
solution and directly stimulates MMP production more efficiently
than non-glycosylated prokaryotic CD147 [94]. In fibroblasts N-
glycosylation of EMMPRIN is critical for the induction of MMP-
2 [95]. The glycosylation status of EMMPRIN might also play
a role in the regulation of MMPs in atherosclerotic lesions and
plaque stabilization [96].

Molecules that act downstream of MMPs include cell-surface
receptors such as β1 integrin and substrates of catalysis by
MMPs. In this context, it was found that glycosylation of β1
integrin affects its association with MMP-14, and this most
probably supports localization of proteases on tumour cells
towards the invading front [97]. Some MMP substrates are also
glycosylated, e.g. collagen II is extensively glycosylated [98,99],
and these glycans might determine the cleavage sites by MMP-9
on collagen II [100]. Glycosylation of substrates might impair
their cleavage by MMPs, e.g. glycosylated interferon (IFN)-β is
more resistant to proteolysis by MMP-9 than recombinant IFN-β
from bacteria [101]. In the retina, cyclic-nucleotide-gated (CNG)
channels are essential for phototransduction in photoreceptors. On
glycosylation, these CNG channels are resistant to modification
by MMPs [102].

DISCUSSION

By analysing the N- and O-glycosylated sites predicted by the
NetNglyc1.0 and NetOGlyc4.0 programs, and by comparing the
available literature, a number of conclusions may be drawn
about the glycobiology of MMPs. First, the linker domains
have abundant potential O-glycosylation sites, whereas the
catalytic domains (active site and Zn2 + -binding domain) have
only potential N-glycosylation sites. In addition, the membrane
anchors and the cytoplasmic domains of the MT-MMPs have
only potential O-glycosylated sites (Table 1). It is also clear
from Table 1 that glycosylation results in an additional level
of heterogeneity in an otherwise highly similar family of
proteins. Figure 3, with indications for MMP-1, MMP-2, MMP-
12 and MMP-13, clearly illustrates this: although the amino
acid sequences of the members of the MMP family are
highly conserved, the predicted glycosylation patterns are rather
heterogeneous. However, two N-glycosylation sites appear to
be conserved for most MMPs and these are situated in the
active sites (see Figure 2 and Supplementary Figure S1). The
conservation of these N-glycans strengthens the likelihood that the
glycan has a potential biological function and stimulates further
investigations on MMP glycosylation. A third paradigm resulting
from the present review is about the role of MMP glycosylation
in the interaction with TIMPs. Experiments with glycosylation-
deficient production lines for MMPs and TIMPs, rather than
with site-directed mutagenesis (which not only deletes the N-
linked sugar but also alters the protein backbone), will yield the
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Table 1 Overview of the glycosylation sites of MMPs per domain

Green: N-glycosylation: validated (dark green), non-validated (light green). Orange: O-glycosylation: validated (dark orange) non-validated (light orange). Note that the active site, consisting of the
catalytic domain and Zn2 + -binding domain, is devoid of any predicted O-linked glycosylation.

products for study of in-depth additional examples of MMP/TIMP
glycobiology. As oligosaccharides protect glycoproteins against
proteolysis and MMPs are proteases, substrate glycosylation
needs to be considered in all biological systems. Finally,
oligosaccharides provide recognition functions and this may
radically alter the affinities of MMPs to substrates, receptors,
inhibitors and macromolecular complexes in cellular systems.

Current information about structural and functional aspects of
MMP glycosylation is fragmentary, skewed, and in need of more
examples with biological and medical implications. Whereas
other post-translational modifications, such as phosphorylation
[103] and acetylation [104], even the attachment of a single
GlcNAc as an O-linked monosaccharide [105] are well
understood, our knowledge about oligosaccharide attachment
to glycoproteins, and hence to MMPs and TIMPs, remains
fragmentary. Reasons behind this lack of knowledge are the
heterogeneity of attached glycan structures and the difficulty in
analysing the structures and functions in-depth. To understand
this, it is critical to understand the impact of glycosylation
on protein structures. In insect cells, the MMP-9 active site
is glycosylated at Asn120 with an N-linked glycan structure
(Man3GlcNAc2) with core fucosylation (Figure 4). At the
molecular level, the addition of this (rather small) glycan results
in the addition of an extra width of approximately 25 Å (1 Å
= 0.1 nm) to an active site of an approximate width of 37 Å.
Furthermore, the orientation of the glycan, relative to the active
site, is flexible and allows a high degree of space filling. In
structural terms, the N-linked oligosaccharide represents a space
that is comparable to the volume of the active site.

The analytical aspect is being solved with high-throughput plat-
forms [28,106] and the heterogeneity issue has been tackled with
the definition of glycoforms and glycotypes [107]. Meanwhile, it
has been well established that specific glycoforms of a molecule
may be pathogenic [108] or disease-limiting [109]. Detailed
insights into the structure and functions of oligosaccharides
on glycoproteins have been well defined for clinically used

Figure 4 Three-dimensional model of the catalytic domain of MMP-9 with
attached N-linked glycosylation

The N-glycosylation presented here is a small structure (Man3GlcNAc2) with a core fucosylation
and is attached to Asn120 of MMP-9. This structure is typically produced by insect cells and
is considerably smaller than the N-glycans produced by human cells. The two-headed arrows
indicate that the relative position of the glycan towards the active site is rather flexible and, in
addition, moves beyond the plane of the three conformers illustrated. The figure exemplifies
well the relative volumes occupied by N-linked sugars (in green and white) attached to MMPs
(catalytic site in grey, Zn2 + in brown).

glycoproteins, e.g. immunoglobulins, erythropoietin, tissue-type
plasminogen activator and recombinant cytokines, but MMPs
have not reached this status. Predictably, from the moment that a
first recombinant MMP will be used in practical applications, this
gap in our knowledge will be rapidly filled.

c© 2016 Authors; published by Portland Press Limited



Glycosylation of matrix metalloproteases and tissue inhibitors 1479

For nine MMPs the glycosylation status has not yet been
studied (MMP-7, MMP-8, MMP-10, MMP-11, MMP-12, MMP-
15, MMP-16, MMP-24 and MMP-25), and even for previously
studied MMPs the information remains partial. Our knowledge
on MMP glycobiology is also skewed towards that of MMP-9 and
MMP-14, although these molecules represent prototypical MMPs
studied in inflammation and cancer biology. The structures of N-
and O-linked carbohydrates have been defined in natural [29,63]
and recombinant [40] MMPs, and have been compared in various
molecular forms of MMP-9, such as monomers and homotrimers
[37]. In addition, of all possible functions of N- and O-linked
oligosaccharides attached to glycoproteins [23,25], several have
already been probed for MMP-9 and MMP-14, but not for
other MMPs. The possible functions defined in glycobiology
research include: folding and 3D structure [26], conferring
resistance against proteolytic attack [101,110], interference with
binding to molecular partners (negatively by limiting protein–
protein interactions; positively by enhancing lectin binding)
[111], alterations of dynamic stability, and specific activities of
enzymes [110] and signalling molecules [112], and evolutionary
diversification. MMP-9 and MMP-14 possess both catalytic
and non-catalytic signalling activities [113]. Therefore, a future
challenge is to decipher whether and how the sugars of MMPs
contribute to these activities and whether specific glycoforms
dominate specific functions, as is the case for immunoglobulins.

A third reason for the remaining gaps in our knowledge about
MMP glycobiology is the fact that academic research is driven
by economy. In the biomedical field, research of biomarkers for
diagnostic use and of disease targets for drug development for
common diseases is most critical. Many MMPs are associated
with common diseases, such as cancer and inflammation, and thus
fulfil market criteria. For glycobiology, however, a commonly
misused way to get around the heterogeneity and complexity
problem has been the argument that CDGs are rare diseases.
Recent technological advancements prove that this reasoning
is shortsighted, in fact wrong, and that glycan profiling as one
of the next great challenges is becoming a reality [114–116].
Reciprocally, it has been shown that commonly used medications
alter glycosylation [117]. Such examples provide the necessary
basis to enhance activities, in both academia and the private sector,
towards better glycobiology research. Finally, once the beneficial
effects of specific MMPs [118–120] and TIMPs become better
established, interest will grow, and up-to-date platforms will be
used to define the structural details and functional consequences
of MMP and TIMP oligosaccharides.
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