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The type 1 inositol 1,4,5- trisphosphate receptor (IP3R1) is a Ca2+ channel on the
endoplasmic reticulum and is a predominant isoform in the brain among the three
types of IP3Rs. Mice lacking IP3R1 show seizure-like behavior; however the cellular and
neural circuit mechanism by which IP3R1 deletion causes the abnormal movements is
unknown. Here, we found that the conditional knockout mice lacking IP3R1 specifically
in the cerebellum and brainstem experience dystonia and show that cerebellar Purkinje
cell (PC) firing patterns were coupled to specific dystonic movements. Recordings in
freely behaving mice revealed epochs of low and high frequency PC complex spikes
linked to body extension and rigidity, respectively. Remarkably, dystonic symptoms were
independent of the basal ganglia, and could be rescued by inactivation of the cerebellum,
inferior olive or in the absence of PCs. These findings implicate IP3R1-dependent PC firing
patterns in cerebellum in motor coordination and the expression of dystonia through the
olivo-cerebellar pathway.

Keywords: dystonia, Purkinje cells, inferior olive, cerebellum, basal ganglia, complex spikes, inositol 1,4,5-

trisphosphate, SCA15

INTRODUCTION
The inositol 1,4,5- trisphosphate receptors (IP3Rs) are intracel-
lular Ca2+ channels localized at the endoplasmic reticulum and
regulate the spatio-temporal change of intracellular Ca2+ concen-
tration, which are important for diverse physiological phenomena
including gene expression, development, growth, neural plastic-
ity, and secretion (Berridge et al., 2000). There are three subtypes
of IP3R in mammals and each IP3R isoform exhibits a distinct
expression pattern in vivo. Among the three subtypes, the type 1
IP3 receptor (IP3R1) is a brain dominant subtype (Foskett et al.,
2007; Mikoshiba, 2007). We have previously showed that mice
lacking the IP3R1 receptor (Itpr1−/−) exhibit ataxia and seizure-
like posture with multiple abnormal movements such as repetitive
rigid posture, opisthotonus, tonic contractions of the neck and
trunk, and premature death around the third week after birth
(Matsumoto et al., 1996). However, since IP3R1 is expressed in
a wide range of brain regions including cerebellum, cerebral cor-
tex, hippocampus, and striatum, the particular neural activities
and circuits causing these involuntary movements in the Itpr1−/−
mice remain unknown.

Dystonia is a neurological disorder in which sustained mus-
cle contractions induce twisting and repetitive movements or

abnormal posturing. Simultaneous abnormal contractions of
agonistic and antagonistic muscles (co-contractions) are one
of the most distinct features of dystonic movements. Because
of various phenotypic and genotypic subtypes in dystonia, its
pathogenic mechanisms remain elusive. Traditionally, dystonia
has been thought to be a basal ganglia (BG) disorder (Marsden
and Quinn, 1990; Lenz et al., 1998; Vitek et al., 1999; Zhuang
et al., 2004; Chiken et al., 2008; Nambu et al., 2011). In contrast,
recent accumulating evidence has further suggested abnormali-
ties of the cerebellum and brainstem in some dystonic patients
(Ceballos-Baumann et al., 1995; Eidelberg et al., 1998; Mazziotta
et al., 1998; Odergren et al., 1998; Hutchinson et al., 2000).
Several animal models of dystonia also exhibit cerebellar abnor-
malities (Ledoux and Lorden, 2002; Pizoli et al., 2002; Raike
et al., 2005; Walter et al., 2006; Chen et al., 2009; Calderon
et al., 2011; Ledoux, 2011; Filip et al., 2013) and aberrant
cerebellar activities in dystonic model animals were reported
(Ledoux and Lorden, 2002; Walter et al., 2006; Chen et al.,
2009), however, little is known about firing patterns of Purkinje
cell (PC) activity associated with particular dystonic movements
of freely moving mice. At the neural circuit level, it was sug-
gested that cerebellar outputs alter BG activity thereby leading
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to dystonic movements (Neychev et al., 2008; Calderon et al.,
2011).

In this study, we showed that genetic deletion of IP3R1 within
the cerebellum and brainstem is sufficient to cause dystonia in
mice. Although in the previous report we described epileptic-
like seizures in Itpr1−/− mice, in the current study we concluded
that the behavior of Itpr1−/− mice is better described as dystonia
with severe ataxia because there was no abnormal electroen-
cephalogram activity during the seizure-like posture (Figure 1A).
In addition, we revealed distinct patterns of PC firing that were
tightly coupled to the dystonic movements in freely moving
mutant mice. We also showed that pharmacological inactivation
of the cerebellum or inferior olive (IO), but not BG, and deletion
of PCs ameliorate the dyskinesia. Thus, our mutant mice provide
a therapeutic dystonia model solely dependent upon abnormal

olivocerebellar pathways and provide a coherent mechanism for a
specific type of dystonia.

MATERIALS AND METHODS
MICE
For generation of conditional Itpr1 knockout mice, the floxed
Itpr1 mice (Sugawara et al., 2013) were crossed with Wnt1
promoter-Cre (Danielian et al., 1998), Emx1-Cre (Iwasato et al.,
2000), and Gpr88-Cre transgenic (Tg) mice (Hisatsune et al.,
2013). Genotyping of Lurcher mice was performed as pre-
viously (Nishiyama et al., 2010). Body size/weight of Emx1-
Cre;Itpr1flox/flox and Gpr88-Cre;Itpr1flox/flox was indistinguishable
from that of control mice. The conditional mice lacking IP3R1
in the cerebellum/brainstem (Wnt1-Cre;Itpr1flox/flox mice) were
severely dystonic and could not take in enough food to survive, so

A

C

 It
pr1

flo
x/f

lox
D

E

Itpr1flox/flox

Itpr1flox/floxHipp
oc

am
pu

s

Cer
eb

ra
l c

or
te

x

Stri
at

um

Cer
eb

ell
um

Itp
r1

flo
x/

flo
x

Itp
r1

flo
x/

flo
x

Itp
r1

flo
x/

flo
x

Itp
r1

flo
x/

flo
x

W
nt

1-
Cre

;

   
 It

pr1
flo

x/f
lox

Wnt1-Cre;Itpr1flox/flox

W
nt

1-
C

re
;It

p
r1

flo
x/

flo
x

Wnt1-Cre;
Itpr1flox/flox

W
nt

1-
C

re
;It

p
r1

flo
x/

flo
x

W
nt

1-
C

re
;It

p
r1

flo
x/

flo
x

W
nt

1-
C

re
;It

p
r1

flo
x/

flo
x

Hippocampus
Cerebral 
  Cortex Striatum

Itpr1flox/flox

Wnt1-Cre;
Itpr1flox/flox

Wild type mice    Itpr1-/- mice Wnt1-Cre;Itpr1flox/flox mice

I 1flox/flox

Emx1-Cre;Itpr1flox/flox Gpr88-Cre;Itpr1flox/flox

GF

B

FIGURE 1 | Cerebellum/brainstem specific IP3R1 deficient mice

exhibit dystonia. (A) Electroencephalogram of total Itpr1−/− and
Wnt1-Cre;Itpr1flox/flox mice during seizure-like posture. Upper panel
showed EEG (bar: 0.1 mV). Lower panel showed EMG (bar: 0.2 mV).
Horizontal bar indicates 1.0 s. (B) Footprints of Emx1-Cre;Itpr1flox/flox

and Gpr88-Cre; Itpr1flox/flox mice at 8 weeks. (C) Gross appearance of
the brain from Wnt1-Cre;Itpr1flox/flox mice at 8 weeks. (D) Hematoxylin
and Eosin (HE) staining of the hippocampus and the cerebellum in
Wnt1-Cre;Itpr1flox/flox mice. Note overall size decrease of cerebellum in

Wnt1-Cre;Itpr1flox/flox mice, whereas size of the hippocampus was
comparable to Itpr1flox/flox mice. (E) Expression level of IP3R1 in
various parts of the brain at 8 weeks. (F) Immunohistochemical
analysis of IP3R1 expression in the cerebellum from
Wnt1-Cre;Itpr1flox/flox mice at 8 weeks. (G) Immunohistochemistry of
the IP3R1 expression in the hippocampus, the cerebral cortex, and
the striatum from Itpr1flox/flox (upper panels) and Wnt1-Cre;Itpr1flox/flox

mice (lower panels) at 8 weeks. At least three mice were used for
each analysis, and the representative data were shown.
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they were hand-fed a nutritionally complete soft diet, DietGel76A
(ClearH2O), for their entire lives after weaning. All animals
were ethically treated according to the guideline of Animal
Experiments Committee of RIKEN Brain Science Institute.

HISTOLOGY AND IN-SITU HYBRIDIZATION
The mice brains (18- to 20-day-old Itpr1−/− and littermate
Itpr1+/+ mice; 8-week-old Wnt1-Cre;Itpr1flox/flox and Itpr1flox/flox

mice; and 23-day-old mice for Lurcher experiments) were tran-
scardially perfused with 4% PFA in PBS. The fixed brains were
immersed in 30% sucrose in PBS for O/N at 4◦C. The brains were
quickly frozen in Tissue-Tek compound (SAKURA, Japan), and
cryostat sections (12 μm in thick) were made.

For immunohistochemistry, the sections were permeablized
with 0.25% Triton/PBS for 5 min and immersed with boiled
acetate buffer (10 mM, pH = 6.0) for 10 min. After blocked,
the sections were probed with the indicated primary antibodies
[anti-IP3R1 antibodies (18A10, 5.0 μg/ml), rabbit anti-Tyrosine
hydroxylase (TH) antibodies (1.0 μg/ml), rabbit anti-Homer 3
S120 antibody, and guinea pig anti-Homer 3 antibodies] for ON
at 4◦C. After washed with PBS, the sections were probed with
Alexa 594-conjugated goat anti-rabbit IgG, Alexa 488-conjugated
anti-guinea pig IgG, and Alexa 488-conjugated goat anti-rat IgG
(Invitrogen) for 1 h at RT. The coverslips were mounted with
Vectashield (Vector Laboratories) and observed under fluores-
cence microscopy E600 (Nikon).

For in-situ hybridization, frozen (12 μm thick) or
paraffin-embedded (5 μm thick) sections of 18- to 20-day-
old Itpr1−/− and Itpr1+/+ mice or 8-week-old and 19-day-old
Wnt1-Cre;Itpr1flox/flox and Itpr1flox/flox mice were treated with
proteinase K (1 μg/ml, Wako) for 10 min at RT. The sec-
tions were blocked and probed with sense and antisense cfos
probes for ON at 68◦C. The cfos fragment was amplified with
primers, sense primer: 5′-CCGAATTCATGATGTTCTCGGGTT
TCAACG-3′, anti-sense primer: 5′-CCAAGCTTTCACAGGGC
CAGCAGCGTGG-3′. The underlines indicate EcoRI and HindIII
sites for cloning the amplified cfos fragment to the Bluescript II
vector.

IMMUNOBLOTTING
To analyze the expression of IP3R1 and TH, various parts of the
8-week-old brain were excised and were sonicated in a Sucrose
buffer [0.32 M sucrose, 5 mM Hepes-NaOH (pH = 7.5)] contain-
ing the 1x proteinase inhibitors (Roshe). The protein concentra-
tions were measured, and 100 μg of the samples were lysed with
the sample buffer [125 mM Tris-HCl (pH = 6.8), 20% glycerol,
4.0% SDS, 10% 2-mercaptoethanol, 0.1% bromphenol blue],
and separated by 7.5% SDS-polyacrylamide gel electrophoresis
and transferred to a polyvinyldene difluoride membrane. For c-
Fos detection, the striatum of the 4-week-old mice were excised
and homogenized with 0.32 M Sucrose buffer, and the nuclear
fraction after centrifugation at 2000 rpm was lysed with sample
buffer and used for western blotting. Antibodies were rabbit poly-
clonal anti-TH antibody (1.0 μg/ml, Chemicon), mouse mono-
clonal anti-β-actin antibody (1.0 μg/ml Sigma), rat monoclonal
anti-IP3R1 antibody (18A10: 1.0 μg/ml), and rabbit anti-cFos
antibody (1.0 μg/ml, Santa cruz).

CYTOCHROME OXIDASE (CO) STAINING
Frozen 4%PFA-fixed 8-week-old brain sections (100 μm thick)
were incubated in 0.1 M phosphate buffer containing 4 g sucrose,
50 mg of cytochrome C, and 50 mg of diaminobenzidine per
100 ml of buffer at 37◦C for 1–2 h. To compare the CO stain-
ing intensities among different genotypes of mice, brains were
fixed, cut, and reacted with the same solutions, and the digital
photographs were taken on a same day.

ADMINISTRATION OF DRUGS INTO THE MOUSE BRAIN (CEREBELLUM,
INFERIOR OLIVE, AND BASAL GANGLIA)
Mice (∼2 month-old) were anesthetized with 1.5% halothane
anesthesia with N2O:O2 (3:2) ventilation. A guide cannula (C313,
inner diameter: 0.39 mm, outer diameter: 0.71 mm, Plastics One)
was implanted at the middle of vermis of cerebellum (1.1 mm
in depth). After 3 days of recovery, an internal cannula (1.0 mm
projection length from the guide cannula) was replaced with the
dummy cannula and PBS or CNQX (5 mM in PBS, Tocris) were
infused into the cerebellum at the speed of 0.5 μl/min for 20 min.
The same guide cannula system was used for lidocaine (4.0% in
PBS, MP Biomedicals) injection into the IO (the tip of the can-
nula was targeted to just above the medial nuclei) and bilateral BG
(entopeduncular nucleus, 1.3 mm posterior to the Bregma, lateral
to 2.2, 4.5 mm depth).

ELECTROPHYSIOLOGICAL RECORDINGS USING ACUTE CEREBELLAR
SLICE
Cerebellar slices were prepared from Itpr1+/+ and Itpr1−/− mice
(P17-20). Parasagittal slices (230 μm thick) of the cerebellar ver-
mis were cut using a vibrating microtome (VT1000S, Leica,
Nussloch, Germany) in an ice-cold extracellular solution contain-
ing (in mM) 252 sucrose, 3.35 KCl, 21 NaHCO3, 0.6 NaH2PO4,
9.9 glucose, 1 CaCl2, and 3 MgCl2 and gassed with a mixture of
95% O2 and 5% CO2 (pH 7.4). The slices were maintained at RT
for at least 1 hr in a holding chamber, where they were submerged
in artificial cerebrospinal fluid (ACSF) containing (in mM) 138.6
NaCl, 3.35 KCl, 21 NaHCO3, 0.6 NaH2PO4, 9.9 glucose, 2 CaCl2,
and 1 MgCl2 (bubbled with 95% O2 and 5% CO2 to maintain the
pH at 7.4.

PCs were visually identified under Nomarski optics using a
water immersion microscope (BX51WI, Olympus, Japan). For
loose cell-attached recording, the pipette was gently placed in
contact with a cell body of PC, and slight suction was applied.
The pipette (2–4 M�) containing ACSF was maintained at
0 mV. The membrane currents were recorded using an amplifier,
MultiClamp 700B (Molecular Devices, Foster City, CA, USA) and
pCLAMP9.2 software (Molecular Devices), digitized, and stored
on a computer disk for off-line analysis. All signals were filtered
at 2 kHz and sampled at 5–10 kHz. All experiments were per-
formed at 31–32◦C. Action potential frequencies were analyzed
using the Mini analysis program, version 6 (Synaptosoft, Decatur,
GA, USA) and Kyplot 5.0 (Kyence, Tokyo, Japan).

EXTRACELLULAR RECORDING IN ANESTHETIZED MICE
Recordings were performed in anesthetized mice (1–2 months
old) after an intraperitoneal injection of 50 mg/kg Nembutal
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using 1.5% halothane anesthesia with N2O:O2 (3:2) ventila-
tion. Additional doses of 0.15–0.25 mg were given if neces-
sary to maintain anesthetic level. A sedative, chlorprothixene
(0.2 mg, i.m.), was administered to supplement of the Nembutal.
Atropine (0.3 mg, s.c.) and dexamethasone (0.05 mg, s.c.) were
injected subcutaneously (Gordon and Stryker, 1996). The ani-
mal’s temperature was maintained at 38◦C. The heart rate was
monitored continuously.

A small hole (1.0 mm) was drilled in the occipital bone above
the cerebellar vermis of lobule IV (midline, 4.5 mm caudal from
lambda), and the dura was exposed and covered with warm
agarose (2.8% in saline). The microelectrode tip (epoxy-coated
tungsten microelectrodes, 9–12 M� impedance; FHC, ME) was
positioned above the small hole and advanced into the cerebellar
lobule IV vermis using a stepping motor controlled micromanip-
ulator. Raw signals from the electrodes were amplified, filtered
(0.3–5 kHz), digitized at 25 kHz and stored (LabVIEW, National
Instrument, Austin, TX). Single and multiunit PC activities (peak
heights above the 6 sigma noise level) were isolated by off-line
spike sorting (Offline sorter, Plexon, Dallas, TX). Simple spikes
(SSs) and complex spikes (CSs) were identified based on their
characteristic waveforms.

EEG, EMG RECORDING
A stainless screw electrode for EEG recording was secured over
the cerebellar cortex (2.0 mm posterior to the lambda, on the
midline) and a reference screw electrode was placed over the
somatosensory (1.5 mm lateral to the midline, 1.0 mm posterior
to the bregma) or frontal cortex (1.0 mm lateral to the mid-
line, 2.0 mm anterior to the bregma) (Miyamoto et al., 2012). A
stainless wire was inserted in the neck muscle for EMG record-
ing. Polygraphic signals (band-pass filtered at 0.7–170 Hz) were
amplified by telemetry system (Data Sciences International, St.
Paul, MN) and sampled at 500 Hz (SleepSign, KISSEI COMTEC,
Japan). Based on polygraph and infra-red camera monitoring,
sleep/waking behavioral state and epileptic EEG pattern was
explored.

EXTRACELLULAR RECORDING FROM BEHAVING MICE
The tetrodes of four nichrome wires (13 μm) were stereotaxically
implanted into the cerebellar vermis of the lobule IV (6.25 mm
posterior to the Bregma, on the midline). Signals from each elec-
trode were band-pass filtered (1–6 kHz) and digitized at 25 kHz
sampling frequency (Plexon, Dallas, TX). A reference electrode
was chosen from electrodes which did not show neuronal activ-
ity. Neuronal spike data (firing rate, autocorrelogram, interspike
interval) was analyzed by NeuroExplorer (Nex Technologies,
Littleton, MA).

Similar to the recording of cerebellar PCs, tetrodes were
implanted to monitor neuronal activity in the BG (caudate
putamen and globus pallidus, 0.5 mm posterior to the Bregma,
2.0–3.0 mm lateral to the midline, 2.0–4.0 mm depth from the
surface) during dystonic movements. Multi-unit neuronal activ-
ity data were sampled with a minimal interval of 200 μm by
slowly advancing the tetrodes. For behavior analyses, we defined
rigid posture as the duration in which mice hunched their backs
and extended their paws to maintain the posture. In addition,

we defined opisthotonus as an abnormal posture in which the
mouse’s neck was completely held at the bridging position (i.e.,
bent fully toward the upper back). We judged the beginning of
opisthotonus when the neck was held at the maximal bridging
position, and defined the ending as its complete return to the
normal (horizontal/unbent) position.

Footprint analysis
The hindpaws of 8-week-old Emx1-Cre;Itpr1flox/flox and Gpr88-
Cre;Itpr1flox/flox mice, or of 19-day-old mice for Lurcher exper-
iments, were dipped in non-toxic water-based black paint, and
allowed to walk down an enclosed runway lined with white paper,
to determine their gait characteristics.

STATISTICAL ANALYSES
The significance of differences between groups was analyzed using
Student’s t-test, paired Student’s t-test, Mann-Whitney U-test,
Dunnett’s test, or ANOVA followed by the Bonferroni’s test as
appropriate. A value of P < 0.05 is reported as significant.

RESULTS
ENHANCED PC ACTIVITY IN IP3R1 DEFICIENT MICE
To examine the neural activities and circuits causing the
dyskinetic movements of Itrp1−/− mice in detail, we gener-
ated several brain-specific IP3R1 conditional knockout mice:
restricted to the dorsal telencephalon (Emx1-Cre;Itpr1flox/flox),
the cerebellum/brainstem (Wnt1-Cre;Itpr1flox/flox mice), and to
the BG (Gpr88-Cre;Itpr1flox/flox). Neither Emx1-Cre;Itpr1flox/flox

mice, lacking IP3R1 in excitatory neurons and glial cells of
the cerebral cortex and hippocampus, nor Gpr88-Cre;Itpr1flox/flox

mice, lacking IP3R1 in striatal neurons, exhibited apparent
dyskinesia like total Itpr1−/− mice (Figure 1B). The Emx1-
Cre;Itpr1flox/flox and Gpr88-Cre;Itpr1flox/flox mice were born nor-
mally and showed normal growth patterns through adulthood.
In striking contrast, Wnt1-Cre;Itpr1flox/flox mice began to show
ataxia around postnatal day 9 (P9), and exhibited dyskinesia
including opisthotonus, repetitive rigid posture, and tonic con-
tractions of the neck and trunk as they grew beyond 2 weeks
(Movie S1, and the footprint analyses shown in Figure 6B, left
panel).

Unlike the premature death in Itpr1−/− mice, Wnt1-
Cre;Itpr1flox/flox mice grew to adulthood by hand-feeding.
Body weight of Wnt1-Cre;Itpr1flox/flox mice was about 45%
of Itpr1flox/flox mice at 5 weeks. Cerebellar size of Wnt1-
Cre;Itpr1flox/flox mice at 8 weeks was significantly smaller than that
of Itpr1flox/flox mice, whereas cerebral cortex size was comparable
(Figures 1C,D). The apparent morphological constituents of the
cerebellum, such as granular layer, PC layer, and molecular layer
seemed normal and no apparent cell death occurred as judged
by DAPI staining for nuclear condensation. The expression level
of IP3R1 in the cerebellum of 8 week-old Wnt1-Cre;Itpr1flox/flox

mice was significantly lower than that of Itpr1flox/flox mice,
whereas expression in the hippocampus, striatum, and cerebral
cortex of Wnt1-Cre;Itpr1flox/flox mice was equivalent to that of
Itpr1flox/flox mice (Figures 1E–G). Residual IP3R1 expression in
the cerebellum of the 8-week-old Wnt1-Cre;Itpr1flox/flox mice was
attributed at least partly to PCs still expressing IP3R1 protein after
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FIGURE 2 | Abnormal PC activities in the cerebellum of both

Itpr1−/− and Wnt1-Cre;Itpr1flox/flox mice. (A and B) The cfos mRNA
expression in the PCs and the hippocampus of 8-week-old
Wnt1-Cre;Itpr1flox/flox (A) and 19-day-old Itpr1−/− mice (B). Right panel
shows magnified inset. Arrow indicates cfos-positive soma of PCs. (C)

Increased phosphorylation level of Homer 3 (S120) in the soma and
proximal dendrites of PCs of 8-week-old Wnt1-Cre;Itpr1flox/flox mice. (D)

Ectopic expression of tyrosine hydroxylase (TH) in PCs of 19-day-old
Itpr1−/− mice. (E) The TH expression in coronal sections of the

Wnt1-Cre;Itpr1flox/flox cerebellum at 8 weeks. (F) Banded patterns of
TH expressing PC in the Wnt1-Cre;Itpr1flox/flox cerebellum at 8 weeks.
(G) TH expression was not dependent on the IP3R1 expression of PCs
in Wnt1-Cre;Itpr1flox/flox mice. (H) Intrapenitoneal injection of harmaline
(30 mg/kg) increased the signals for the Homer 3 phosphorylation of
PCs of 8-week-old wild-type mice in a time dependent manner. (I)

Intrapenitoneal injection of harmaline increased the TH expression of
PCs of wild-type mice after 24 h. All experiments were performed at
least three times, and the representative data were shown.

incomplete Cre/flox recombination in the PCs of the Wnt1-Cre Tg
mice (Figures 1F, 2G).

To further delineate the neurons responsible for the expres-
sion of dystonia in Itpr1−/− and Wnt1-Cre;Itpr1flox/flox mice, we
investigated the expression of cfos mRNA, a neural activity marker
(Morgan et al., 1987). Interestingly, we found strong c-fos mRNA
expression in PCs localized to the caudal parts of the cerebellum
in both Itpr1−/− and Wnt1-Cre;Itpr1flox/flox mice, but not in that
of Itpr1+/+ or Itpr1flox/flox mice (Figures 2A,B, upper panels).
No apparent elevation of cfos mRNA was observed in the hip-
pocampus and cortex in either Itpr1−/− or Wnt1-Cre;Itpr1flox/flox

mice (Figures 2A,B, lower panels). We also examined CaM kinase
II-mediated phosphorylation levels of Homer 3 as a marker of
PC depolarization (Mizutani et al., 2008). Only weak Homer
3 phosphorylation (S120) signals were observed in the soma

and proximal dendrites of PCs in 8-week-old Itpr1flox/flox mice
(Figure 2C), as reported previously (Mizutani et al., 2008). In
8-week-old Wnt1-Cre;Itpr1flox/flox mice, however, intense Homer
3 phosphorylation was observed at the soma and proximal
dendrites, including the apical dendrites of PCs in caudal lobules
9 and 10 (Figure 2C, right).

In addition, we found aberrant tyrosine hydroxylase (TH)
expression which is induced by cFos (Nagamoto-Combs et al.,
1997) in the Itpr1−/− (Figure 2D) and Wnt1-Cre;Itpr1flox/flox PCs
(Figure 2E). The TH-positive PCs were mainly observed in the
vermis and flocculus of the Wnt1-Cre;Itpr1flox/flox and Itpr1−/−
cerebellum (Figure 2E) and were localized in a banded pattern
(Figure 2F). In the wild-type cerebellum, we detected some TH-
positive PCs as reported previously (Hess and Wilson, 1991).
However, TH expression levels were relatively weak, and the
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FIGURE 3 | PC firing in anesthetized Wnt1-Cre;Itpr1flox/flox mice.

(A) Diagram of in vivo recording from PCs of the cerebellum.
(B) Upper panels: representative SSs and CSs of PCs in the
Itpr1flox/flox (left) and Wnt1-Cre;Itpr1flox/flox (right) mice under

anesthesia. Lower panels: recordings of PC spike trains from
anesthetized mice. (C) Averaged auto-correlograms of PC spikes in
the Wnt1-Cre;Itpr1flox/flox (gray) and Itpr1flox/flox (black) mice under
anesthesia.

regions expressing TH in a banded manner were both fewer
and smaller in size in the Itpr1+/+ and Itpr1flox/flox mice than
in the Itpr1 mutant mice (Figure S1). Although PCs normally
express a large amount of IP3R1 in the brain, the abnormal TH
expression in the Wnt1-Cre;Itpr1flox/flox cerebellum was observed
in PCs regardless of IP3R1 expression (Figure 2G), suggesting
that altered neural inputs onto PCs may trigger the aberrant TH
expression.

Since climbing fibers (CF) innervate PCs localized within
banded patterns (Oscarsson, 1979), olivocerebellar inputs may
be the cause of abnormal involuntary movements in the
Wnt1-Cre;Itpr1flox/flox mice. Harmaline evokes synchronous firing
across large populations of PCs via the olivocellebelar pathway by
electrical coupling of IO neurons, resulting in the expression of
tremor in mice (Llinas and Sasaki, 1989). We intraperitoneally
injected harmaline into wild-type mice and examined Homer
3 phosphorylation and TH expression in PCs. We found that
IO activation rapidly increased the phosphorylation levels of
Homer 3 in the soma and dendrites of PCs in a time depen-
dent manner (Figure 2H). Intense phosphorylation signals were
first observed in the soma of PCs within 15 min after injection
(Figure 2H, arrow), then progressed into proximal and apical
dendrites as time passed (Figure 2H, arrowhead). Furthermore,
we observed elevation of TH signals in PCs at the caudal region
of the cerebellum, especially lobules XI and X at 24 h after injec-
tion (Figure 2I). These results closely resembled those observed
in the Wnt1-Cre;Itpr1flox/flox mice. Therefore, we hypothesized
that abnormal PC firing caused by excessive olivocerebellar input
is the cause of involuntary movements in the Itpr1−/− and
Wnt1-Cre;Itpr1flox/flox mice.

PC ACTIVITY CORRELATES WITH DYSTONIC MOVEMENTS OF MICE
To reveal the nature of abnormal PC firing underlying the expres-
sion of dystonia in the Itpr1−/− mice, we first measured sponta-
neous PC activities by loose cell-attached recording using acute
cerebellar slices, in which neuronal inputs from climbing and
mossy fibers were severed. Because the PCs highly expressing TH
were mainly observed in caudal parts of the cerebellar vermis of

Itpr1−/− mice (Figure 2E), we measured spontaneous activities
of PCs mainly from those areas. However, we found no appar-
ent difference in spike frequency and coefficient of variation (CV)
between PCs from wild-type and total Itpr1−/− mice under these
conditions (Frequency: Itpr1+/+: 25.89 ± 2.89 (Means ± sem),
n = 22 cells from 3 mice; Itpr1−/−: 28.86 ± 3.41, n = 26 from 3
mice, Student’s t-test P = 0.51. CV: Itpr1+/+: 0.23 ± 0.03, n =
22; Itpr1−/−: 0.22 ± 0.02, n = 26, Student’s t-test P = 0.72).

Since the cerebellar slice is devoid of neuronal inputs arising
from other brain structures, we next asked whether spontaneous
PC activities are altered in anesthetized mice. We performed
extracellular recording of PC activities from caudal lobules in the
cerebellar vermis (Figure 3A), which is responsible for the coordi-
nation of body trunk movement. We observed high amplitude PC
spiking in both total Itpr1−/− and Wnt1-Cre;Itpr1flox/flox mice as
well as in wild-type mice (Figure 3B). Typical SSs and CSs were
seen in both total Itpr1−/− and Wnt1-Cre;Itpr1flox/flox mice and
were used as an indication of PC activity in vivo (Figure 3B).
Spontaneous firing rates of Wnt1-Cre;Itpr1flox/flox mice were
decreased compared to Itpr1flox/flox mice (Itpr1flox/flox: 17.12 ±
1.61 (N = 5 mice, n = 37 cells); Wnt1-Cre;Itpr1flox/flox: 12.84 ±
1.59 (N = 4, n = 55). Mann-Whitney U-test: ∗P = 0.015.),
and this tendency was also observed in total Itpr1−/− mice,
although this was not significant [Itpr1+/+: 26.01 ± 3.42 (N =
3, n = 28); Itpr1−/−: 19.95 ± 2.52 (N = 4, n = 25), Student’s
t-test P = 0.169]. The CVs were not significantly different
between the groups [Itpr1flox/flox: 1.43 + 0.18 (n = 37), Wnt1-
Cre;Itpr1flox/flox: 1.07 + 0.08 (n = 55), Mann-Whitney U-test:
P = 0.083, Itpr1+/+: 1.30 + 0.07 (n = 28), Itpr1−/−: 1.57 + 0.26
(n = 25), Mann-Whitney U-test: P = 0.91].

We also found that averaged auto-correlograms of PC activ-
ity in Wnt1-Cre;Itpr1flox/flox mice lacked a peak around 0-100 ms
compared to Itpr1flox/flox mice (Figure 3C). The peak height
(25-35 ms) was significantly lower than that of Itpr1flox/flox

(Itpr1flox/flox: n = 37 from 5 animals; Wnt1-Cre;Itpr1flox/flox mice:
n = 55 from 4 animals, Student’s t-test P < 0.01, Figure 3C),
suggesting an alteration of PC activity patterns caused by IP3R1
deletion. Given that the spontaneous activity pattern was little

Frontiers in Neural Circuits www.frontiersin.org October 2013 | Volume 7 | Article 156 | 6

http://www.frontiersin.org/Neural_Circuits
http://www.frontiersin.org
http://www.frontiersin.org/Neural_Circuits/archive


Hisatsune et al. BG-independent dystonia by IP3R1 deletion

affected in isolated cerebellar slices, these results suggest that neu-
ral inputs to PCs, such as parallel fiber or CF inputs, were changed
by IP3R1 deletion in vivo.

Anesthetics influence synaptic neurotransmission or cellular
communication (Keane and Biziere, 1987) and suppress animal
behavior and movement. To gain more insight into the possi-
ble link between PC firing and the expression of dystonia, we
recorded multiple unit activity of PCs from freely moving mice
(Figure 4A). High amplitude putative PC spiking and low ampli-
tude background activity were alternately recorded as the elec-
trode advanced (400–800 μm). Multiple spiking and increased
background activity of awake animals sometimes made discrim-
ination between SSs and CSs difficult. In Itpr1flox/flox mice, puta-
tive PC activity showed regular tonic firing similar to the firing
pattern of anesthetized mice (Figure 4A, upper panel). We did not
see a drastic change of firing rate associated with particular move-
ments or behaviors in the caudal part of the vermis. Likewise,
sleep-wake state associated changes of PC firing rate were not
evident.

In contrast, a sharp increase of firing rates was observed
intermittently (about once/10 s) in Wnt1-Cre;Itpr1flox/flox mice
and was tightly coupled to body movement related to paroxys-
mal dyskinesia (Figure 4A). Typically, Wnt1-Cre;Itpr1flox/flox mice
gradually increased rigidity during the low firing period (indi-
cated by the orange bar in Figure 4A, lower right panel). Then,
they abruptly extended their trunk and limbs simultaneously
(Figure 4A, lower left panel) during the high frequency period
(indicated by the blue bar). This sequence of high and low fre-
quency firing recurred while the animal was awake, but not
during stiff ambulation. Though clear isolation of CSs was dif-
ficult, CS activity prevailed during the rigid posture (the orange
bar), while SS activity became dominant with high frequency fir-
ing during the body-extension (the blue bar) (Figure 4A, lower
panels).

Interestingly, the intraperitoneal injection of harmaline
(30 mg/kg) in awake wild-type mice reduced SS, and caused CS-
dominant spike patterns in PCs (Figure 4B) reminiscent of their
firing patterns in the Wnt1-Cre;Itpr1flox/flox mice during rigid pos-
ture. When Wnt1-Cre;Itpr1flox/flox mice fell asleep, these particular
patterns of PC activity diminished. The frequency of CSs was
significantly increased in behaving Wnt1-Cre;Itpr1flox/flox mice as
compared to Itpr1flox/flox mice, whereas the difference was not
evident under anesthetized condition (Figure 4C). An increase
of multiunit activity corresponded to the body-extension phase
(high firing rate period, blue arrowhead) as judged by an inde-
pendent observer (Figure 4D). Multiunit firing peaks in several
recordings from lobules in caudal portions of the vermis were
averaged (N = 4, 20 MUA recordings), and we confirmed distinct
cerebellar activity changes associated with rigid and extended
postures (Figure 4E).

TEMPORAL INACTIVATION OF THE CEREBELLUM AMELIORATES
DYSTONIA
To confirm the involvement of cerebellar activity in the dystonic
movements of Wnt1-Cre;Itpr1flox/flox mice, we inhibited cerebellar
activity by α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic
acid (AMPA) receptor antagonist (CNQX) infusion. Inactivation

of the cerebellum was confirmed by ataxia of CNQX-infused
wild-type mice (Figure 5A), including abnormal footprints
with shorter step length and wider gait after 2 h of infusion
that recovered by 5 h (Figure 5A). Cerebellum specific infu-
sion of the drug was confirmed by Fluo Ruby (Figure 5B).
No ataxic gait was observed in wild-type mice infused with
saline. Strikingly, CNQX infusion into the cerebellum of Wnt1-
Cre;Itpr1flox/flox mice improved their voluntary movement sig-
nificantly: dyskinesia such as opisthotonus, rigid posture, and
tremor was abolished (Figures 5C,D). Although the mutant mice
still showed ataxia, they exhibited partially restored gait within
2 h (Figures 5E,F; Movie S2). After 5 h, dystonic movements of
Wnt1-Cre;Itpr1flox/flox mice appeared.

GENETIC DELETION OF PCs RESCUES DYSTONIA OF
Wnt1-Cre;Itpr1flox/flox MICE
To further explore the influence of cerebellar output from
PCs on dystonic movements, we also genetically deleted PCs
from the cerebellum of Wnt1-Cre;Itpr1flox/flox mice by mat-
ing them with Lurcher mice (GluD2LC/+) in which most of
PCs die due to a mutation of the delta 2 glutamate recep-
tor (GluD2) during the second postnatal week (Barmack and
Yakhnitsa, 2003). Interestingly, we found that dystonic move-
ments in Wnt1-Cre;Itpr1flox/flox mice were completely abolished in
GluD2LC/+;Wnt1-Cre;Itpr1flox/flox mice. The GluD2LC/+;Wnt1-
Cre;Itpr1flox/flox mice greatly improved their gait to a level similar
to those of GluD2LC/+ mice [Figures 6A,B, and Movie S3, N = 4.
Stride length: GluD2LC/+: 1.48 ± 0.053 and GluD2LC/+;Wnt1-
Cre;Itpr1flox/flox: 1.60 ± 0.03 (Mean ± sem, Student’s t-test
P = 0.06, n = 18 from 3 mice), base width: GluD2LC/+:
1.03 ± 0.014 and GluD2LC/+;Wnt1-Cre;Itpr1flox/flox: 0.83 ± 0.043
(Mean ± sem, Student’s t-test P < 0.001, n = 12 from 3 mice)].
Loss of most of PCs were confirmed in the cerebellum of
GluD2LC/+;Wnt1-Cre;Itpr1flox/flox mice (Figures 6C,D). These
results strongly suggested that abnormal cerebellar output from
PCs produces dystonia in mice lacking IP3R1.

OLIVO-CEREBELLAR PATHWAY, BUT NOT BG, IS INVOLVED IN THE
EXPRESSION OF DYSTONIA
Because predominant CS activities prevailed during dystonic
posture (Figure 4), we checked activities of IO neurons, which
send CFs to PCs, by a cytochrome oxidase (CO) assay. We
found that the CO-staining intensities in the IO of Wnt1-
Cre;Itpr1flox/flox mice were increased as compared with those
of Itpr1flox/flox mice (Figure 7A, Relative CO activity. Principal
nuclei (IOPr), Itpr1flox/flox: 0.97 ± 0.03, Wnt1-Cre;Itpr1flox/flox:
1.17 ± 0.05, P < 0.05; medial inferior olive (IOM), Itpr1flox/flox:
0.68 ± 0.02. Wnt1-Cre;Itpr1flox/flox: 1.64 ± 0.1, P < 0.0001; and
dorsal accessory inferior olive (IOD), Itpr1flox/flox: 0.64 ± 0.02,
Wnt1-Cre;Itpr1flox/flox: 0.95 ± 0.06, Means ± sem, Student’s t-test
P < 0.01, n = 6 from 3 mice). Inferior olive IP3R1 expression
was below the threshold of immunohistochemical detection
even in wild-type mice, most likely because of its significantly
lower expression relative to hippocampal, striatal, and cere-
bral cortical neurons. In contrast, we did not detect a sig-
nificant difference in the CO staining intensities of the BG
between Wnt1-Cre;Itpr1flox/flox and Itpr1flox/flox mice (Relative CO
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FIGURE 4 | Correlation of abnormal PC firing with the expression of

Dystonia in freely moving Wnt1-Cre;Itpr1flox/flox mice. (A) Representative
recording of PC spiking in freely moving Itpr1flox/flox and
Wnt1-Cre;Itpr1flox/flox mice. Distinct involuntary movements of
Wnt1-Cre;Itpr1flox/flox mice were highly correlated with change in multi-unit
activities of PCs. Bottom picture, representative dyskinetic postures during
underlined PC firing periods. Blue line: extension; orange line: compression
with rigidity. Dots represent CSs. (B) PC spike patterns in wild-type mice
before (upper panel) and after (lower panel) intraperitoneal harmaline
injection. Dots represent CSs. (C) Frequency of CSs in anesthetized (upper

panel) and behaving (lower panel) Itpr1flox/flox and Wnt1-Cre;Itpr1flox/flox

mice. Anesthetized mice, Itpr1flox/flox : 1.41 ± 0.27 count/s (Mean ± sem. 21
recording sites from 5 animals); Wnt1-Cre;Itpr1flox/flox : 2.24 ± 0.33 count/s
(22 recording sites from 4 animals), P = 0.053, Mann-Whitney U-test.
Behaving mice, Itpr1flox/flox : 1.61 ± 0.23 (10 recording sites from 4 animals);
Wnt1-Cre;Itpr1flox/flox : 14.96 ± 1.64 (12 recordings form 4 animals),
P < 0.0001, Mann-Whitney U-test. (D) Relationship between firing rate and
two postures. Blue arrowhead: extension; orange: shrinkage with rigidity. (E)

Population firing data. (N = 4 mice, n = 20 recording sites, paired Student’s
t-test ***P < 0. 0001).
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FIGURE 5 | Inhibition of cerebellum activity ameliorates the dystonic

movements of Wnt1-Cre;Itpr1flox/flox mice. (A) Footprint of wild-type
mice at 2 and 5 h after the CNQX infusion into the cerebellum. The mice
hind paws were visualized with non-toxic ink. Note that gait abnormality at
2 h later after infusion. (B) Gross appearance of the brain infused with Fluo
Ruby after 2 h of infusion. Strong Fluo Ruby signals at cerebellum were
detected in the midline and lateral side sections. (C–F) Cerebellar AMPA
receptor blockade (CNQX infusion) improved voluntary movement of
Wnt1-Cre;Itpr1flox/flox mice. Incidence of abnormal postures (C:
Opistothonus, D: Rigid posture with freezing as shown in Figure 4A) were
scored. Means ± sem. Opistothonus, pre-infusion: 3.57 ± 1.21; after 2 h:
0.10 ± 0.10, after 5 h: 1.80 ± 0.64, Dunnett’s test ∗P < 0.05; Rigid posture,
pre-infusion: 4.50 ± 0.76; after 2 h: 0, after 5 h: 2.23 ± 1.50, Dunnett’s test
∗P < 0.05 (N = 3). (E) Representative trajectory over 2 min. Box represents
34 × 38 cm square. (F) locomotor distance. Means ± sem. Pre infusion:
0.30 ± 0.11; after 2 h: 1.37 ± 0.01; after 5 h: 0.40 ± 0.016. ∗P < 0.05.
ANOVA, followed by Bonferroni’s test. (N = 3).

activity. Itpr1flox/flox: 1.02 ± 0.02; Wnt1-Cre;Itpr1flox/flox: 0.98 ±
0.03, Student’s t-test P = 0.20, n = 6 from 3 mice) (Figure 7B).
In addition, contrary to the PC activity patterns, we did not
observe distinct correlations between BG spiking activity and
dystonic movement and activity patterns were essentially indis-
tinguishable (Figure 7C). Activity levels of neurons in the Wnt1-
Cre;Itpr1flox/flox BG were also similar to those of Itpr1flox/flox BG
(firing rate of the BG neurons, single-unit activity [Itpr1flox/flox:
8.523 ± 1.669 (n = 20). Wnt1-Cre;Itpr1flox/flox: 15.05 ± 4.398
(n = 22). Mean ± sem. Student’s t-test P = 0.19.]. In addition,
the expression levels of cfos mRNA and cFos in the striatum were

comparable between Itpr1flox/flox and Wnt1-Cre;Itpr1flox/flox mice
(Figures 7D,E).

To examine whether altered IO activity was associated with
dystonia in the Wnt1-Cre;Itpr1flox/flox mice, we pharmacologically
inhibited IO activities. We found that lidocaine injection
into IO decreased opisthotonus of Wnt1-Cre;Itpr1flox/flox mice
(Figure 7F), although tremor of limbs and ataxia were still
observed (Movie S4). In contrast, pharmacological inhibition of
bilateral BG (entopeduncular nucleus) activity by lidocaine injec-
tion did not significantly affect frequency of opisthotonus in
Wnt1-Cre;Itpr1flox/flox mice (Figure 7G; Movie S5). These results
suggested that altered activities of olivocerebellar tracts cause dys-
tonia in Wnt1-Cre;Itpr1flox/flox mice in a BG-independent manner.

DISCUSSION
In this study, we demonstrated that genetic deletion of IP3R1
within cerebellum and brainstem is sufficient to cause dysto-
nia in mice, and that further pharmacological inactivation of
the cerebellum or the IO and deletion of PCs ameliorate the
dyskinesia. Thus, our data suggested that dystonia is a gain of
function rather than loss of function of olivocerebellar path-
ways, which is in line with the previous findings (Campbell
et al., 1999; Pizoli et al., 2002). Moreover, using electrophysio-
logical recordings of PC activity from freely behaving dystonic
mice, we have also demonstrated the relationship between tem-
poral changes of PC spike activity possibly triggered by altered
IO activation and the expression of dystonia. Although altered
PC activity was found in the movement-restricted dystonic rat
(Ledoux and Lorden, 2002), how the temporal changes of PC
firing patterns are related to ongoing dystonic movements were
unknown. We revealed a distinct pattern of PC firing in freely
moving Wnt1-Cre;Itpr1flox/flox mice during distinct dystonic pos-
tures, which could not be observed in neither the anesthetized
preparation nor the cerebellar slices. During dystonic movements,
PC activities exhibiting repetitive CS patterns were predominant.
Since CSs are thought to be important for voluntary movements
(Welsh et al., 1995; Kitazawa et al., 1998; Welsh, 2002), the repeti-
tive abnormal synchronized CSs with high frequency during rigid
posture may in part underlie dystonia.

Chen et al. recently reported the low-frequency oscillations
of flavoprotein autofluorescence in the cerebellar cortex of tot-
tering mice (Chen et al., 2009), and showed that the oscillation
was accentuated during dystonia. However, the cellular types and
mechanisms that contribute to the enhancement of the oscillation
in the mutant mice were unknown. By measuring the PC activ-
ities from behaving Wnt1-Cre;Itpr1flox/flox mice, here we found
a precise temporal association between CS-dominant PC firings
and distinct dystonic movements. Thus, increase of CF frequency
through IO activation may underlie the expression of dystonia
in Wnt1-Cre;Itpr1flox/flox mice. This hypothesis is in line with our
finding that infusion of AMPAR blocker in the cerebellum ame-
liorates dystonia in Wnt1-Cre;Itpr1flox/flox mice, because AMPA
receptor blocker inhibits CF-PC synapse transmission. Although
we don’t know the relationship between the CS-dominant PC fir-
ings in the present study and the low-frequency oscillations in
cerebellar cortex shown in the Chen’s paper, the CS-dominant
PC firings is most likely to be independent of the cerebellar
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FIGURE 6 | Genetic deletion of PC rescues dystonia of

Wnt1-Cre;Itpr1flox/flox mice. (A) Representative trajectories over
2 min of Wnt1-Cre;Itpr1flox/flox and GluD2LC/+;Wnt1-Cre;Itpr1flox/flox

mice at postnatal 19 days after birth. Box represents 17 × 26 cm
square. (B) Representative footprints of Wnt1-Cre;Itpr1flox/flox ,
GluD2LC/+, and GluD2LC/+;Wnt1-Cre;Itpr1flox/flox mice at 19 days

old. Animal’s hind paw prints were visualized with non-toxic ink.
(C) Morphological assessment of cerebellar PC deletion by HE
staining at 23 days old. (D) Immunohistochemistry of the IP3R1
and Calbindin expression in the cerebellum from Wnt1 − Cre;
Itpr1flox/flox , GluD2LC/+, and GluD2LC/+;Wnt1-Cre;Itpr1flox/flox mice at
23 days old.
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FIGURE 7 | Inhibition of IO but not BG activity ameliorates the dystonic

movements of Wnt1-Cre;Itpr1flox/flox mice. (A and B) CO staining of IO (A)

and BG (B) of 8 week-old Itpr1flox/flox and Wnt1-Cre;Itpr1flox/flox mice. (C) BG
spiking activity and EMG in Itpr1flox/flox and Wnt1-Cre;Itpr1flox/flox mice.
Single-unit activity (SUA). Itpr1flox/flox : 8.523 ± 1.669 (n = 20).
Wnt1-Cre;Itpr1flox/flox : 15.05 ± 4.398 (n = 22). Mean ± sem. Student’s t-test
P = 0.19. For Wnt1-Cre;Itpr1flox/flox mice, opisthotonus was presented by a
hand swich. (D) The expression level of cfos mRNA in the striatum of
19-day-old Itpr1flox/flox and Wnt1-Cre;Itpr1flox/flox mice. CPu: caudate
putamen. Cx, cerebral cortex. N = 3. The representative data was shown.

(E) The expression level of cFos in the striatum of Itpr1flox/flox and
Wnt1-Cre;Itpr1flox/flox mice at 4 weeks old. Fifty μg of proteins were loaded
for each lane. The representative data was shown (n = 3). (F) Effect of
lidocaine infusion into IO on the opisthotonus of Wnt1-Cre;Itpr1flox/flox mice.
Left panels show the infusion site visualized with methylene blue. Right
panels show the number of opisthotonus before and after lidocaine infusion
(N = 4). ∗Paired Student’s t-test P < 0.05. (G) Effect of lidocaine infusion into
bilateral BG (entopeduncular nucleus) on opisthotonus number of
Wnt1-Cre;Itpr1flox/flox mice (N = 4). Amy, amygdala; EPN, entopeduncular
nucleus; n.s, not significant determined by paired Student’s t-test.

oscillation, since the oscillation was reported to be intrinsic to the
cerebellar cortex and the cerebellar blockade by AMPA receptor
or by electrical stimulation of PFs did not affect the oscillation
(Chen et al., 2009).

Our results also suggest a previously unknown pathogene-
sis of dystonia induced by abnormal cerebellar activity in mice,
namely BG-independent dystonia, based on the following facts;
no apparent motor abnormality of BG-specific IP3R1 condi-
tional mice, no difference in CO staining intensity in Itpr1flox/flox

and Wnt1-Cre;Itpr1flox/flox mouse’s BG, little correlations of BG
activity and dystonic movement, and the ineffectiveness of phar-
maceutical BG inactivation on dystonia of Wnt1-Cre;Itpr1flox/flox

mice. Thus, we propose that altered cerebellar activity causes
dystonia by a mechanism, which does not involve BG activity
in Wnt1-Cre;Itpr1flox/flox mice. It is possible that the abnormal
cerebellar outputs generated by IO might be directly sent to

spinal cords via red nucleus or reticular formation. It is also
worth mentioning that the distinctive CSs appeared only in awake
Wnt1-Cre;Itpr1flox/flox mice, and that altered activation of IO itself
was not sufficient for generation of dystonia, since harmaline,
which evokes similar CS dominant spike patterns of PCs, does
not cause dystonia. Therefore, uncoordinated timings between
voluntary corticospinal signals and the involuntary cerebellar-
reticulospinal signals generated by IO activation with spinocere-
bellar (somatosensory) inputs may cause simultaneous activation
of agonist- and antagonist muscles, leading to dystonia in the
Wnt1-Cre;Itpr1flox/flox mice.

In sum, our study suggests that BG-independent dystonia
is triggered by abnormal cerebellar outputs in mice. Wnt1-
Cre;Itpr1flox/flox mice may provide a therapeutic dystonia model
solely dependent upon abnormal neural activities within the cere-
bellum and brainstem. Recently, it was reported that a deletion
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of the Itpr1 gene is associated with involuntary movements in
patients of spinocerebellar ataxia type 15 (Di Gregorio et al., 2010;
Marelli et al., 2011), which has been thought to be pure cerebel-
lar ataxia (Hara et al., 2008). The above involuntary movements
may be dystonia-related, given that dystonia can be a prominent
symptom in SCAs, including some cases with exclusively cere-
bellar pathology (Manto, 2005). However, since spinocerebellar
ataxia type 15 is a slow progressive autosomal dominant dis-
ease exhibiting cerebellar atrophy with PC death (Knight et al.,
2003; Gardner et al., 2005), severe dystonia would not happen
in human. Nevertheless, IP3R is known to interact with Na-K
ATPase, a causal gene for DYT12 dystonia, and a Na-K ATPase
inhibitor, ouabain, causes aberrant Ca2+ release from the IP3Rs
(Zhang et al., 2006). Thus, it is possible that dysfunction of IP3R1
could be associated with dystonia in human. Further studies on
the mechanism by which disturbed Ca2+ signals from IP3R1 lead
to the repetitive synchronized CSs in our mutant mice, such as
potential Ca2+-dependent regulation of gap junction among IO
neurons, may contribute to the understanding of pathogenesis
and the development of new therapies for dystonia.

AUTHOR CONTRIBUTIONS
Chihiro Hisatsune designed the project, performed experiments,
and wrote the manuscript. Katsuhiko Mikoshiba wrote the
manuscript. Hiroyuki Miyamoto, Moritoshi Hirono, Takao K.
Hensch, and Masahisa Yamada. performed the electrophysio-
logical experiments and wrote the manuscript. Naoko Ogawa,
Etsuko Ebisui, and Takeyuki Sugawara performed the experi-
ments. Naohide Yamaguchi, and Mitsuharu Hattori generated
the Itpr1flox/+ mice. Toshio Ohshima helped to establish mutant
mice.

ACKNOWLEDGMENTS
This study was supported by the Moritani Scholarship
Foundation (Chihiro Hisatsune), Takeda Science Foundation
(Chihiro Hisatsune), JSPS KAKENHI Grant Numbers, 20500301
(Chihiro Hisatsune), and 20220007 (Katsuhiko Mikoshiba),
the JST PRESTO program (Hiroyuki Miyamoto), and the
Japan Science and Technology Agency (Katsuhiko Mikoshiba).
We thank Dr. S. Itohara and Dr. T. Iwasato for providing us
Lurcher and Emx1-Cre knock-in mice, and Dr. C. Yokoyama
and Dr. A. V. Terashima for critical reading and comments.
We also thank all members of our laboratories for valuable
experimental advice, especially Dr. A. Mizutani for anti-
Homer 3 antibodies. We are also grateful to the support of
all staff at Research Resources Center, RIKEN Brain Science
Institute.

SUPPLEMENTARY MATERIAL
The Supplementary Material for this article can be
found online at: http://www.frontiersin.org/Neural_
Circuits/10.3389/fncir.2013.00156/abstract

Movie S1 | Behavior of Wnt1-Cre;Itpr1flox/flox mice.

Movie S2 | Behavior of Wnt1-Cre;Itpr1flox/flox mice before and 2 h after

CNQX infusion.

Movie S3 | Behavior of GluD2LC/+;Wnt1-Cre; Itpr1flox/flox mice.

Movie S4 | Behavior of Wnt1-Cre;Itpr1flox/flox mice before and after

lidocaine injection into the inferior olive.

Movie S5 | Behavior of Wnt1-Cre;Itpr1 flox/flox mice before and after

lidocaine injection into the BG.

REFERENCES
Barmack, N. H., and Yakhnitsa,

V. (2003). Cerebellar climbing
fibers modulate simple spikes
in Purkinje cells. J Neurosci 23,
7904–7916.

Berridge, M. J., Lipp, P., and Bootman,
M. D. (2000). The versatility and
universality of calcium signalling.
Nat. Rev. Mol. Cell Biol. 1, 11–21.
doi: 10.1038/35036035

Calderon, D. P., Fremont, R., Kraenzlin,
F., and Khodakhah, K. (2011).
The neural substrates of rapid-
onset Dystonia-Parkinsonism.
Nat. Neurosci. 14, 357–365. doi:
10.1038/nn.2753

Campbell, D. B., North, J. B., and
Hess, E. J. (1999). Tottering mouse
motor dysfunction is abolished
on the Purkinje cell degenera-
tion (pcd) mutant background.
Exp. Neurol. 160, 268–278. doi:
10.1006/exnr.1999.7171

Ceballos-Baumann, A. O., Passingham,
R. E., Marsden, C. D., and Brooks,
D. J. (1995). Motor reorganiza-
tion in acquired hemidystonia.
Ann. Neurol. 37, 746–757. doi:
10.1002/ana.410370608

Chen, G., Popa, L. S., Wang, X.,
Gao, W., Barnes, J., Hendrix, C.
M., et al. (2009). Low-frequency
oscillations in the cerebellar
cortex of the tottering mouse.
J. Neurophysiol. 101, 234–245. doi:
10.1152/jn.90829.2008

Chiken, S., Shashidharan, P., and
Nambu, A. (2008). Cortically
evoked long-lasting inhibition
of pallidal neurons in a trans-
genic mouse model of dystonia.
J. Neurosci. 28, 13967–13977. doi:
10.1523/JNEUROSCI.3834-08.2008

Danielian, P. S., Muccino, D.,
Rowitch, D. H., Michael, S. K.,
and Mcmahon, A. P. (1998).
Modification of gene activ-
ity in mouse embryos in
utero by a tamoxifen-inducible
form of Cre recombinase.
Curr. Biol. 8, 1323–1326. doi:
10.1016/S0960-9822(07)00562-3

Di Gregorio, E., Orsi, L., Godani, M.,
Vaula, G., Jensen, S., Salmon, E.,
et al. (2010). Two Italian fami-
lies with ITPR1 gene deletion pre-
senting a broader phenotype of
SCA15. Cerebellum 9, 115–123. doi:
10.1007/s12311-009-0154-0

Eidelberg, D., Moeller, J. R., Antonini,
A., Kazumata, K., Nakamura,
T., Dhawan, V., et al. (1998).
Functional brain networks in DYT1
dystonia. Ann. Neurol. 44, 303–312.
doi: 10.1002/ana.410440304

Filip, P., Lungu, O. V., and Bares, M.
(2013). Dystonia and the cere-
bellum: a new field of interest
in movement disorders? Clin.
Neurophysiol. 124, 1269–1276. doi:
10.1016/j.clinph.2013.01.003

Foskett, J. K., White, C., Cheung, K.
H., and Mak, D. O. (2007). Inositol
trisphosphate receptor Ca2+ release
channels. Physiol. Rev. 87, 593–658.
doi: 10.1152/physrev.00035.2006

Gardner, R. J., Knight, M. A., Hara,
K., Tsuji, S., Forrest, S. M., and
Storey, E. (2005). Spinocerebellar
ataxia type 15. Cerebellum 4, 47–50.
doi: 10.1080/14734220410019029

Gordon, J. A., and Stryker, M. P.
(1996). Experience-dependent plas-
ticity of binocular responses in the
primary visual cortex of the mouse.
J. Neurosci. 16, 3274–3286.

Hara, K., Shiga, A., Nozaki, H., Mitsui,
J., Takahashi, Y., Ishiguro, H.,
et al. (2008). Total deletion and

a missense mutation of ITPR1 in
Japanese SCA15 families. Neurology
71, 547–551. doi: 10.1212/01.wnl.
0000311277.71046.a0

Hess, E. J., and Wilson, M. C. (1991).
Tottering and leaner mutations
perturb transient developmental
expression of tyrosine hydroxylase
in embryologically distinct Purkinje
cells. Neuron 6, 123–132. doi:
10.1016/0896-6273(91)90127-L

Hisatsune, C., Ogawa, N., and
Mikoshiba, K. (2013). Striatum-
specific expression of Cre
recombinase using the Gpr88
promoter in mice. Transgenic Res.
doi: 10.1007/s11248-013-9711-x.
[Epub ahead of print].

Hutchinson, M., Nakamura, T.,
Moeller, J. R., Antonini, A.,
Belakhlef, A., Dhawan, V., et al.
(2000). The metabolic topography
of essential blepharospasm: a focal
dystonia with general implica-
tions. Neurology 55, 673–677. doi:
10.1212/WNL.55.5.673

Iwasato, T., Datwani, A., Wolf, A.
M., Nishiyama, H., Taguchi, Y.,
Tonegawa, S., et al. (2000). Cortex-
restricted disruption of NMDAR1

Frontiers in Neural Circuits www.frontiersin.org October 2013 | Volume 7 | Article 156 | 12

http://www.frontiersin.org/Neural_Circuits/10.3389/fncir.2013.00156/abstract
http://www.frontiersin.org/Neural_Circuits/10.3389/fncir.2013.00156/abstract
http://www.frontiersin.org/Neural_Circuits
http://www.frontiersin.org
http://www.frontiersin.org/Neural_Circuits/archive


Hisatsune et al. BG-independent dystonia by IP3R1 deletion

impairs neuronal patterns in the
barrel cortex. Nature 406, 726–731.
doi: 10.1038/35021059

Keane, P. E., and Biziere, K. (1987).
The effects of general anaes-
thetics on GABAergic synaptic
transmission. Life Sci. 41,
1437–1448. doi: 10.1016/0024-
3205(87)90708-9

Kitazawa, S., Kimura, T., and Yin, P.
B. (1998). Cerebellar complex spikes
encode both destinations and errors
in arm movements. Nature 392,
494–497. doi: 10.1038/33141

Knight, M. A., Kennerson, M. L.,
Anney, R. J., Matsuura, T.,
Nicholson, G. A., Salimi-Tari,
P., et al. (2003). Spinocerebellar
ataxia type 15 (sca15) maps to
3p24.2-3pter: exclusion of the
ITPR1 gene, the human ortho-
logue of an ataxic mouse mutant.
Neurobiol. Dis. 13, 147–157. doi:
10.1016/S0969-9961(03)00029-9

Ledoux, M. S. (2011). Animal models
of dystonia: lessons from a mutant
rat. Neurobiol. Dis. 42, 152–161. doi:
10.1016/j.nbd.2010.11.006

Ledoux, M. S., and Lorden, J. F.
(2002). Abnormal spontaneous and
harmaline-stimulated Purkinje cell
activity in the awake genetically
dystonic rat. Exp. Brain Res. 145,
457–467. doi: 10.1007/s00221-002-
1127-4

Lenz, F. A., Suarez, J. I., Metman, L. V.,
Reich, S. G., Karp, B. I., Hallett, M.,
et al. (1998). Pallidal activity dur-
ing dystonia: somatosensory reor-
ganisation and changes with sever-
ity. J. Neurol. Neurosurg. Psychiatr.
65, 767–770. doi: 10.1136/jnnp.65.
5.767

Llinas, R., and Sasaki, K. (1989). The
functional organization of the
olivo-cerebellar system as examined
by multiple Purkinje cell record-
ings. Eur. J. Neurosci. 1, 587–602.
doi: 10.1111/j.1460-9568.1989.
tb00365.x

Manto, M. U. (2005). The wide spec-
trum of spinocerebellar ataxias
(SCAs). Cerebellum 4, 2–6. doi:
10.1080/14734220510007914

Marelli, C., Van De Leemput, J.,
Johnson, J. O., Tison, F., Thauvin-
Robinet, C., Picard, F., et al. (2011).
SCA15 due to large ITPR1 deletions
in a cohort of 333 white fami-
lies with dominant ataxia. Arch.
Neurol. 68, 637–643. doi: 10.1001/
archneurol.2011.81

Marsden, C. D., and Quinn, N. P.
(1990). The dystonias. BMJ 300,
139–144. doi: 10.1136/bmj.300.
6718.139

Matsumoto, M., Nakagawa, T., Inoue,
T., Nagata, E., Tanaka, K., Takano,
H., et al. (1996). Ataxia and epilep-
tic seizures in mice lacking type
1 inositol 1,4,5-trisphosphate
receptor. Nature 379, 168–171. doi:
10.1038/379168a0

Mazziotta, J. C., Hutchinson, M.,
Fife, T. D., and Woods, R. (1998).
Advanced neuroimaging methods
in the study of movement disorders:
dystonia and blepharospasm. Adv.
Neurol. 78, 153–160.

Mikoshiba, K. (2007). The IP3 recep-
tor/Ca2+ channel and its cellular
function. Biochem. Soc. Symp. 74,
9–22. doi: 10.1042/BSS0740009

Miyamoto, H., Nakamaru-Ogiso, E.,
Hamada, K., and Hensch, T. K.
(2012). Serotonergic integration
of circadian clock and ultradian
sleep-wake cycles. J. Neurosci.
32, 14794–14803. doi: 10.1523/
JNEUROSCI.0793-12.2012

Mizutani, A., Kuroda, Y., Futatsugi,
A., Furuichi, T., and Mikoshiba, K.
(2008). Phosphorylation of Homer3
by calcium/calmodulin-dependent
kinase II regulates a coupling state
of its target molecules in Purkinje
cells. J. Neurosci. 28, 5369–5382. doi:
10.1523/JNEUROSCI.4738-07.2008

Morgan, J. I., Cohen, D. R., Hempstead,
J. L., and Curran, T. (1987).
Mapping patterns of c-fos expres-
sion in the central nervous system
after seizure. Science 237, 192–197.
doi: 10.1126/science.3037702

Nagamoto-Combs, K., Piech, K. M.,
Best, J. A., Sun, B., and Tank, A.
W. (1997). Tyrosine hydroxylase
gene promoter activity is regulated
by both cyclic AMP-responsive
element and AP1 sites following
calcium influx. Evidence for cyclic
amp-responsive element binding
protein-independent regulation.
J. Biol. Chem. 272, 6051–6058. doi:
10.1074/jbc.272.9.6051

Nambu, A., Chiken, S., Shashidharan,
P., Nishibayashi, H., Ogura, M.,
Kakishita, K., et al. (2011). Reduced
pallidal output causes dystonia.
Front. Syst. Neurosci. 5:89. doi:
10.3389/fnsys.2011.00089

Neychev, V. K., Fan, X., Mitev, V.
I., Hess, E. J., and Jinnah, H.
A. (2008). The basal ganglia and

cerebellum interact in the expres-
sion of dystonic movement. Brain
131, 2499–2509. doi: 10.1093/brain/
awn168

Nishiyama, J., Matsuda, K., Kakegawa,
W., Yamada, N., Motohashi, J.,
Mizushima, N., et al. (2010).
Reevaluation of neurodegenera-
tion in lurcher mice: constitutive
ion fluxes cause cell death with,
not by, autophagy. J. Neurosci.
30, 2177–2187. doi: 10.1523/
JNEUROSCI.6030-09.2010

Odergren, T., Stone-Elander, S., and
Ingvar, M. (1998). Cerebral and
cerebellar activation in correlation
to the action-induced dystonia
in writer’s cramp. Mov. Disord.
13, 497–508. doi: 10.1002/mds.
870130321

Oscarsson, O. (1979). Functional units
of the cerebellum - sagittal zones
and microzones. Trends Neurosci.
2, 143–145. doi: 10.1016/0166-2236
(79)90057-2

Pizoli, C. E., Jinnah, H. A., Billingsley,
M. L., and Hess, E. J. (2002).
Abnormal cerebellar signal-
ing induces dystonia in mice.
J. Neurosci. 22, 7825–7833.

Raike, R. S., Jinnah, H. A., and Hess, E.
J. (2005). Animal models of general-
ized dystonia. NeuroRx 2, 504–512.
doi: 10.1602/neurorx.2.3.504

Sugawara, T., Hisatsune, C., Le, T.
D., Hashikawa, T., Hirono, M.,
Hattori, M., et al. (2013). Type
1 inositol trisphosphate receptor
regulates cerebellar circuits by
maintaining the spine morphology
of purkinje cells in adult mice.
J. Neurosci. 33, 12186–12196.
doi: 10.1523/JNEUROSCI.0545-
13.2013

Vitek, J. L., Chockkan, V., Zhang, J. Y.,
Kaneoke, Y., Evatt, M., Delong, M.
R., et al. (1999). Neuronal activity
in the basal ganglia in patients with
generalized dystonia and hemibal-
lismus. Ann. Neurol. 46, 22–35.
doi: 10.1002/1531-8249(199907)46:
1<22::AID-ANA6>3.0.CO;2-Z

Walter, J. T., Alvina, K., Womack, M.
D., Chevez, C., and Khodakhah,
K. (2006). Decreases in the pre-
cision of Purkinje cell pacemak-
ing cause cerebellar dysfunction and
ataxia. Nat. Neurosci. 9, 389–397.
doi: 10.1038/nn1648

Welsh, J. P. (2002). Functional signifi-
cance of climbing-fiber synchrony:
a population coding and behavioral

analysis. Ann. N.Y. Acad. Sci. 978,
188–204. doi: 10.1111/j.1749-6632.
2002.tb07567.x

Welsh, J. P., Lang, E. J., Suglhara, I., and
Llinas, R. (1995). Dynamic organi-
zation of motor control within the
olivocerebellar system. Nature 374,
453–457. doi: 10.1038/374453a0

Zhang, S., Malmersjo, S., Li, J.,
Ando, H., Aizman, O., Uhlen,
P., et al. (2006). Distinct role of
the N-terminal tail of the Na,K-
ATPase catalytic subunit as a signal
transducer. J. Biol. Chem. 281,
21954–21962. doi: 10.1074/jbc.
M601578200

Zhuang, P., Li, Y., and Hallett, M.
(2004). Neuronal activity in the
basal ganglia and thalamus in
patients with dystonia. Clin.
Neurophysiol. 115, 2542–2557. doi:
10.1016/j.clinph.2004.06.006

Conflict of Interest Statement: The
authors declare that the research
was conducted in the absence of any
commercial or financial relationships
that could be construed as a potential
conflict of interest.

Received: 18 July 2013; accepted: 14
September 2013; published online: 04
October 2013.
Citation: Hisatsune C, Miyamoto H,
Hirono M, Yamaguchi N, Sugawara
T, Ogawa N, Ebisui E, Ohshima T,
Yamada M, Hensch TK, Hattori M and
Mikoshiba K (2013) IP3R1 deficiency
in the cerebellum/brainstem causes basal
ganglia-independent dystonia by trig-
gering tonic Purkinje cell firings in
mice. Front. Neural Circuits 7:156. doi:
10.3389/fncir.2013.00156
This article was submitted to the journal
Frontiers in Neural Circuits.
Copyright © 2013 Hisatsune,
Miyamoto, Hirono, Yamaguchi,
Sugawara, Ogawa, Ebisui, Ohshima,
Yamada, Hensch, Hattori and
Mikoshiba. This is an open-access
article distributed under the terms of
the Creative Commons Attribution
License (CC BY). The use, distribution
or reproduction in other forums is per-
mitted, provided the original author(s)
or licensor are credited and that the
original publication in this journal
is cited, in accordance with accepted
academic practice. No use, distribution
or reproduction is permitted which does
not comply with these terms.

Frontiers in Neural Circuits www.frontiersin.org October 2013 | Volume 7 | Article 156 | 13

http://dx.doi.org/10.3389/fncir.2013.00156
http://dx.doi.org/10.3389/fncir.2013.00156
http://dx.doi.org/10.3389/fncir.2013.00156
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org/Neural_Circuits
http://www.frontiersin.org
http://www.frontiersin.org/Neural_Circuits/archive

	IP3R1 deficiency in the cerebellum/brainstem causes basal ganglia-independent dystonia by triggering tonic Purkinje cell firings in mice
	Introduction
	Materials and Methods
	Mice
	Histology and In-Situ Hybridization
	Immunoblotting
	Cytochrome Oxidase (CO) Staining
	Administration of Drugs into the Mouse Brain (Cerebellum, Inferior Olive, and Basal Ganglia)
	Electrophysiological Recordings Using Acute Cerebellar Slice
	Extracellular Recording in Anesthetized Mice
	EEG, EMG Recording
	Extracellular Recording from Behaving Mice
	Footprint analysis

	Statistical Analyses

	Results
	Enhanced PC Activity in IP3R1 Deficient Mice
	PC Activity Correlates with Dystonic Movements of Mice
	Temporal Inactivation of the Cerebellum Ameliorates Dystonia
	Genetic Deletion of PCs Rescues Dystonia of Wnt1-Cre;Itpr1flox/flox Mice
	Olivo-Cerebellar Pathway, but not BG, is Involved in the Expression of Dystonia

	Discussion
	Author Contributions
	Acknowledgments
	Supplementary Material
	References


