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Introduction: With the increasing number of Covid-19 cases as well as care costs, chest diseases have
gained increasing interest in several communities, particularly in medical and computer vision. Clinical
and analytical exams are widely recognized techniques for diagnosing and handling Covid-19 cases.
However, strong detection tools can help avoid damage to chest tissues. The proposed method provides
an important way to enhance the semantic segmentation process using combined potential deep
learning (DL) modules to increase consistency. Based on Covid-19 CT images, this work hypothesized that
a novel model for semantic segmentation might be able to extract definite graphical features of Covid-19
and afford an accurate clinical diagnosis while optimizing the classical test and saving time.
Methods: CT images were collected considering different cases (normal chest CT, pneumonia, typical
viral causes, and Covid-19 cases). The study presents an advanced DL method to deal with chest semantic
segmentation issues. The approach employs a modified version of the U-net to enable and support
Covid-19 detection from the studied images.
Results: The validation tests demonstrated competitive results with important performance rates: Pre-
cision (90.96% ± 2.5) with an F-score of (91.08% ± 3.2), an accuracy of (93.37% ± 1.2), a sensitivity of
(96.88% ± 2.8) and a specificity of (96.91% ± 2.3). In addition, the visual segmentation results are very
close to the Ground truth.
Conclusion: The findings of this study reveal the proof-of-principle for using cooperative components to
strengthen the semantic segmentation modules for effective and truthful Covid-19 diagnosis.
Implications for practice: This paper has highlighted that DL based approach, with several modules, may
be contributing to provide strong support for radiographers and physicians, and that further use of DL is
required to design and implement performant automated vision systems to detect chest diseases.

© 2022 The College of Radiographers. Published by Elsevier Ltd. All rights reserved.
Introduction

The understanding of 3D images is highlighted, nowadays, as an
important concern in the field of computer vision, considering the
increasing number of applications that learn and develop from
inferring knowledge from images. Semantic segmentation is a high-
level task that guarantees a complete understanding of the 3D im-
age.1,2 It consists of understanding the image universe by assigning
each pixel to a class of objects, which is essential for a complete un-
derstandingof awhole3D image.1e3 The semantic segmentationaims
rtment, Faculty of Sciences
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lioui), mourdiyoussef@gmail.

lished by Elsevier Ltd. All rights re
to classify each pixel belonging to a specific label. It does not differ-
entiate the several occurrences of the same object. For example, if
there are two nodules in a chest image, semantic segmentation pro-
vides the same label to all the pixels of both nodules.4,5

Medical images come from various imaging techniques such as
ultrasound, X-ray, computed tomography (CT), and magnetic reso-
nance imaging (MRI).6 The goal of using semantic segmentation is to
gather pixels in a meaningful way so that pixels belonging to a
specific object are grouped separately. Hence, numerous research
studies are seeking to define and provide new methods for more
speediness, efficient interactions, and accurateprocesses to enhance
traditional image segmentation. Yet, no universal or standard
method could be employed for segmentation. Several factors could
contribute to reaching high-quality results, including accurate
preparation of the needed input data. To overcome the related data
served.

mailto:hananeallioui@gmail.com
mailto:mourdiyoussef@gmail.com
mailto:mourdiyoussef@gmail.com
mailto:sadgal@hotmail.com
http://crossmark.crossref.org/dialog/?doi=10.1016/j.radi.2022.10.010&domain=pdf
www.sciencedirect.com/science/journal/10788174
http://www.elsevier.com/locate/radi
https://doi.org/10.1016/j.radi.2022.10.010
https://doi.org/10.1016/j.radi.2022.10.010
https://doi.org/10.1016/j.radi.2022.10.010


H. Allioui, Y. Mourdi and M. Sadgal Radiography 29 (2023) 109e118
issues, preparing learning and test sets is usually a time-
overwhelming and costly task, but at the same time crucial to
obtain accurate results.7

A key factor in the segmentation, of medical images, is the
higher cost of manual class extraction. Manual segmentation is
performed by experts, who are often radiologists or specialized
clinicians. This process is usually performed in a slice-by-slice way,
with the expert encircling the region of interest (ROI) or labeling
the voxels of interest. Manual segmentation, which is considered
the gold standard, utilizes expert knowledge and experience. Yet, it
is very time-consuming and susceptible to a large variability, due to
increasing workload as well as exhaustion factors. Automatic
methods do not rely on experts’ interaction. The advantage of these
methods is that once the approach has been built, the image seg-
mentations can be accomplished relatively much faster than
manual processes. Consequently, decreasing human interaction can
optimize segmentation costs, regarding time and efforts, to facili-
tate Covid-19 detection. Therefore, DL and semantic segmentation,
as automatic techniques, can provide highly relevant results.

Although various methods can automatically segment CT images,
whenanunforeseenandunprecedented illnessarises, as in thecaseof
Covid-19, the inexistence of huge training datasets with annotations
remains the main challenge. Thus, the DL revolution has introduced
several advanced approaches that are valuable and applicable to
almost all medical imaging modalities.8,9 The wide adoption of DL
techniques for solving segmentation problems is based on the use of
deep neural networks that further surpass the traditional segmen-
tation approaches in terms of accuracy and efficiency.10,11 For that
reason, many cutting-edge scientific approaches related to DL rely on
these capabilities, especially in medical imaging.

Mainly, current clinical research studies are focused on the
Covid-19 diagnosis by:

� PCR (Polymerase Chain Reaction) which is the key test for the
diagnosis of Covid infection since the beginning of the epidemic.
SARS-CoV-2 PCR or RT-PCR is a laboratory technique for
detecting the genetic material of the virus. It requires a sample
to be taken from the most accessible place where the concen-
tration of the virus is the most important such as the naso-
pharynx, behind the nostril ducts. The Covid PCR test can be
used to determine, at the time of sampling, whether the person
is a carrier of the Covid-19 virus.

� The rapid diagnostic test, which is an antigenic test, is recom-
mended for patients suspected of having SARS-CoV-2 corona-
virus. These tests provide information on the presence of
antigens, not antibodies, and therefore serve the same purpose
as a PCR test for Covid-19.

� Chest imaging still plays a major role in the detection of Covid-
19. However, its indications need to be reviewed by clinical
experts considering the experience gained and the progress
made in access to virological tests.

Unlike the first wave of Covid-19, where patients arrived at the
emergency room without a diagnosis, the majority now arrive at
the emergency roomwith a positive PCR test. For these patients, a
CT scan is not a systematic test, but it is indicated when there are
signs of poor respiratory tolerance (dyspnea, desaturation, or se-
vere hypoxemia). The CT scan allows grading of the severity of
lung damage, which provides prognostic information. It can also
help in the orientation of patients (hospitalization vs ambulatory
management) even if this decision is based primarily on clinical
exams. In the same context, a variety of segmentation method-
ologies have been approved by the scientific community consid-
ering their effectiveness in detecting chest diseases were
examined.12
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For this purpose, automated detection systems can enhance the
sensitivity of radiologists to accurately analyze chest irregular-
ities.3,6,7 However, automatic diagnosis is still an open challenge
since feature quantification changes remain complicated to predict.
Accordingly, numerous semantic segmentation variants have been
developed based on the use of different components, which pro-
vides self-improvement of the whole vision system.12 However, the
previous approaches have rather low scalability and remain limited
to low-dimensional subjects concerning the increased complexity
of the medical imaging field. Yet, the use of advanced techniques
has offered new solutions to solve these problems and provide a
powerful approximation to the deep feature representations and
functions previously used.

The objective of this study is to present an advanced approach
using DL techniques to automatically detect Covid-19. Therefore,
the current study presents a fully deep convoluted architecture.

Methods

In this study, feature learning andprediction areperformedusing
DL to accomplish different tasks of CT semantic segmentation.

The CT semantic segmentation process

The presented automatic process provides a CT processing unit,
which can segment inhomogeneous object boundaries, as is often
the case with biomedical images. The semantic segmentation of
chest CT images intends to associate each pixel with a group of a
predefined set. The presented process is based on a developed
version of classical convolutional neural networks (CNN).13 The
adopted architecture has a combined structure that samples the
input CT image to produce a high dimensional characteristics result.

This approach plays an important role in the separation of tis-
sues that belong to different parts of the chest in CT images. The
general structure, illustrated in Fig. 1, can be used for semantic
segmentation using some new features for the fulfillment of a
robust and efficient segmentation process.

The adopted architecture is composed of two main stages:

� Training: The model uses the labeled data, so it can be trained to
identify and learn ROI and segment the input images. At this
step, the training images are assessed to form a consistent
foundation for network learning. The training data are pro-
cessed utilizing the initial weights. Then, the obtained results
are compared, then classified to minimize the training loss.14,15

Afterward, the network adapts the weights. This process will
be repetitive, and the weights will be constantly adjusted. The
key goal of training the model is to discover and learn all the
features of CT images and use this knowledge to make an ac-
curate diagnosis later.

� Test and analysis: the fully end-to-end architecture locate object
to ensure proper processing of Chest CT images. The proposed
model is evaluated constantly by computing the learning ac-
curacy and loss. This constant analysis allows ensuring that the
model performs truthful analysis to detect and locate objects
within the CT image.

Semantic segmentation is a vital task for a complete under-
standing of 3D and CT images. For this purpose, the use of DL allows
the building of a model capable of learning samples from the visual
inputs to predict the classes of objects constituting the CT image.

Several segmentation models were tested among the vast
amount of DL versions: U-Net16 as well as other 3D volumetric
networks (such as 3D V-net,17 3D U-Net,18 U-Netþþ,19 Dense-
UNet,20 and Attention-UNet21). They were selected for a particular



Figure 1. The adopted processing architecture.
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motive related to our objective. As U-Net14 was built for real-time
segmentation of biomedical images, the other models offer opti-
mized versions to allow better learning of the global context of an
image. To obtain an accurate comparison of these models, they
were trained and tested using the same datasets. The next task was
to build an appropriate and optimized network for semantic seg-
mentation. The presented network in this study combines U-Net,16

and Long short-term memory (LSTM).22

Clinical data is a vital resource for effective medical and health
research. Clinical data can be collected either during medical ex-
aminations of patients or as part of a clinical study program. In the
case of the present study, the choice to use publicly available data-
sets, rather than those directly fromclinical practice, is supported by
the fact that it can provide a solid baseline for future work because
they were used in important research studies led by a huge number
of scientists. Testing different approaches using publicly available
clinical datasets will decrease the time of ethics procedures, thus
providing a solid basis for future work aiming at the realization of a
monitoring environment of a narrow range of key data for certain
thoracic diseases to be able to provide essential information for the
management of the patient’s condition in real-time.

As an early diagnosis of Covid-19 is important to raise patients’
survival rate, DL-based methods are widely used for diagnosis and
detection. One of the benefits of the proposed method is that it
reduces human error in Covid-19 diagnosis. Chest images may
contain interferences such as nodules or small nodes. For this
purpose, noise elimination is required. The noise removal in CT
images is very significant for the correct semantic segmentation.

Using DL architecture for both 2D and 3D data

For training, the study uses a training dataset of Covid-19 viral
pneumonia as well as other interstitial lung diseases to analyze the
impact of Covid-19 areas. The proposed architecture aims to process
111
both a 3D and 2D semantic segmentation approach and target
feature learning of high-resolution 2D images, by taking three axial
slices as input to the network. The segmentation model is trained
first by collecting the annotated data prepared by the label block.

� For 2D images: The input images are resampled to have a res-
olution of 0.6� 0.6 mm. Then, the geometric center is calculated
to crop the images with a bounding box of size 256 � 256.
Subsequently, the network is trained with the Adam optimizer
with decoupled weight decay regularization.13 A dice loss is
applied to the output prediction to penalize the difference from
the Covid-19 truth plane annotation during training.17

� For 3D images: The input 3D CT volumes are preprocessed
resampled to 1 � 1x3mm resolution and cropped based on the
lung segmentation on a 224 � 224 � 224 size box. The 3D
network is trained using the AdaBound optimizer which adap-
tively combines the Adam optimizer with The Saccharomyces
Genome Database (SGD) for faster convergence.23 The Jaccard
index24 is used as a training loss function to have stable behavior
for unbalanced labels. Among the advantages of using a 3D ar-
chitecture is the ability to use the 3D context to deal with partial
volume effects in the 2D plane as well as the global lung context.
Ethical approval

Ethical approvals were checked and related arrangements and
data collection permissions were achieved respecting Cadi Ayyad
University procedure and the Moroccan law n�09-08.25 This law
provides effective protection to people against abuses of the
various types of data use that could violate their privacy. In addi-
tion, respecting this law, no ethical approvals are mandatory in this
studywhere ethical standards were always respected, involving the
use of online accessible data.
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Evaluation baselines

For the Covid-19 infection region detection experiments, the
proposed model is compared with previous segmentation models
in the medical field. As the emergence of Covid-19 is very recent,
none of the large repositories contains a large collection of Covid-19
labeled data, which requires relying on different image sources of
normal, pneumonia, and Covid-19 cases. As a first step, different 3D
images were collected to perform semantic segmentation, which
can facilitate the detection and classification of Covid-19 infections
from four open datasets:

� Cov19-A: for subjects without Cov-19, The Cancer Imaging
Archive (TCIA) dataset26 contains a total of 60 3D CT lung scans,
to train the network for lung delineation learning. These data
can be viewed in the publicly available imaging archive.27

� Cov19-B: The public data set of Ma et al.28 consists of 20 an-
notated volumes of Covid-19 chest scans for training the tag
system. The scans were collected from the Coronacases initiative
and Radiopaedia and were licensed under CC BY-NC-SA.

� Cov19- C: consists of 9 volumetric Covid-19 CTs in DICOM
format containing a total of 829 axial slices, Each CT axial slice
was labeled by a radiologist for ground truth, consolidation, and
pleural effusion. These data are publicly available.29

� Cov19- D: consists of 20 volumes of Covid-19 CT images posted
online. Lungs and infection areas were labeled and verified by
three experienced radiologists.30

Statistics for the four data sets are presented in Table 1.
The main objective of the data selection was to make the data

public so that it could be accessed and extended by researchers. The
use of these datasets in future studies may also allow for a more
efficient diagnosis of patients with Covid-19.

Training details

Training, validation, and testing of each experiment were per-
formed on a machine equipped with an NVidia TitanX GPU with
12 GB ofmemory. Themethods were implemented using the Python
3.6 library, 1.1.0.31 The training parameters for each method were
initialized using the initialization of He et al. when training from
scratch32 and were optimized using stochastic gradient descent with
a momentum of 0.9, and the initial learning rate set to 10e�6. The
initial models were trained using CTscans from the Cov19-A data set.
Therefore, these models may not be familiar with the visual patterns
of the Covid-19 scans. For effective training on the new visual
models, all models were trained with Cov19-A and Cov19-B using a
combined loss between the generalized dice loss33 (used to train the
initial models) and the top-K cross-entropy loss (K¼ 30% of all voxels
in the input). The top-K cross-entropy loss was applied simply as the
voxel-level cross-entropy loss but selected only the K voxels with the
largest cross-entropy to back-propagate.

Pre- and post-processing

All training and test scans were normalized by setting the in-
tensity values to the range [�1200e400] before resizing them to
Table 1
Statistical description of evaluation data sets.

Datasets 3D Volumes Covid-19 subjects % Slice with infection

Cov19-A 60 _ _
Cov19-B 20 20 100%
Cov19-C 9 9 44.9%
Cov19-D 20 20 52.3%
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[0e1]. Then, all scans were down-sampled by trilinear interpola-
tion to achieve 256 � 256 in-plane resolution, while the z-spacing
is adjusted to make the scan isotropic. The input size of the second
network for the proposed method consisted of two 3D patches of
size 116� 116� 116. The preprocessed scanwas downsampled by a
factor of 2 using trilinear interpolation as input for the first step
(padding from zero is required if the z-axis size is not divisible by
16). The SoftMax probability outputs of all 3D patches in the second
stepwere overlaid by sliding over the entire scanwithout overlap to
produce a scan-level probability map, which is used to generate the
final prediction by assigning each voxel to the label with the highest
probability. In post-processing, the predictions were then resam-
pled by nearest-neighbor interpolation to match the original scan
resolution. All evaluations are performed using reference pre-
dictions and segmentations at the original resolution.

Subjective segmentation quality evaluation: Likert scale

Accurate segmentation of 3D lung images was used as the basis
for qualitative and quantitative analysis. Thus, qualitative results
derived from the DL approach were visually evaluated by radiology
experts (the first had 14 years of cumulative experience in lung
imaging, the second had 7 years of experience in cardiopulmonary
imaging, and the third had 2 years of experience in general radi-
ology), who independently visualized the segmentation. The three
radiologists did not consider the clinical status of the patients or the
data sources. The procedure for scoring results was as follows: The
three radiology experts reviewed the segmentation results dis-
played as detected regions. They used a scoring criterion based on
the adequacy of the segmentation task with the actual lung opa-
cification. Specifically, the degree of adequacy was qualified using a
Likert34 score ranging from 0 to 5.

Widely used in surveys and questionnaires, the Likert scale
consists of evaluating a respondent's opinion on a specific subject.
This measurement scale offers several choices of answers allowing
each respondent to express his or her degree of agreement or
disagreement with a given question. Responders were able to
specify their level of agreement according to five points: (1)
Strongly oppose, (2) Disagree, (3) Not sure about the concept or
results, (4) Agree, and (5) Strongly agree. To reduce the subjectivity
of the radiologist's assessment, the final score was the average of
the three scores for each image. The experienced radiologists
individually checked the segmented CT images and classified the
segmentation quality of each succeeding object and the complete
result in comparison to the corresponding chest CT images.

The radiologists evaluated the semantic segmentation results as
5, 5, and 4, respectively, on a five-point Likert scale. The assessment
result on a five-point Likert scale is presented in Fig. 6. The pa-
rameters to evaluate for the experimentationwere proposed by the
authors:

1) Covid-19 areas are well perceived.
2) Covid-19 is well observed.
3) Develop knowledge of the disease.
4) Could help to decrease errors.
5) Improve understanding.
6) Provide a realistic view of the Covid-19 case.
Evaluation measures

Evaluating a semantic segmentation model and providing a fair
comparison remains a complex task. This is due to the numerous
existing evaluation measurement techniques, and the wide use of
different distinct data sets. Once input images are processed,
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qualitative and quantitative outcomes can be acquired. In this
study, the proposed model, as well as the tested models, were
tested using the same public datasets and evaluated with the same
measures to afford an accurate comparison regarding the perfor-
mance of the study proposal. The adopted evaluation metrics
(Precision, F1-score, accuracy, sensitivity, and specificity)35e37 are
presented in Table 2.where:

� TP denotes the value of the true positive (the number of subjects
having Covid-19)

� TN represents the true negative (the number of normal images)
� FP is the false positive (the number of control subjects with
Covid-19)

� FN represents the false-negative value (the number of subjects
with Covid-19 considered as controls).
Results

To prove the effectiveness of the presented model, various ex-
periments were designed to evaluate the proposed method quali-
tatively and quantitatively on public datasets. The choice for these
datasets was driven by their public access to the scientific com-
munity, their reputation, and the quality of the provided images.

After training the proposed model, numerous sequences of tests
were achieved. These assessments allowed to measure the opera-
tional functioning of the presented semantic segmentation model,
then contribute to the enhancement of the learning of the proposed
model. Firstly, the proposed model was run to visualize all the
possible differences between the normal case, and variant Covid-19
infections stage. Fig. 2 illustrates the difference between all the
stages.

The second test concentrates on the segmentation results of the
presented model compared to the ground truth. Fig. 3 shows an
example of the differences between the segmented images and the
segmentation ground truth. By analyzing the results of the detected
areas, the areas related to Covid-19 can be correctly located on the
images even with variations of Covid-19.

The performance of the proposed model, dedicated to the se-
mantic segmentation of Covid-19 CT images, is assessed and
compared to other tested methods as identified in Fig. 4. To make a
fair comparison in the third test, a more detailed analysis was
performed by comparing the results of the different tested ap-
proaches including the proposed one. This comparison is done by
training the models using the same datasets as well as details and
using the same validation protocols. The qualitative results for lung
infection segmentation, shown in Fig. 3, indicate that the proposed
method provides competitive results compared to the tested state-
of-the-art methods.

Furthermore, the advantage of the 3D semantic segmentation
strategy is also confirmed in Fig. 4. As can be observed, compared to
other methods, the current approach gives segmentation results
with more precise boundaries. Each volume of the used datasets
(described in Table 1) contains hundreds of slices. 25% of these data
Table 2
The used evaluation metrics.

Metrics Formulas

Precision TP
TPþ FP

F1- score
2x

Precision x Recall
Precisionþ Recall

Accuracy TPþ TN
TPþ 2TNþ FP

Sensitivity TP
TPþ FN

Specificity TN
TNþ FP
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were used to test the proposed approach, among the numerous tests,
the best match has been selected and a bias is therefore introduced
to present each area detected in comparison with the ground truth.
In addition, the values in Table 3 aim to support these results.

The U-Net forms the basis of the tested models, so compared
with its results, which remain modest, the other approaches
remarkably offer better results at different progressive stages. The
proposed method outperformed the other methods because it
offered a tighter margin and could detect approximately the same
objects compared to the ground truth. This illustrates the power of
combining two important networks to form a strong semantic
segmentation model.

In the previous tests, examples of the qualitative results were
shown and analyzed. In this way, the evaluation of the proposed
method proved effective results. The implementation of the se-
mantic segmentation model reached 93,46% precision rate, 94,28%
F1 score, 94,57% accuracy, 99,68% sensitivity, and 99,21% specificity.
The performance results of the evaluated methods are presented in
Table 3. Each of the models was tested using the same databases
mentioned above. To ensure a fair comparison. The tested models
prove competitive results, Attention-UNet and Dense-UNet. How-
ever, the proposed method was able to demonstrate its superiority
in terms of performance. Results analysis has shown that a com-
bination of U-Net and LSTM in the proposed model has significant
effects on the performance of Covid-19 detection. The proposed
system could distinguish Covid-19-related infections even in the
early stages with high accuracy.

The tested methods were evaluated to describe how well they
perform Covid-19 detection. Numerous loss variations were gained
over the same periods. In fact, the variation in the results presented
in Fig. 5 explains that most methods swiftly converge toward the
minimum. Yet, the proposed model uses the total variation loss.14,15

This strategy mimics the way real clinicians segment lung infection
regions from CT slices, and thus achieves promising performance.

The final score obtained confirmed that the proposed method is
considered appropriate to meet clinical requirements. This de-
scribes how the current semantic segmentation model can differ-
entiate between lung abnormalities and detect Covid-19 while
giving a clear definition of the patient stage to provide perceived
information for clinicians to choose the right treatment process.

As the computational proposed segmentation method pre-
sented an excellent overlap with the other tested methods, it was
necessary to have the opinion of human readers, the experienced
radiologists. The proposed model successfully segmented the chest
tissues while conserving the quantitative semantic segmentation
close to the reference evaluation. The segmentation quality was
rated by the three experts (Fig. 6). The overlaps between the pro-
posed and the manual segmentations were not significantly
different. The subjective evaluation by the experienced radiologists
also resulted as good to excellent for Covid-19 detection.

Discussion

A successful and accurate diagnosis of Covid-19 remains vital for
early and effective treatment. With this aim, numerous research
studies have promoted the progress of DL use for early disease
diagnosis.14e19 Most of the tested techniques have proven a valu-
able overall accuracy above 90%. Nevertheless, continuous
morphological changes by Covid-19 in the lung were not easy to
distinguish. Deep neural models were experimented with using
several segmentation techniques. The tested models demonstrated
the appropriateness of DL techniques to provide strong tools for
Covid-19 detection. Outcomes indicate that using DL models, to
segment chest CT images, can provide potential support for radi-
ologists and clinicians.



Figure 2. Examples of variations, caused by the Covid-19 infection, observed by the proposed approach.

Figure 3. Qualitative comparison of Covid-19 infection segmentation results.
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Various studies have aimed to employ DL in the radiology
context to expand healthcare quality and simplify data retrieval.
Thus, there are promising opportunities for using DL to improve
Covid-19 detection and develop healthcare management.

In this paper, the presented results demonstrate the effort
made to improve the chest semantic segmentation. During this
study, the model architecture was trained by the CT dataset.
Firstly, different segmentation architectures were tested to detect
the best combination of base networks. The training, of all tested
models, was performed with the same datasets, and the best re-
sults were obtained by combining the U-Net architecture with
LSTM as a base network for semantic segmentation. The proposed
approach (U-Net þ LSTM) reached an average precision of 90,96%
(±2,5%) while U-Net 69,23% (±10,6). Nevertheless, 3D V-net, 3D U-
Net, U-Netþþ, Dense-UNet, and Attention-UNet performed 71,73%
(±10,1), 77,19% (±6,7), 85,94% (±4,2), 87,65% (±4,3) and 89,28%
(±4,4) respectively. Specifically, it produces segmentation results
that are extremely close to the ground truth with fewer miss-
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segmented tissue. Similarly, the performance rates prove that
the proposed method outperformed all the other models in the
metrics used, except the F1 score for Dense U-net, and this was
relatively comparable.

The response frame rate of the real-time segmentation was
satisfactory regarding the hardware used for testing (104s). With
better hardware abilities the proposed approach can reach a
response frame rate of approximately 40s, which is a decent value
for a segmentation, where the restrictions on real-time are not so
severe.

Since the current study aims to present an advanced approach
using DL techniques to automatically detect Covid-19, the choice of
combining U-Net and LSTM networks ensures a good compromise
between speed and precision. As illustrated in Fig. 5, the proposed
model was trained until the loss converges, which means that the
model can perform better on a new validation dataset. All the
tested models start converging toward the minimum in an average
time of the 20 s. However, the use of the rectified loss allowed the



Figure 4. Visual comparison of the segmentation performance of the multi-class Covid-19 infections of different networks tested (red indicates true infection areas, green indicates
detected areas).

Table 3
Quantitative result of the performance measures of the tested methods.

Architecture Precision % F1- score% Accuracy% Sensitivity% Specificity%

U-Net16 69.23 ± 10.6 73.04 ± 8.47 76.85 ± 10.45 75.29 ± 7.89 67.60 ± 12.83
3D V-net17 71.73 ± 10.1 81.64 ± 7.5 90.68 ± 3 95.59 ± 3.5 89.29 ± 3.3
3D U-Net18 77.19 ± 6.7 61.23 ± 3.4 89.27 ± 1.6 51.21 ± 5.3 83.84 ± 2.1
U-Netþþ19 85.94 ± 4.2 85.48 ± 1.8 92.84 ± 1 85.29 ± 4.4 85.92 ± 5
Dense-UNet20 87.65 ± 4.3 91.96 ± 2.2 91.08 ± 3.2 86.89 ± 5.4 86.31 ± 2.4
Attention-UNet21 89.28 ± 4.4 86.40 ± 2.1 90.32 ± 2.9 92.81 ± 4.2 91.42 ± 1.3
Proposed approach 90.96 ± 2.5 91.08 ± 3.2 93.37 ± 1.2 96.88 ± 2.8 96.91 ± 2.3
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proposed model to learn quickly and produce semantic segmen-
tation results.

When testing CT data, comparing the tested models as well as
the proposed approach demonstrated a significant increase in
segmentation performance combining U-Net with another
network, especially LSTM. In the very last line of Table 3, it is
obvious that the proposed method reached the best results. These
results surpassed most of the tested approaches.
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Even with the strengths of the proposed method, it still has
certain limits. Although the comparisonwith radiology experts was
based on three different datasets, it remains essential to survey the
variations of the same subject. Another drawback, the study used
only online databases during the experiments, and the measured
conclusions are likely to be beyond general. Lastly, even though the
proposedmethod is alignedwith a DLmodel, it primarily intends to
enhance the neural network learning to process Chest CT images.



Figure 5. Comparison of losses between the three methods.

Figure 6. Subjective assessment results in a five-point Likert scale.
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Therefore, it is significant to highlight the need to train the adopted
network on much larger datasets, this will potentially reinforce the
processing of the proposed model and decrease the uncertainty
rate considerably while warranting a good exchange between
sensitivity and specificity.

To better ensure clinical applicability, further prospective and
retrospective studies are required. In future works, the DL model
would be adopted to explore different chest features to compute
the prevalence of Covid 19. It is also essential to be able to employ
the proposed model to segment other medical imaging (X-ray, PET,
and MRI) to smooth the discovery and management of abnormal
tissue.

The qualities of semantic segmentations were evaluated by
three experienced radiologists on a five-point Likert scale. The
result of the proposed model of semantic segmentation was
compared to manual segmentations. Likert results showed that the
DL-based proposed model Offred promising results in most of the
cases. In clinical routine, semantic segmentation can be used as a
higher quality control measure to warn physicians about possible
related Covid-19 problems.
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The visual investigation results suggest that themodel error was
low compared to the manual segmentation, but in areas with a
mismatch, it is suggested to examine more carefully into object
segmentation to avoid the underestimation of tumors and the
overestimation of healthy tissue.

The presented method performance was evaluated using the
commonly used assessment scores such as precision, F1-score,
accuracy, sensitivity, and specificity. Strengths of this work also
include the potential to dectect the Covid-19, visualize the affected
area, and rapidly track the disease variations. Moreover, the pro-
posed model has the ability to segment chest CT cimages evenwith
low-intensity contrast, and to diffirenciate between abnormal and
healthy tissues. Even though the achieved promising results, it is
worth mentioning that there are some limitations.

The semantic segmentation quality assesment require reliable
ground truth (GT) of the objects and mask structures. Therefore, an
experienced medical expert remains the only one that can provide
the most precise manual segmentation that serves as a reference.
Second, Covid-19 have imaging features similar to the pneumonia
caused by other types of viruses. As the study used online available
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datssets, it was not possible to detect other viral pneumonia, for
comparison purposes, due to the lack of successive laboratory and
clinical evidence for each of these cases. As future work, Authors
consider extending the validation of the proposed model by col-
lecting the chest CT images from different severity types of viral
pneumonia through numerous institutions and countries.

Furthermore, the presented DL model should be optimized to
separately pinpoint segment patterns that are classified as ground-
glass opacity, crazy paving, and consolidation. Also it would be
more intersting to combine imagingdatawith clinical indications and
laboratory analysis results to provide a differential detection, and
diagnosis. Since Covid-19 continues to spread across the world
following anunpredicted strategy, thewideadoptionof advancedDL-
based toolswill behelpful to health systems facing similar challenges,
including abnormalities caused by other viruses and diseases.

Conclusion

The current study presented a DL method based on U-Net and
LSTMarchitectures toprovide an improved semantic segmentationof
chest images to detect Covid-19. The results of the proposed method
revealed its robustness compared to the other tested methods. From
the experiences, it should be reported that the incorporation of
various networks can be utilized to process medical images without
further computational cost. The proposed method permits the com-
bination of U-Net and LSTM information to provide a performant
segmentation pipeline. Moreover, the proposed approach can auto-
matically segment chest CT images and offer an accurate analysis of
chest structures to detect Covid-19. The use network for semantic
segmentation, for chest CT images, hasbeen trained fromscratch, so it
is expected to be pertinent for many chest analyses.

The DL network has been capable to reach competitive results in
distinguishing Covid-19 regions. In conclusion, the study hypoth-
esizes that a larger training set would further improve perfor-
mance, especially for cases with gross pathological changes that are
not yet well represented in current training scans. Nevertheless, the
results presented are sufficient for further analysis and would be
useful in other research topics in the future.
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