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Abstract

Class II histone deacetylases in humans and other model organisms undergo nucleocytoplasmic shuttling. This unique
functional regulatory mechanism has been well elucidated in eukaryotic organisms except in plant systems. In this study, we
have paved the baseline evidence for the cytoplasmic and nuclear localization of Class II HDAs as well as their mRNA
expression patterns. RT-PCR analysis on the different vegetative parts and developmental stages reveal that Class II HDAs
are ubiquitously expressed in all tissues with minimal developmental specificity. Moreover, stable and transient expression
assays using HDA-YFP/GFP fusion constructs indicate cytoplasmic localization of HDA5, HDA8, and HDA14 further
suggesting their potential for nuclear transport and deacetylating organellar and cytoplasmic proteins. Organelle markers
and stains confirm HDA14 to abound in the mitochondria and chloroplasts while HDA5 localizes in the ER. HDA15, on the
other hand, shuttles in and out of the nucleus upon light exposure. In the absence of light, it is exported out of the nucleus
where further re-exposition to light treatments signals its nuclear import. Unlike HDA5 which binds with 14-3-3 proteins,
HDA15 fails to interact with these chaperones. Instead, HDA15 relies on its own nuclear localization and export signals to
navigate its subcellular compartmentalization classifying it as a Class IIb HDA. Our study indicates that nucleocytoplasmic
shuttling is indeed a hallmark for all eukaryotic Class II histone deacetylases.
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Introduction

Histone acetylation has been known to induce an open chromatin

configuration leading to transcriptional activation while deacetylation

stimulates chromatin condensation triggering transcriptional quies-

cence. Plant histone deacetylases (HDA or HDACs) are classified into

three distinct families namely RPD3/HDA1 superfamily, Sirtuin

family, and the HD2 family which is unique in plants [1,2,3].

Twelve out of the eighteen known HDAs in Arabidopsis belong

to the RPD3/HDA1-like histone deacetylase superfamily, which is

further subdivided into three classes namely Class I, II, and IV.

Recent phylogenetic studies by Alinsug et al. [4] have identified

HDA10 and HDA17 in addition to HDA6, HDA7, HDA9, and

HDA19 as Class I HDA based on sequence homology. Although

HDA8 and HDA14 are only represented in plants, they exhibit

higher sequence similarity with the conserved histone deacetylase

domains of HDA5, HDA15, and HDA18, members of the Class II

HDAs while HDA2 is classified as Class IV.

Among the RPD3/HDA1-like superfamily HDAs in Arabidop-

sis, HDA6, HDA19, and HDA18 have been well elucidated to

play crucial roles in plant development and environmental stress

response and display tissue-specific expression [5–11,3]. HDA6 is

the most extensively studied plant histone deacetylase acting as a

global repressor involved in flowering, freezing tolerance, ABA

and salt stress response, senescence, repression of embryonic

properties, JA pathway, and establishment of nucleolar dominance

[12–16,10]. Similarly, HDA19 is a global repressor in embryonic

and flower development, ABA and abiotic stress response, light-

responsive gene expression, JA and ethylene signaling, and

regulates basal defense via interaction with WRKY transcription

factors [10,5,6,17,8,18,11]. HDA18, on the other hand, had been

implicated in root epidermal patterning [19].

Previous studies by Finkemeier et al. [20] and Wu et al. [21]

elaborated on the reversible acetylation of cytoplasmic proteins in

Arabidopsis indicating that histones are not the only proteins being

acetylated & deacetylated. A substantial proportion of these

cytoplasmic proteins are involved in photosynthesis and central

metabolism where the deacetylation of rubisco and phosphoglyc-

erate kinase using human Sirt3 lead to a significant increase in

their catalytic activity. However, the use of human Sirt3 as a

deacetylase may exhibit certain specificities towards plant Lys

acetylation sites. Thus, the observed potency may have been

underestimated had a plant specific deacetylase been used.

Unfortunately, none of the 18 known histone deacetylases in

Arabidopsis have been identified to be cytoplasmic since HDA6

and HDA19 were established to be exclusively nuclear. In rice,
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OsSirt2b was found to localize in the mitochondria, OsHDAC6 in

chloroplasts, and OsHDAC10 in both chloroplast and mitochon-

dria although the localization of their respective homologues in

Arabidopsis namely, SRT2, HDA2, and HDA14, still remains to

be elucidated [22].

Class II histone deacetylases in humans and other metazoans

have been well described to undergo nucleocytoplasmic shuttling

[23–26]. This functional regulatory mechanism renders Class II

HDACs to be active as histone deacetylases while inside the

nucleus and inactive when exported out into the cytoplasm. Class

II HDAs generally contain a nuclear localization signal (NLS)

at the amino terminal and a nuclear export signal (NES) near the

carboxyl end. However, mammalian Class II HDACs are

classified further into Class IIa (HsHDA504, HsHDA505,

HsHDA507, and HsHDA509) and Class IIb (HsHDA506 and

HsHDA510) [24]. Class IIa HDACs are dependent on 14-3-3

binding to translocate into the cytoplasm while Class IIb HDACs

rely on their strong NES and NLS for nuclear import and export.

Although most of these Class II HDACs remain inactive in the

cytoplasm, HDAC7 and HDAC6 continue to play versatile roles

such as mitochondrial proteins implicated in apoptosis, SUMO E3

ligases, and target several cytosolic substrates such as tubulin,

cortactin, Hsp90, b- catenin, and peroxiredoxin [27–38].

While inside the nucleus, Class IIa HDACs form complexes

with MEF2, a subfamily of MADS-box transcription factors,

which generally function as transcriptional repressors. They are

likewise phosphorylated by Ca2+ dependent calmodulin kinase

prior to binding with 14-3-3 proteins. This phosphorylation-

dependent binding of 14-3- 3 to the N terminus of Class II

HDACs masks the arginine/lysine-rich motif NLS which simul-

taneously unmasks a latent NES near its C terminus. Once

phosphorylated, they are inactivated as a histone deacetylase and

chaperoned out of the nucleus [26,39]. When proper environ-

mental signals are cued, these HDACs translocate back into the

nucleus, dephosphorylated via binding with MEF2 transcription

factors, and activated as histone deacetylases [23,28].

In general, 14-3-3 proteins are highly conserved, multifunction-

al regulatory proteins, which have been implicated in the

modulation of distinct biological processes by phosphorylation-

dependent protein binding interactions [40]. There are 13 known

isoforms in Arabidopsis, which are divided into two phylogenetic

groups [41,42]. Functional diversity and redundancy among these

isoforms remain an open debate [43,44]. Comparative inter-

actomic studies by Paul and his colleagues [45] reveal highly

conserved 14-3-3 interactions between humans and plants.

Proteomic profiling using tandem affinity purified 14-3-3 com-

plexes in Arabidopsis suggested the high potential of 14-3-3s to

heterodimerize in vivo [46]. To date, there are more than 300

known client targets of plant 14-3-3s and most these interacting

clients are involved in primary metabolism, ion homeostasis, and

hormone signaling including ABA, BR, and GA [45,46,40,47–54].

On the other hand, Class IIb HDACs in humans generally

contain double domains, manifest tissue specificity, predominate in

the cytoplasm, and target the deacetylation of histones, tubulin,

Hsp90, cortactin, b-catenin, and peroxiredoxin [24,23,55–

57,34,32,37,38]. In human HDAC6, it has been shown that its

two catalytic domains function independently as proven by site

directed mutagenesis of its two HDAC domains [58]. Conse-

quently, the separation of these domains commences into the

obliteration of its enzymatic activity [24]. On the other hand, the

C-terminal domain of HDAC10 lacks an active residue required

for its enzymatic activity. However, its interaction with the

functional N-terminal domain renders it active as a histone

deacetylase [59].

Based on sequence analyses of plant Class II HDAs in our

previous study [4], not all of these five HDAs contain both NLS

and NES. However, they all have conserved Ser and Thr residues,

which can be potential phosphorylation sites for 14-3- 3 binding.

Moreover, HDA18 contains a double HDAC domain, which is

comparable to Class IIb HDACs but its conserved histone

deacetylase domain is 54% similar to HDA5. In addition, human

HDAC6 has a cysteine- and histidine-rich domain called ZnF-

UBP which parallels with the ZnF-RanBP of HDA15. Still, the

localization of plant Class II HDAs is unknown and their potential

to undergo nucleocytoplasmic shuttling remains elusive.

Studies on plant Class II HDAs are scarce and pertinent

information on their subcellular compartmentalization and

specific expression patterns would provide significant insights on

their potential function and active roles in plant development.

Based on our findings, RT-PCR analysis on the different

vegetative parts and developmental stages of Arabidopsis plants

reveals that Class II HDAs are ubiquitously expressed throughout

all tissues with minimal developmental specificity. Moreover,

stable and transient expression assays using HDA-YFP/GFP

fusion constructs indicate cytoplasmic localization of HDA5,

HDA8, and HDA14 further suggesting their potential for nuclear

transport and deacetylating organellar and cytosolic proteins.

Organelle markers confirm HDA14 to abound in the mitochon-

dria and chloroplasts while HDA5 localizes in the ER. HDA15, on

the other hand, shuttles in and out of the nucleus upon light

exposure. In the absence of light, it is exported out of the nucleus

while further re-exposition into light treatments signals its nuclear

import. Taken together, this provides the final piece of the puzzle

indicating that nucleocytoplasmic shuttling is indeed a hallmark

for all eukaryotic Class II histone deacetylases.

Results

1. Expression patterns and localization of Class II HDAs
mRNA expressions of Class II HDAs were assessed in Col-0

using different vegetative organs and whole plants at varying

developmental stages. As illustrated in Figure 1, Class II HDA

transcripts were broadly expressed in all the organs and

developmental stages indicating that they may play an active role

in the plant’s overall growth and development. In comparison to

all the plant parts, the stems elicited the strongest expression in all

the Class II HDAs. Moreover, only HDA18 was abundantly

expressed in roots but remained minimal for HDA14, HDA8, and

HDA5. Although HDA18 appears to be actively expressed in roots

and stems, they were barely detected in the leaves and mature

siliques. On the other hand, transcript levels of HDA15 were

prominently detected at the upper shoot parts but not in the roots.

At varying developmental stages, HDA5, HDA8, and HDA18

exhibited developmental specificity while HDA14 and HDA15

were homogenously yet strongly expressed all throughout the

developmental stages. The expression of HDA5 is kept at a

minimum during developed rosette leaf and young flower. HDA8

is weakly expressed from young rosette leaf to young flower but

remains abundant thereafter. In addition, HDA18 is equally

expressed throughout development but remains low during

developed rosette leaves and undetected during young flower

stage.

2. HDA5, HDA8, and HDA14 are localized in the
cytoplasma

To determine the subcellular localization of Class II HDAs,

HDA-YFP constructs with the YFP fused at the C terminal of the

HDAs were used for transient expression in protoplast. As

Subcellular Localization of Class II HDAs
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exhibited in Figure 2, HDA5 displayed prominently cytoplasmic

concentrations with partial overlaps inside the nucleus. Strong

HDA8- YFP signals were detected in the cytoplasm and embedded

near the nucleus while HDA14 exhibited multiple small granular

spots along the cytoplasma. On the other hand, HDA15 was

exclusively nuclear.

In concurrence with this, another set of constructs were made

fusing the GFP at the N-terminal of the HDAs which may mask

some of the organelle targeting sequences imprinted along the

histone deacetylases. Apparently, these GFP-HDA fusion con-

structs yielded similar results with the HDA-YFP set. HDA5 was

prominently cytoplasmic lining through the core across the

nucleus. HDA8 was found to abound in the cytoplasm enveloping

the chloroplasts. HDA14 was evidently cytoplasmic with big and

small granular spots floating along the cytoplasma. On the other

hand, HDA15 was clearly restricted in the nucleus with strong

signals emanating from the nucleolus (Figure S1).

Moreover, transgenic lines expressing the HDA:GFP transgene

under the control of the 35S promoter of the Cauliflower mosaic virus

were generated. Protoplasts from 3-week old leaves were isolated

and observed for subcellular localization. However, the GFP

signals elicited by these transgenic protoplasts were relatively weak

(Figure S2). Nevertheless, HDA5, HDA8, and HDA14 were

evidently distributed along the cytoplasmic area. On the other

hand, HDA15 was confined exclusively inside the nucleus with

GFP signals emanating in the nucleolus.

Based on these results, it is unclear whether HDA5, HDA8, and

HDA14 are exclusively cytoplasmic or nuclear as well. To resolve

this, cell fractionation and immunoblot detection was carried out.

As illustrated in Figure 3, HDA5 and HDA8 were detected in both

cytoplasma and nuclear fractions while HDA14 was exclusively

cytoplasmic. On the other hand, HDA15 was restricted in the

nucleus.

To have a larger view of the HDA’s organelle localization and

dynamics, transient expression of HDA-YFP/GFP in onion

epidermal tissues using particle bombardment was conducted. As

shown in Figure 4A, HDA5 exhibited nuclear concentrations with

well-defined enrichments along the cytoskeletal region. HDA8

localizes both in the nucleus and cytoplasm while HDA14 remains

exclusively cytoplasmic with speckled distribution and refined

localization within organelles. Still, HDA15 remained nuclear

(Figure S3).

Although most of the GFP signals observed in all the Class II

HDAs were static, we have discovered the dynamic movement of

HDA5 along the cytoskeletal area (Figure 4B) suggesting a

function potentially in tubulin deacetylation which may be similar

to human HDAC6. This would explain the predominant HDA5

spots in transgenic protoplasts where the cytoskeletal area may be

too thin or weak to exude GFP signals in comparison to the web-

like signals in transient protoplasts, which strongly highlights the

cytoskeleton obscuring the spots.

Based on these results, HDA5 and HDA8 were consistently

observed in the cytoplasm with partial enrichments along the

nuclear vicinity. On the other hand, HDA14 was distinctly

localized in specific cytoplasmic organelle/s. In an attempt to

identify specific organellar localization of these HDAs, subcellular

markers were employed and co-transfected together with the

HDA-YFP constructs in Arabidopsis PSB-D cell lines. These cells

are devoid of chloroplasts to avoid ambiguous signals emitted from

autofluorescence and reveal a clearer view of the localization of

HDAs. Co-transfection was likewise employed in Col-0 protoplasts

to investigate potential chloroplast distribution.

Cytoplasmic HDA5 shows striking co-localization with the

cytoskeleton network. Since the endoplasmic reticulum is com-

posed of an extensive network of cisternae held together by the

cytoskeleton, an ER marker fused with mRFP was used. HDEL

contains a targeting sequence with Lys-Asp-Glu-Leu residues

found in the endoplasmic reticulum protein retention receptor1

first isolated in humans [60]. Overlay pictures bet YFP signals

from HDA5 consistently matched the mRFP fluorescence from

HDEL confirming the localization of HDA5 in the ER (Figure 5).

It is probable HDA8 may generally be suspended in the cytosol as

none of the organelle markers tested co-localized with its pertinent

distribution. With the use of VirD2NLS as nuclear marker, HDA8

also occupies the peripheral areas of the nucleus in contrast to

HDA15, which is strictly confined inside a small spot, potentially

nucleolus. Moreover, HDA14-YFP was positively confirmed in

the mitochondria with YFP signals co-localizing with the

MitoTracker, a mitochondria specific stain. In addition, strong

HDA14-YFP signals likewise overlapped with the chloroplasts.

3. Interaction of 14-3-3 with Class II HDAs
Human Class II HDACs have been subdivided as Class IIa,

which is dependent on 14-3-3 for nuclear export and cytoplasmic

Figure 1. Class II HDA mRNA expression. Expression patterns of Class II HDAs in different vegetative organs and developmental stages were
assessed using RT-PCR with ubiquitin (UBQ) as loading control. Legend: R roots, S stem, L leaves, MS mature seeds, YRL young rosette leaf, DRL
developed rosette leaf, I inflorescence, YF young flower, MF mature flower, FS flowers and siliques.
doi:10.1371/journal.pone.0030846.g001

Subcellular Localization of Class II HDAs
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retention, and Class IIb, which relies on its own NLS and NES for

nuclear import and export. Although all the Class II HDAs in

Arabidopsis contain three conserved Ser & Thr residues which are

potential binding sites for 14-3-3, only HDA15 and HDA18 both

contain nuclear localization (NLS) and nuclear export signals

(NES) indicating their potential to be classified as Class IIb HDAs.

Based on the neighbor joining phylogenetic tree generated from

Class II HDAs in humans, Drosophila, C. elegans, and yeast, HDA5

and HDA18 are more closely related to HsHDA504, HsHDA505,

HsHDA509, and HsHDA507, which have been well established as

Class IIa HDACs. On the other hand, HDA15 is in the middle

between Class IIa and Class IIb (HsHDA506 and HsHDA510)

showing both potential to be classified as Class IIa and Class IIb

[4].

To determine if these histone deacetylases can be subclassified

as Class IIa or Class IIb, biflourescence complementation (BiFC)

assay was undertaken to assess if HDA5 and HDA15 can interact

with 14-3-3 k and e. 14-3-3 proteins are generally known to have

high sequence homology with very low specificity to its target

proteins. As shown in Figure 6, HDA5 exhibited positive

interactions with both 14-3-3 k and e in the cytoplasm. Whether

HDA5 was fused with the YFP amino end with 14-3-3 k and 14-3-

3 e fused with the YFP carboxyl end or vice versa, consistent

cytoplasmic interactions were observed. This interaction was

further validated using coimmunoprecipitation where HDA-GFP

was co-transfected with myc-tagged 14-3-3 k or 14-3-3 e
(Figure 6C). Unfortunately, this association failed to interact in

yeast-two- hybrid (data not shown) indicating the need for a

kinase, which may be absent in yeast, to catalyze this interaction.

Similar findings were also found in Class IIa human HDAC5,

which positively binds with 14-3-3 in vivo but fails to associate in

yeast suggesting its interaction to be largely dependent on Ca2+/

calmodulin-dependent kinases [61]. These results suggest that

HDA5 relies on 14-3-3 proteins for its nuclear export and

cytoplasmic retention considering that it does not contain any

NES. This classifies HDA5 as a Class IIa histone deacetylase. On

Figure 2. Subcellular localization of Class II HDAs. Protoplast transient expression using HDA-YFP fusion constructs were used to determine
the subcellular localization of Class II HDAs. HDA5, HDA8, and HDA14 exhibited cytoplasmic localization while HDA15 concentrates inside the
nucleus. VirD2NLS fused with mCherry was used as a nuclear marker. Scale bars were calibrated to 10 mm.
doi:10.1371/journal.pone.0030846.g002

Subcellular Localization of Class II HDAs
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the other hand, HDA15 failed to interact with either 14-3-3 k or e
which may suggest its potential to rely on its own NES and NLS

signals.

4. NLS and NES signals of HDA15 navigate its subcellular
compartmentalization

HDA15 contains three NLS signals, one classical par4 type NLS

near the N terminal end and two overlapping bipartite NLS near

the C terminal end (Figure 7A). The predicted NES was stationed

before the second and third NLS near the carboxyl end. Since the

second and third NLS were overlapping, they were jointly omitted

as NLS2. To test whether these NLS and NES functionally

navigate the localization of HDA15, truncated constructs were

generated deleting these predicted signals from HDA15-YFP. As

shown in Figure 7B, the removal of either NLS1 or NLS2 still

renders HDA15 nuclear indicating that both NLS are functional.

In the absence of the other, one can still direct the nuclear

localization of HDA15. However, the deletion of both NLS signals

culminates into its nuclear export signifying the functionality of its

NES. Taken together, these results demonstrate that HDA15 can

translocate in and out of the nucleus whereby its nuclear

localization and export signals navigate its subcellular compart-

mentalization. This classifies HDA15 as a Class IIb histone

deacetylase.

5. Nuclear localization of HDA15 is strongly expressed in
stems and leaves

Although HDA15 was clearly observed to be nuclear in both

transgenic and transfected protoplasts, its mRNA expression

patterns in the different vegetative organs varied with strong

preference for the stems and leaves. To confirm these findings,

HDA15-GFP transgenic lines were grown on 1/2 MS media to

assess differences in its signal and localization. As demonstrated in

Figure 8, whole plant localization of HDA15-GFP in four day old

de-etiolated seedlings exhibited nuclear confinements of HDA15 in

the hypocotyl and leaf protoplasts. However, weak GFP signals were

observed in the root (Figure 8B). Although relatively weak, the

strongest signal in the root appears to concentrate at the quiescent

center. Light exposed organs, namely hypocotyl and cotyledons

(Figure 8C–F), exhibited very strong nuclear GFP signals. On the

other hand, etiolated seedlings grown in the dark for four days

elicited predominantly cytoplasmic concentrations in the hypocotyl

(Figure 8G). These results were further confirmed using transient

expression of HDA15-GFP in protoplasts incubated under white

light for 18 h displaying nuclear concentrations of HDA15

(Figure 8E inset) similar to transgenic protoplasts. Separating the

white light spectrum into far red, red, and blue light as light

treatment for 3 h after 18 h white light incubation similarly resulted

into its nuclear localization suggesting that light quality does not

affect its localization (Figure S5). On the contrary, transfected

protoplasts treated in complete darkness for 3 h after 18 h of white

light incubation generated cytoplasmic localization of HDA15

(Figure 8H). This indicates that the nuclear localization of HDA15

is signaled by light and is not influenced by any specific wavelength.

6. Light drives the nucleocytoplasmic shuttling of HDA15
The nuclear and cytoplasmic localizations of HDA15 in the

presence and absence of light, respectively, unveil its strong

potential to undergo nucleocytoplasmic shuttling. This functional

regulatory mechanism may control its activation and inactivation

as a histone deacetylase just like its corresponding orthologues in

humans and other eukaryotes. To determine if plant Class II

HDAs, HDA15 in particular, can also display nucleocytoplasmic

shuttling, HDA15-GFP transfected protoplasts were incubated

under white light overnight then covered with two layers of foil for

three hours then re-exposed to white light. As shown in Figure 9,

HDA15-GFP transfected protoplasts exhibited nuclear localization

after 18 h of white light incubation. Further dark treatment

elicited cytoplasmic translocation of HDA15. Re-exposition of

these protoplasts to white light after one hour lead to its complete

nuclear import clearly demonstrating that light drives the

nucleocytoplasmic shuttling of HDA15.

Discussion

Class II HDAs display minimal developmental specificity
and are strongly expressed in stems

Unlike human Class II HDACs which exhibit strict developmental

specificity, Arabidopsis Class II HDAs display minimal developmen-

tal specificity and are ubiquitously expressed in all tissues with

stronger signals in stems. This affirms our previous bioinformatics

data where Class II HDAs have been predicted to be prominently

expressed in stems [4]. HDA5 and HDA8 may display abundant

transcript levels in stems, leaves, and mature seeds, however, they

may only be active at certain life stages of the plant. On the contrary,

HDA14 and HDA15 are homogenously expressed all throughout its

developmental stages but mostly in stems. In addition, HDA18

abounds in the roots and stems but inactive during young flower

stage. Prior studies by Xu et al. [19] have implicated the role of

HDA18 on root epidermal patterning such that reduced trichostatin

A (TSA) treatment deregulates the expression of key patterning genes

GLABRA (GL2), CAPRICE (CPC), and WEREWOLF (WER).

Considering the same genes are relatively active in trichome

development and patterning in leaves, the involvement of HDA18

on epidermal patterning maybe exclusive on the roots as its

expression is kept at a minimum in the leaves. The strong expression

profile of Class II HDAs in stem stirs baffling questions with the

possibility of the involvement of this entire class of histone

deacetylases in hypocotyl or stem development.

Cytoplasmic localization of HDA5, HDA8, and HDA14
entails their potential for nuclear transport and versatility
as deacetylases of non-histone proteins

The translocation of human Class II HDACs into the cytoplasm

is generally considered as a functional regulatory mechanism,

Figure 3. Cell fractionation and immunoblot detection HDA-
GFP transfected protoplasts were separated into cytoplasmic
and nuclear fractions then subjected to immunoblot analysis
using anti-GFP antibody. Histone H3 and RHA1 were used as nuclear
and cytoplasmic markers, respectively, on WT protoplasts. P protoplast
extract, N nuclear fraction, C cytosolic fraction.
doi:10.1371/journal.pone.0030846.g003

Subcellular Localization of Class II HDAs
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Figure 4. Particle bombardment in onion epidermal tissues. A. Onion tissues were transfected with HDA-GFP plasmids to visualize the
pertinent localization of Class II HDAs. HDA5 and HDA8 both localize in the nucleus and cytoplasma while HDA14 cytoplasmic. Still, HDA15 remained
nuclear. B. Onion tissues transfected with HDA5-GFP shows its localization in the cytoskeletal network with the dynamic movement of HDA5 spots
(arrows) along these web-like structures. Pictures were taken at 2 sec intervals with the same onion cell.
doi:10.1371/journal.pone.0030846.g004

Subcellular Localization of Class II HDAs
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which inactivates its catalytic activity as a histone deacetylase via

subcellular compartmentalization. However, they can also target

cytosolic substrates especially when bound to specific organelles.

Plant Class II HDAs may exhibit similar functional regulation as well

as versatile roles since all the Class II HDAs were observed to be

cytoplasmic. HDA5 prominently localizes in the cytoplasm, lining

the nucleus, in distinct web like structure resembling the cytoskel-

eton, which was confirmed by the use of HDEL, an endoplasmic

reticulum marker. The ER is composed of an extensive network of

cisternae held together by the cytoskeleton. Studies by Mi and

Puglielli [62] have implicated the presence of HATs and HDACs in

the ER and Golgi describing the reversible acetylation of BACE1, a

protease responsible for amyloid precursor protein cleavage, and

LDL receptor, respectively. Although the HAT responsible for this

occurrence has been determined, the identity of the HDAC still

remains to be discovered. It is probable that the human orthologue

of HDA5 could catalyze the deacetylation of these proteins.

Furthermore, the dynamic movement of HDA5 along the

cytoskeletal network in onion tissues implicates its potential function

in tubulin deacetylation which may be similar to human HDAC6.

Phylogenetic analysis conducted by Gregoretti et al. [63] proposes

HDA5 to be the plant orthologue of mammalian HDAC6 which

deacetylates alpha- tubulin similarly conserved in all eukaryotes. But

unlike human HDAC6, which is exclusively cytoplasmic and

depends on its own NLS and NES, HDA5 localizes both cytoplasm

and nucleus and positively binds with 14-3-3 potentially for its

nuclear export and cytoplasmic retention since it does not have any

NES. Similar to the human Class IIa HDAC5, the inability of

HDA5 to bind with 14-3-3 K and E indicates that specific kinases

which are absent in yeast, are required to catalyze the phosphor-

ylation of 14-3-3 for its binding to HDA5. In humans and other

model organisms, five kinase groups have been shown to

Figure 5. Organelle markers and Class II HDA localization. Specific organelle markers fused with RFP and mitoTracker stain were used to
identify the subcellular localization of Class II HDAs. The ER marker, HDEL, overlaps with the localization of HDA5-GFP. Although HDA8 predominantly
abounds in the cytoplasm, partial nuclear localization was observed at the surrounding areas of the nucleus using VirD2NLS as nuclear marker.
Moreover, HDA15 concentrates in a small spot inside the nucleus, potentially nucleolus. On the other hand, HDA14-YFP was confirmed to localize in
the chloroplasts and mitochondria using mitoTracker. Protoplasts derived from Arabidopsis PSB-D lines were used for PEG transfection in HDA5,
HDA8, and HDA15 while protoplasts from Arabidopsis leaves were utilized for the HDA14-YFP localization. Scale bars were calibrated to 10 mm.
doi:10.1371/journal.pone.0030846.g005
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Figure 6. Interaction of HDA5 with 14-3-3. A. HDA5 exhibited positive interaction with 14-3-3 K and e in the cytoplasm indicating that HDA5
requires these chaperones for its nuclear export and cytoplasmic retention considering that it does not contain any nuclear export signal within its
amino acid sequence. B. On the contrary, HDA15 did not elicit any interaction with 14-3-3 K nor e suggesting that it may rely on its own nuclear
localization and export signals. C. CoIP results further confirm the positive association of HDA5 with 14-3-3 K and e. HDA5-GFP was co-transfected into
protoplasts with myc-tagged 14-3-3 K or 14-3-3 e. HDA5 was detected using anti-GFP while 14-3-3 proteins were immunoprecipitated with anti-myc
monoclonal antibody. Asterisk and arrowheads indicate non-specific bands and 14-3-3-myc, respectively.
doi:10.1371/journal.pone.0030846.g006
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phosphorylate Class IIa HDACs. These include Ca2+/calmodulin-

dependent kinases [61,64], salt-inducible kinases [65,66], protein

kinase D [67–69], microtubule affinity-regulating kinases [70,71],

and checkpoint kinase-1 [72]. It is highly likely that microtubule

affinity-regulating kinases may be involved in phosphorylating 14-3-

3 binding sites with HDA5 considering that it localizes in the

cytoskeletal region. Nevertheless, more studies are needed to

elucidate further the mechanisms governing HDA5 and 14-3-3

interaction as well as the exact substrates and function of HDA5 in

plants.

HDA8 prominently occupies the cytoplasm as well as peripheral

areas of the nucleus. However, subcellular markers including ER,

golgi, trans-golgi network, prevacuolar compartment, and mito-

chondria staining failed to overlap with its pertinent localization

suggesting HDA8 to be suspended in the cytoplasma. Compared

to all the Class II HDAs in Arabidopsis, it is the sole histone

deacetylase devoid of an NLS but with a NES imprinted along the

histone deacetylase region, which is similar to the conserved HDA

domain of human Class IIa HDACs. In the absence of an NLS,

HDA8 may need to associate with other proteins that would

chaperone its translocation to undergo nuclear import. Although

its conserved histone deacetylase domain is homologous to Class II

HDAs compared to the other members of the RPD3/HDA1-like

superfamily, it is more probable that its function is stationed in the

Figure 7. Nuclear localization and export signals of HDA15. A. Schematic representation of HDA15 is shown with its conserved histone
deacetylase domain (HD), RanBP-type zinc finger (ZnF), nuclear localization signals (NLS), and nuclear export signal (NES). HDA15 contains three NLS
signals, one classical par4 type NLS near the N-terminal and an overlapping bipartite NLS near the C-terminal end hereby jointly deleted as NLS2, and
an NES stationed before the bipartite NLS near the carboxyl end. Numbers 1-6 illustrate the different truncated constructs of HDA15 where varying
combinations of NLS and NES signals were deleted, shown here as dash lines. B. To determine if HDA15 depends on its NLS and NES for its subcellular
localization, these predicted signals were truncated out of the HDA15-YFP and transiently expressed in protoplasts. Both NLS1 and NLS2 functionally
direct the nuclear localization of HDA15 and remains active even in the absence of the other. However, the deletion of both NLS renders HDA15
cytoplasmic indicating the functionality of its NES. This suggests that HDA15 can translocate in and out of the nucleus and potentially undergo
nucleocytoplasmic shuttling.
doi:10.1371/journal.pone.0030846.g007
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cytoplasm targeting the deacetylation of non-histone proteins. The

cytoplasmic localization of Class II HDAs may not necessarily

entail inactivity but its enzymatic target clients may encompass

beyond nuclear histones expanding its substrate repertoire.

The speckled distribution of HDA14 was confirmed in the

mitochondria and chloroplasts similar to its rice orthologue,

OsHDAC10 [22]. Based on iPSORT and SignalP prediction

programs, HDA14 contains a mitochondrial and chloroplast

transit peptide encoded at amino acids 4 to 11, yet, still has the

potential to translocate into the nucleus considering that a

classical type, pat7 NLS is embedded in its sequence near the

carboxyl end. Its similarity to HDA5, HDA15, and HDA18 could

be this nuclear importation given the proper signals to pool it

towards the nucleus.

Figure 8. Whole plant localization of HDA15-GFP in 4-day old seedlings. Four day old de-etiolated seedlings of HDA15-GFP were observed
for subcellular localization with the projection confocal image of the entire seedling (A), root tip (B), hypocotyl (C), and cotyledon (D). A magnified
view of the leaf (E) and hypocotyl cells (F) of long day grown seedlings reveal nuclear concentrations of HDA15-GFP. On the contrary, those grown in
total darkness for 4 consecutive days exhibited cytoplasmic localization of HDA15-GFP (G). In concurrence with this, transgenic protoplasts revealed
nuclear confinements of HDA15-GFP upon white light treatment (E) similar to transfected protoplasts (inset E). However, 3-hour dark treated
transfected protoplasts after 18 h of white light incubation resulted to its cytoplasmic translocation (H). VirD2NLS was co-transfected as nuclear
marker (blue). Red color indicates autofluorescence emitted by chloroplasts. Scale bars for A to D is 100 mm, F & G was set at 25 mm, and H at 10 mm.
doi:10.1371/journal.pone.0030846.g008
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It is worth noting though that HDA8 and HDA14 are uniquely

conserved only in plants. The potential function of HDA8 in the

cytoplasm and HDA14 in the mitochondria and chloroplasts may

involve regulatory mechanisms in energy homeostasis similar with

the human NAD-dependent sirtuin family [73]. HsSirt3, in

particular, translocates into the mitochondria upon stress [74]. In

this case, however, it could be the reverse such that HDA14 will

only translocate into the nucleus given the proper environmental

signals. Studies by Wallace and Fan have elaborated on the

dynamic interplay between bioenergetics and epigenetics linking

human epigenetic disorders with mitochondrial dysfunction

[75,76]. In the context of plants, however, energy regulatory

dynamics is complicated by light harvesting, inorganic chemo-

synthesis, to carbon fixation. Moreover, its static nature exposes

plants to a wider scope of stress implicating greater magnitude of

epigenomic changes thus its survival tactics are more intricately

complex than mobile organisms. Histone acetylation, in partic-

ular, has been associated in regulating gene expression in

developmental transitions [7,5], varying environmental signals

such as light [77] and low temperature [78], and stress hormone

signals [79].

In addition, the cytoplasmic localization of HDA8 and HDA14

in plants may entail crucial roles in deacetylating proteins essential

in photosynthesis and other cytoplasmic metabolic pathways.

Recent studies by Finkemier et al. [20] and Wu et al. [21] have

pioneered a systematic study on non-histone proteins targeted for

Lys acetylation in Arabidopsis. Based on their results, a significant

proportion of Lys- acetylated proteins are involved in photosyn-

thesis, TCA cycle, glycolysis, structural proteins, cell signaling, and

plant stress responses. Of particular interest is the deacetylation of

multiple Lys groups in the large subunit of rubisco using the

human Sirt3, which induced a 40% increase in its maximum

catalytic activity. Assuming HDA8 and HDA14 directly deacety-

late any of these photosynthetic proteins and metabolic enzymes,

this would justify its evolutionary divergence from heterotrophs

intricately accessorizing itself with a more efficient energy

regulatory response to balance the dynamic interplay between

the environment, chromatin modification, and bioenergetics.

Light drives the nucleocytoplasmic shuttling of HDA15
The nuclear importation of HDA15 in the presence of light may

implicate its functional activity within the light signaling pathway.

More so, its expression is mostly abundant in the stems and leaves

all throughout the developmental stages of the plant. Thus, we

cannot exclude the possibility that HDA15 may perform active

roles in photomorphogenesis.

Moreover, the localization of HDA15 appears to be mostly

restricted inside a confined spot inside the nucleus, possibly

nucleolus suggesting a function in deacetylating nucleolar core

histones. This study have paved the baseline evidence that plant

Class II HDAs, HDA15 in particular, can undergo nucleocyto-

plasmic shuttling with light signaling its complete nuclear

transport. However, it is puzzling to note why and how HDA15

specifically drives into the center since differences in light exposure

or wavelength do not influence its nuclear distribution. Further-

more, it is yet to be determined whether its cytoplasmic export

functionally regulates its inactivity or remains active targeting the

deacetylation of cytoplasmic proteins.

Figure 9. Nucleocytoplasmic shuttling of HDA15. To illustrate if HDA15-GFP undergoes nucleocytoplasmic shuttling, transfected protoplasts
were incubated under white light overnight then covered with foil for 3 hours then re-exposed to white light. HDA15-GFP transfected protoplasts
exhibited nuclear localization after 18 h of white light incubation. Further dark treatment for 3 h elicited partial cytoplasmic translocation of HDA15-
GFP. Re-exposition of these protoplasts to white light after one hour lead to its complete nuclear import clearly demonstrating that light drives the
nucleocytoplasmic shuttling of HDA15. VirD2NLS was co-transfected as nuclear marker (blue). Scale bars were calibrated to 10 mm.
doi:10.1371/journal.pone.0030846.g009
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Materials and Methods

Plant Material & Growth Conditions
Arabidopsis thaliana ecotype Col-0 was used as wild type and

genetic background for all transgenic lines. Seeds were cold-

treated for 2–3 days, sown on 1/2 strength Murashige & Skoog

media, and then transferred to a growth chamber for germination

at 20–24uC under long day conditions (16 h light/8 h dark cycle).

Seedlings were further grown either in medium or soil pots. Prior

to sample collection for mRNA analysis, developmental stages of

the plant were observed and compared with the timeline indicated

in Genevestigator using 20 replicates in each of the 3 trials.

RNA Extraction & RT-PCR
Gene expression was assessed using semi-quantitative RT-PCR.

Total RNA was extracted from plant samples weighing 0.25 to

0.3 g using TRIZOL reagent (Invitrogen). Oligo(dT) primed

reverse transcription of first strand cDNA synthesis was carried out

with 7 mg total RNA using SuperScriptTM III (Invitrogen). Equal

volumes of each first strand reaction were amplified with gene-

specific primer pairs. Thermocycling conditions were 94uC for

4 mins followed by 30 cycles of 94uC for 30 s, 55–60uC for 30 s,

and 74uC for 1–2 min. Primer sequences are available upon

request.

HDA-YFP/GFP fusion constructs
Coding sequences of Class II histone deacetylase were amplified

by PCR from expressed sequence tags (RIKEN) and subsequently

cloned into the entry vector, pENTR/SD/D-TOPO or PCR8/

GW/TOPO, with spectromycin as bacterial marker. An LR

clonase enzyme mix (Invitrogen) was used to transfer the insert

from entry clones to its destination vectors, p2FGW7 with the GFP

tag positioned at the N-terminal of the insert, and p2YGW7 which

contains the YFP tag at the C-terminal of the gene. Both

destination vectors are high copy vectors driven by a double 35S

cauliflower mosaic virus promoter with ampicillin as bacterial

marker. Purified plasmids were then analyzed and sequenced to

confirm successful fusion constructs.

Plant Transformation
Class II HDAs in pENTR vectors were used for recombination

to a binary vector, pK7WGF2, which contains a 35S CaMV

promoter and a GFP tag at the carboxyl end of the insert.

Spectromycin was used as bacterial marker. Purified plasmids

were sequenced to confirm successful insertion and integrated into

the Arabidopsis genome by Agrobacterium tumefaciens-mediated floral

dipping method [80,81]. Seeds from transformed plants were

germinated on 1/2 strength MS media with kanamycin for plant

selection. Seven-day-old kanamycin resistant seedlings were then

screened under fluorescence microscope for GFP signals then

transplanted into soil pots for 3 weeks for seed production. T2 and

T3 seedlings were used for the studies described herein.

Protoplast Isolation and Transient Expression
Leaves of 3-week old T2 transgenic lines were used to determine

subcellular localization in protoplasts. Transient expression assays

were subscribed from the methods of Yoo et al. [82] with some

modifications. Mesophyll protoplasts were isolated from 3-week

old Col-0 plants and Arabidopsis PSB-D cell lines [83]. Twenty mg

of HDA-YFP/GFP fusion plasmid, VirD2-NLS as nuclear marker

[84] and organelle markers [85] were co-transfected into 46104

protoplasts using polyethylene glycol (PEG) solution (0.4 g/ml

PEG 4000, 0.8 M mannitol, 125 mM CaCl2), incubated for 5–

15 min at room temperature, washed and resuspended in W5

solution (154 mM NaCl, 125 mM CaCl2, 5 mM KCl, 2 mM

MES at pH5.7), then incubated under white light for 16–24 h

prior to imaging using Leica SP5 confocal microscope. For

mitochondria staining, protoplasts were immersed in 0.2 mM

MitoTracker Orange CMTMRos (Invitrogen, M7510) for

15 mins then mounted on slide with W5 solution.

For the localization of HDA15 in different light treatments,

transfected protoplasts were incubated under white light for 18 h then

transferred to E30LEDL3 growth chambers (Percival Scientific) with

far red, red, and blue light-emitting diode sources for 3 h. Low light

intensities used as treatment were measured at 2.77 mmol m22 s21

(FR), 1.77 mmol m22 s21(R), and 3.84 mmol m22 s21(B). For trans-

genic plants, seeds were grown in 1/2 MS media inside a growth

chamber with 16 h light–8 h night cycle for white light treated

seedlings while dark treated seeds were wrapped in foil and grown

inside a dark growth chamber for 3–4 days.

Transient Expression in Onion Epidermal Tissues
Two mg of HDA-GFP fusion plasmids were coated on 20 ml of

50 mg ml21 gold particles with 2.5 M CaCl2 and 0.1 M

spermidine then mixed rigorously using a vortex for 2 min.

Plasmid-coated particles were dehydrated with 75% and 95%

ethanol prior to bombardment. Single layer epidermal sheaths

peeled from onion bulbs were placed on K MS plates then

subjected to particle bombardment using the standard procedure

provided by the manufacturer. Plasmid-coated gold particles were

accelerated with a helium burst at 1100 psi in a PDS-1000/He

instrument (BioRad). Plates containing transfected onion tissues

were wrapped in foil and kept in the dark overnight (16–20 h) at

room temp.

Cell Fractionation and Immunodetection
Nuclear and cytosolic fractions in protoplasts expressing HDA-

GFP proteins were separated following the methods previously

described by Ryu et al. [86] and Yanagisawa et al. [87].

Immunoblotting was carried out using 15–20 mg of proteins from

transfected protoplasts, nuclear and cytosolic fractions were resolved

by 10% SDS-PAGE, and detected with horseradish peroxidase-

conjugated anti-GFP (Clontech), anti-RHA1 (Upstate), and anti-

histone H3 (Upstate) antibodies [88].

Protein-Protein Interaction Assays
For the biflourescence complementation (BiFC) assay, coding

sequences of HDA5, HDA15, and 14-3-3 cloned into PCR8/

GW/TOPO were used for recombination into the destination

vectors, pEarleyGate201-N-YFP and pEarleyGate202-C-YFP

[89] using LR recombination mix. Kanamycin was used for

bacterial selection. Purified plasmids were then analyzed for DNA

sequencing for confirmation and further used for PEG transfection

and imaging. Negative controls with empty vectors and test

constructs and positive controls with BZR1 and 14-3-3s were

initially tested to assess the efficiency of the BiFC assay (Figure S4).

Coimmunoprecipitation (CoIP) was carried out using the methods

of Ryu et al. [86] with some modifications. HDA-GFP plasmids

with co-transfected with myc-tagged 14-3-3 K or E and then

incubated for 6–8 h for protein expression. Total protein was

extracted from transfected protoplasts using immunoprecipitation

buffer (50 mM Tris-HCl, pH 7.5, 75 mM NaCl, 5 uM EDTA,

1 mM DTT, protease inhibitor cocktail [Roche Applied Science],

and 1% TritonX-100). Protein complex was precipitated with

monoclonal anti-c-myc antibody (Cell Signaling) and protein A/G

plus-agarose beads (Calbiochem). Precipitated proteins were

detected with horseradish peroxidase-conjugated anti-GFP anti-

body (Clontech). For yeast-two-hybrid assay, yeast strain AH109
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was transformed with pGBKT7 vector expressing HDA5 and

pGADT7 vector expressing 14-3-3 K or E. Transformed cells

were grown on synthetic media without Leu, Trp, and His

containing 3 mM 3-aminotriazole or medium lacking Leu and

Trp.

Supporting Information

Figure S1 Protoplast transient expression using GFP-
HDA fusion constructs. Subcellular localization of Class II

HDAs was determined via protoplast PEG transfection using

GFP-HDA fusion constructs. HDA5, HDA8, and HDA14 were

cytoplasmic while HDA15 was restricted inside the nucleus.

VirD2NLS fused with mCherry was used as a nuclear marker.

Scale bars were calibrated to 10 mm.

(TIF)

Figure S2 Subcellular localization in transgenic proto-
plasts. Protoplasts from transgenic lines of Class II HDAs were

also used to determine their corresponding subcellular localization.

Although GFP signals were relatively weak, HDA5, HDA8, and

HDA14 were found to abound in the cytoplasm while HDA15

emanated strong nuclear signals.

(TIF)

Figure S3 Particle bombardment in onion tissues.
Overlay pictures reveal the nuclear and cytoplasmic localization

of HDA8-YFP and the nuclear concentration of HDA15.

(TIF)

Figure S4 BiFC negative and positive controls. Empty

vectors and YN/YC constructs were tested as negative controls.

BZR1 was used as a positive control for the 14-3-3 kappa and

epsilon interactions.

(TIF)

Figure S5 Nucleolar localization of HDA15-YFP in
different light treatments. Transfected protoplasts were

incubated under white light for 18 h then transferred to far red,

red, and blue light treatments for 3 h at low light intensities (FR

2.77 mmol m22 s21, R 1.77 mmol m22 s21. B 3.84 mmol m22 s21).

Similar with white light treated protoplasts, HDA15-YFP was

restricted in a small spot inside the nucleus, potentially nucleolus.

VirD2NLS-mCherry was co-transfected as a nuclear marker (blue).

Scale bars were calibrated to 10 mm.

(TIF)
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