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Abstract

Background: Immune cells have to change their gene expression patterns dynamically in response to external
stimuli such as lipopolysaccharide (LPS). The gene expression is regulated at multiple steps in eukaryotic cells, in
which control of RNA levels at both the transcriptional level and the post-transcriptional level plays important role.
Impairment of the control leads to aberrant immune responses such as excessive or impaired production of
cytokines. However, genome-wide studies focusing on the post-transcriptional control were relatively rare until
recently. Moreover, several RNA cis elements and RNA-binding proteins have been found to be involved in the
process, but our general understanding remains poor, partly because identification of regulatory RNA motifs is very
challenging in spite of its importance. We took advantage of genome-wide measurement of RNA degradation in
combination with estimation of degradation kinetics by qualitative approach, and performed de novo prediction of
RNA sequence and structure motifs.

Methods: To classify genes by their RNA degradation kinetics, we first measured RNA degradation time course in
mouse dendritic cells after LPS stimulation and the time courses were clustered to estimate degradation kinetics
and to find patterns in the kinetics. Then genes were clustered by their similarity in degradation kinetics patterns.
The 3′ UTR sequences of a cluster was subjected to de novo sequence or structure motif prediction.

Results: The quick degradation kinetics was found to be strongly associated with lower gene expression level,
immediate regulation (both induction and repression) of gene expression level, and longer 3′ UTR length. De novo
sequence motif prediction found AU-rich element-like and TTP-binding sequence-like motifs which are enriched in
quickly degrading genes. De novo structure motif prediction found a known functional motif, namely stem-loop
structure containing sequence bound by RNA-binding protein Roquin and Regnase-1, as well as unknown motifs.

Conclusions: The current study indicated that degradation kinetics patterns lead to classification different from that
by gene expression and the differential classification facilitates identification of functional motifs. Identification of
novel motif candidates implied post-transcriptional controls different from that by known pairs of RNA-binding
protein and RNA motif.
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Background
The expression of genes is regulated at multiple steps in
eukaryotic cells, in which the control of RNA concentra-
tions plays a particularly important role. RNA levels are
controlled at both the transcriptional level and the post-
transcriptional level. There have been large numbers of
genome-wide studies on gene expression dynamics
focusing on the transcriptional control such as ImmGen
[1] and ENCODE [2] projects, while such studies focus-
ing on the post-transcriptional control were relatively
rare until recently [3–8].
Immune cells have to change their gene expression

patterns dynamically in response to external stimuli such
as pathogen associated molecular patterns (PAMPs),
which consist of evolutionally conserved bacterial and
viral molecular components, including lipopolysaccharide
(LPS) consisting of outer layer of Gram-negative bacteria.
Both transcriptional and post-transcriptional controls are
important in this response [9]. Especially, changes in post-
transcriptional control such as RNA degradation are
known to be critical for short-term temporal adaptation of
gene expression levels [10]. In macrophages and dendritic
cells (DCs) various genes including proinflammatory cyto-
kines such as TNF and IL-6 are induced immediately after
stimulation by PAMPs. Those genes are also controlled by
post-transcriptional mechanisms involving RNA-binding
proteins [11]. Several RNA-binding proteins such as HuR
[12], AUF1 [13], Zfp36/TTP [14], Arid5a [15], Rc3h1/
Roquin [16], Zc3h12a/Regnase-1 [17] have been reported
to be involved in post-transcriptional regulation of
immune gene expression. Typically, such RNA-binding
proteins targets sequence and structural motifs in the 3′
untranslated region (3′ UTR) of RNAs. Deletion of the
genes encoding these proteins leads to aberrant immune
responses such as excessive or impaired production of
cytokines, indicating the importance of such post-
transcriptional control.
The next generation sequencing based techniques such

as RNA immunoprecipitation sequencing (RIP-seq) or
crosslinking and immunoprecipitation sequencing
(CLIP-seq) have been used for identification of target
motifs of RNA-binding proteins [18]. These methods,
which are RNA counterparts of Chromatin immunopre-
cipitation sequencing (ChIP-seq) to identify cis elements
of DNA, however, cannot be used if the RNA-binding
protein involved in the process of interest is not known.
For DNA cis elements, an alternative approach for iden-
tification starts with the classification of genes according
to their gene expression pattern [19]. Typically, gene
expression time course data after stimulation is
obtained, and genes are classified according to the time
course by clustering methods. Subsequently, the
promoter sequences of genes with similar expression
patterns are subjected to de novo motif prediction or

detection of known motifs. The advantage of this
method is that it does not require any prior information
about DNA-binding proteins.
In the current study, we took advantage of the latter ap-

proach, starting from classification of genes according to
their expression pattern and then leading to de novo motif
prediction over a set of sequences, to identify RNA cis
elements possibly controlling RNA degradation kinetics.
To classify genes by their RNA degradation kinetics, we
first measured RNA degradation time course after LPS
stimulation. We found a clear tendency in the kinetics
depending on the gene expression levels, induction
dynamics after stimulation, and the length of 3′ UTRs.
Genes were, then, clustered by their similarity in degrad-
ation kinetics patterns. Degradation patterns resulted in a
different clustering genes from that obtained from simply
gene expression time course profiles. By applying de novo
sequence or structure motif prediction on the resulting
clusters of genes we found not only known functional
motifs in 3′ UTRs, but also novel unknown motifs.
Together, the current study indicated that degradation
kinetics patterns lead to classification different from that
by gene expression and the differential classification facili-
tates identification of functional motifs.

Methods
Cells
Bone marrow cells were prepared from C57BL/6 female
mice, and were cultured in RPMI 1640 supplemented
with 10% of fetal bovine serum under the presence of
murine granulocyte/monocyte colony stimulating factor
(GM-CSF, purchased from Peprotech) at the concentra-
tion of 10 ng/mL. Floating cells were harvested as bone-
marrow derived dendritic cells (BM-DCs) after 6 days of
culture with changing medium every 2 days. The cells
were stimulated with LPS (Salmonella minnessota
Re595, purchased from Sigma) at the concentration of
100 ng/mL. At 0, 0.5, 1, 2, 3, 4, 6, and 8 h after LPS
stimulation, actinomycin D (ActD, from Sigma) was
added at the concentration of 10 μg/mL. ActD inhibits
transcription and therefore RNA molecules in a cell are
degraded over time, which can be measured by RNA-seq
to obtain degradation kinetics. At 0, 0.5, 1, 2, and 4 h
after ActD addition (40 samples in total), cells were har-
vested and lysed by TRIzol (Invitrogen). The lysate was
further subjected to RNA isolation according to the
manufacturer’s instruction. All animal experiments were
approved by the Animal Care and Use Committee of the
Research Institute for Microbial Diseases, Osaka
University, Japan (IFReC-AP-H26-0-1-0).

RNA sequencing
RNA sequencing was performed as described [20]. The
obtained tag sequences were first mapped to rabbit Hbb2
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gene (added as an internal control) and mouse ribosomal
RNAs by using Bowtie 2 [21] and the mapped sequences
were removed. The remaining unmapped tags were
mapped to mm10 genome by using Tophat2 [22]. The
number of tags mapped to a gene are counted to obtain
tag counts for each transcript. Reads per kilobase per
million tags (RPKM) values were calculated for each
transcript, then averaged for each gene. Quantile
normalization was applied to samples of each time points
after ActD addition. The tag sequences in FASTQ format
were deposited at DDBJ (accession number DRA004766).
The full result is shown in Additional file 1.

Pattern classification of degradation kinetics
Detailed procedure is described in Additional file 2.
Briefly, genes having 1 or more RPKMs in at least one
time point before adding ActD were selected as
“expressed” genes. The time course data of RNA abun-
dance of these expressed genes after ActD addition were
used for pattern classification of degradation kinetics.
Time courses with less than 20 tags at time 0 before
ActD addition were removed. The remaining time
course data were then divided into stable and unstable
as follows: if the time course has > 89% (=2-4/24; a level
which would correspond with a half-life of > 24 h) of the
original RNA level at 4 h after ActD addition it was
labeled as long-lived. Other time courses were marked
as short-lived. Short-lived time course data were clus-
tered by density peak clustering [23] with arccosine of
Pearson correlation coefficient as a distance measure for
each time course data. The number of clusters was
determined as 16 by visual inspection of the γ-rank plot,
following the guideline in the original paper [23]. For
each identified cluster, its degradation rate was calcu-
lated by nonlinear fitting [46] to an equation of the form
r(t) = r1 + (r0- r1)exp(-δt) with 4 models; r0 = 1 and r1 = 0
with varying δ (model 1); r0 = 1 with varying r1 and δ
(model 2); r1 = 0 with varying r0 and δ (model 3); varying
r0, r1, and δ (model 4). Models were selected according
to Akaike’s Information criterion (AIC) [24]. The clus-
ters were ranked by the calculated degradation rates.
The calculated degradation rate was also used for
visualization and categorization of the genes belonging
to the cluster.

Classification of genes according to degradation patterns
Genes were clustered according to the patterns detected
by the above procedure. Genes have 8 degradation
patterns (one for each time point after LPS stimulation),
which can consist of one of the 16 short-lived patterns,
the long-lived pattern, and/or “not applicable” (NA)
which means that degradation time course at the time
does not fulfill the conditions for further classification as
described above. The distance between each pair of

patterns is defined as the distance between the means of
the corresponding cluster cores. Density peak clustering
with this distance measure was performed, and number
of clusters was set to nine clusters after visual inspection
of γ-rank plot. The detailed procedure has been
described in Additional file 2.

Gene ontology analysis
For a given Gene Ontology (GO) term, the number of
genes in a cluster or in the whole genome associated
with the term were counted. Using the numbers we cal-
culated a hypergeometric p values. Benjamini-Hochberg
correction was applied to control false discovery rates
(FDRs). Subsequent selection of enriched GO terms
were performed based on the calculated q values with
threshold q < 0.05.

De novo sequence motif prediction
De novo sequence motif prediction was independently
performed for each cluster identified according to the
degradation pattern. Sequences of 3′ UTRs were ex-
tracted from the GenBank RefSeq data (as of April 12,
2015). The sequences are cut into bins with length of
100 bases with 50 bases overlap in-between adjacent
bins (see Fig. 5a). For the prediction of enriched primary
sequence and secondary structure motifs, we prepared at
most 700 sets of sequence bins by randomly selecting
single sequence bin for each transcript in the cluster.
The following analyses were performed on the sets of
sequence bins.

i) Primary sequence motif prediction. A de novo
sequence motif prediction software Weeder
(version 1.4) [25] was run over the sets of sequence
bins described above. The position frequency
matrices (PFMs) of identified motifs were then
converted to position weight matrices (PWMs) with
pseudocount 0.8 [26]. Based on the PWMs existence
of motifs in 3′ UTRs were searched by fimo
software from MEME suite (version 4.6.1) [27] with
cutoff FDR of 0.05.

ii) Secondary structure motif prediction. (1) To
identify “seeds” of secondary structure motifs,
pairwise alignment considering secondary structure
was performed by Foldalign software (version 2.5)
[28] over the sets of bins of a cluster of interest. (2)
From the identified alignments with various lengths
and alignment scores, we chose the “seeds”
according to the following three criteria for further
analysis: (i) having 15 or more bases in length; (ii)
whose sequences are evolutionary conserved,
namely, averages of phastCons scores (placental
60-way score downloaded from UCSC genome
browser) of both sequences are more than 0.7; and

The Author(s) BMC Genomics 2016, 17(Suppl 13):1032 Page 129 of 193



(iii) having scores in the top 0.2% of the set of
alignments of each length. Based on the selected
alignments, a stochastic context-free grammar
(SCFG) model [29] was built by using Infernal
software (version 1.1.1) [30]. (4) Existence of the
model in the sequences in the cluster was searched
by Infernal, and hits with E value more or equal to 1
were selected and aligned. (5) Based on the new
alignments, the SCFG model was updated. This
motif build, search, and alignment cycle (3–5), was
performed until no novel sequences were selected
on the searching step. The resulting SCFG models
were used as “motifs”, and searched for their
existence in 3′ UTRs by Infernal with cutoff E
value of 1. Structures of the identified target
sequences for motifs were visualized by using
RNAfold web server with default parameters and a
minimum free energy algorithm (http://rna.tbi.uni
vie.ac.at/cgi-bin/RNAWebSuite/RNAfold.cgi) [31].

Over-representation analysis of identified motifs
Using the number of hits of the motifs in the genome or
a cluster of interest, hypergeometric p values were calcu-
lated. The calculated p values were further subjected to
Benjamini-Hochberg correction to obtain q values. The
significance of the over-representation of motifs in a
cluster was determined by the q values.

Results
RNA-seq measurement of genome-wide RNA degradation
kinetics in BM-DC on LPS stimulation
To obtain transcriptome-wide RNA degradation kinetics,
we used actinomycin D (ActD) chase experiment proced-
ure. Wild-type BM-DCs were stimulated with 100 ng/mL
of LPS for 0, 0.5, 1, 2, 3, 4, 6, and 8 h, and at each time
point ActD was added at the concentration of 10 μg/mL.
Cells were collected at 0, 0.5, 1, 2, and 4 h after the
addition of ActD, resulting in 40 (= 8 × 5) samples in total.
Total RNA was prepared and subjected to RNA-seq pro-
cedure. The reads were mapped onto mm10 mouse
genome, and tag counts and RPKM values for each gene
were calculated. This resulted in 13304 genes having 1 or
more RPKMs in at least one time point before adding
ActD, which we regarded as “expressed” genes.
The procedure to classify the degradation kinetics of

each gene in each duration after LPS stimulation is
shown in Fig. 1a. ActD is an inhibitor for RNA polymer-
ase II, thus transcription is supposed to be stopped after
the addition of ActD and RNAs would undergo degrad-
ation over time. Before proceeding to the classification,
degradation time courses with less than 20 tags at time
0 before ActD addition were considered as having too
few tags for reliable estimation of degradation parame-
ters, and were therefore marked as “not applicable” and

removed. In addition, since we were interested in patters
of degradation kinetics of quickly degrading genes, the
remaining time course data were then divided into long-
lived and short-lived as follows: if the time course has >
89% (= 2-4/24; a level which would correspond with a
half-life of > 24 h) of the original RNA level at 4 h after
ActD addition it was labeled as long-lived. As shown in
Fig. 1b, this criterion also separated time courses with
increasing signals after ActD addition. In our experimen-
tal procedure, RNA levels are measured as relative value
to whole RNAs. Since, after addition of ActD, short-lived
RNAs decrease while long-lived RNAs remain, resulting
in long-lived RNAs appearing to have increasing levels.
Under the assumption that transcripts which degraded

with similar kinetics might be regulated by a common
mechanism, we first clustered the time courses after the
addition of ActD of all genes for each time point after
LPS stimulation (step 1 in Fig. 1a). The density peak
clustering algorithm was applied to the data and the
cluster number was determined as 16, as shown in Fig. 1c
and Additional file 3. To link the patterns to degradation
speed, we performed nonlinear least-square fitting for
each cluster (step 2, Fig. 1a). The degradation kinetics of
the unstable RNAs in a cluster was modeled by a differ-
ential equation dr/dt = μ - δr, where μ, δ and r represent
transcription rate, degradation rate, and RNA level,
respectively. The relevant model parameters in each
cluster were assessed by Akaike’s Information criterion
(AIC) as in Methods. The AIC selected the models with
incomplete inhibition of transcription for 9 clusters (the
model 2 in Methods) and delayed inhibition of transcrip-
tion for 7 clusters (the model 3 in Methods). Clusters
were ranked based on the estimated degradation rates.
Cluster images shown in Fig. 1c and Additional file 3 are
in the descending order of the rates. Then we assigned
the ranks of degradation speed to each time point after
LPS stimulation of each gene (step 3, Fig. 1a). The full
result was shown in Additional file 4.
We checked the consistency of the estimated degrad-

ation kinetics with some representative examples of
immune related genes such as Tnf and Zfp36. Tnf and
Zfp36 mRNAs are known to be stabilized transiently at
very early time point after LPS stimulation [32]. Our
data recapitulated this transient stabilization of the
mRNAs. On the other hand, Tnfaip3 did not show
change in degradation rate, also matching with former
studies where the mRNA showed marginal change in
degradation rate after stimulation (Fig. 1d, the upper
panels and the middle left panel) [33]. Cytokine Il6
mRNA was destabilized at intermediate time points (3,
4, and 6 h after LPS stimulation; Fig. 1d, the middle right
panel), consistent with former results [34]. We also con-
firmed that interferon-inducible genes like Stat1 are
stable (Fig. 1d, the lowest rows) [35]. Thus, the current
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procedure successfully recapitulated known patterns of
mRNA degradation kinetics.

Global map of RNA degradation kinetics patterns
Among the 13304 expressed genes, we focused on 5467
genes whose degradation kinetics were reliably identified
in 4 or more out of 8 time points after LPS stimulation
(Fig. 2a). The mean degradation speeds of the 5467
genes span from a quarter of hour to 24 h with median
of 3.8 h in half-life. The 5467 genes were further catego-
rized in the following manner. First, genes labeled as
“long-lived” in 4 or more time points after LPS stimula-
tion were categorized as “stable”, and remaining genes
as “unstable”, resulting in 2,398 stable and 3,069 un-
stable genes, respectively. The distribution of the mean
degradation rates of the unstable genes was bimodal
(Fig. 2c), which motivated us to further categorize them
into two classes. Genes degrading more quickly or more

slowly than the threshold 0.325 were categorized as
“quick” or “slow”, respectively. As shown in Fig. 2a, there
were 1629 quick and 1440 slow genes identified.
We next checked how degradation associates with

gene expression. Mean gene expression levels were
shown in the order of mean degradation rates to com-
pare with each other (Fig. 2b and d). The stable genes
tended to have higher gene expression levels than the
unstable genes, which was statistically significant as
shown in Fig. 2e. Moreover, slow genes had significantly
higher gene expression than quick genes (Fig. 2e).
Quickly degrading genes and to lesser extent slowly de-
grading genes were also found to contain significantly
higher fraction of upregulated genes than stable genes
(Fig. 2f ). Also, quickly degrading genes contained higher
fraction of upregulated genes than slowly degrading
genes did. These results together suggest that quickly
degrading genes tend to change their expression level

A B C

D

Fig. 1 Pattern classification of degradation kinetics. a Scheme for classification of degradation patterns. Each gene has 8 time points after LPS
stimulation, and 5 time points after ActD addition are associated with each LPS time points. At the first step, these time course data after LPS
addition are clustered (Step 1). On the second step degradation rates for each clusters are calculated (Step 2), then assigned the ranks to each
genes at each time points after LPS stimulation (Step 3). b Time course data classified as long-lived or short-lived. Degradation time course and
their means (in bold line) were plotted. c Heat map image of the resulting clusters. Obtained 16 clusters are indicated by side colors. The clusters
are ordered from quickest degradation to slowest from top to bottom. Only cluster cores are shown. d Degradation of mRNAs after ActD addition
(left panels) and rank of degradation rates at each time points after LPS addition (right panels) are shown for each genes
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upon stimulation, albeit their mean expression level is
lower than others.
The lengths of 3′ UTRs in each category were exam-

ined as in Fig. 2g. Quickly degrading genes have signifi-
cantly longer 3′ UTRs than slowly degrading, stable, and
other genes. Similarly, slowly degrading genes tended to
have longer 3′ UTRs than stable genes. This implies that
quickly degrading genes have longer 3′ UTR which may
contain larger number of cis elements and may be con-
trolled by multiple mechanisms.

Functional characters of quick, slow, and stable genes
In order to obtain insights into the functions of genes in
each category of genes, we performed GO term enrich-
ment analysis. As shown in Fig. 3, quickly degrading
genes tend to be associated with epigenetic controls, as

well as IKK/NF-κB signaling. Slowly degrading genes are
preferentially associated with GTPase regulation as well
as control of RNA splicing. In contrast to preferential
association with transcription/post-transcription control
of the unstable genes, stable genes were associated with
translation and metabolism. This result is consistent
with former reports where stable genes are more prefer-
entially linked to translation and metabolic processes
[36].
LPS stimulation invokes genome-wide change of gene

expression levels. We next asked how degradation kinet-
ics contribute to the change in gene expression level.
Genes having more than 3-fold up- or down-regulation
were selected, and the up- or down-regulated genes were
each further classified into 3 clusters (immediate, early,
and late) by k-means clustering (Fig. 3b). The number of

A C

G

B

D

E F

Fig. 2 Global map of RNA degradation kinetics. a Genes are classified as “not expressed” or “expressed” categories according to expression level.
The expressed genes are further categorized according to mean degradation rates, quick, slow, stable, or low reliability, in which calculation of
degradation rates of genes were failed at 4 or more time points. Numbers represent number of genes in the category. b Genes in quick, slow or
stable categories are ordered by mean degradation rates and heat map image of the mean degradation rates is shown. c Histogram of mean
degradation rates of genes in unstable (quick or slow) category. Genes below or above the green line (degradation rate of 0.325 h−1) are
categorized as “slow” or “quick”, respectively. d Heat map image of mean expression levels of genes are shown in the same order as shown in
(b). e Box plot of mean expression levels for each category. One-sided Mann-Whitney test was performed with Bonferroni correction; *p < 1 × 10−5. f
Bar plot of fractions of up-regulated (red), down-regulated (blue), or neither (grey) genes in each category of degradation. The numbers shown in boxes
represent fractions (%), and absolute number of genes in parenthesis. Fisher exact test was performed to compare the numbers of up-regulated genes
in two sets with Bonferroni correction; *p < 0.05. g Box plot of length of 3′ UTRs of the genes in each category. One-sided Mann-Whitney test was
performed with Bonferroni correction; *p < 1 × 10−3
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quickly and slowly degrading or stable genes in each
cluster were counted (Fig. 3c). Interestingly, sets of im-
mediately up- or down-regulated genes tend to have sig-
nificantly larger number of quickly degrading genes than
the others (p < 1 × 10−4, Fisher exact test with Bonferroni
correction), whereas comparison between immediate up-
regulated gene set and down-regulated gene set has no
significant change (p > 0.05). However, mean degradation
rate was significantly higher in immediately up-regulated
gene set than in immediately early down-regulated one
(Fig. 3d). These results collectively suggested that quick
degradation kinetics strongly associated with immediate
regulation (both induction and repression) of gene
expression level.

Clusters of genes shared patterns in change of
degradation rates over time
De novo search of DNA cis element is often carried out
over a set of genes clustered according to their gene ex-
pression time course [19]. This is based on the

assumption that the time course represents the change
of activity of DNA cis elements which control genes in
the cluster. For de novo identification of RNA cis elem-
ent based on the similar assumption, we first clustered
transcripts according to time course of degradation
patterns found above.
We separated genes having more than 4 “long-lived”

time points as stable genes as described above. From the
remaining 3067 unstable genes, the density peak cluster-
ing gave nine clusters (Fig. 4a and Additional file 2).
Together with transcripts labeled as stable, this resulted
in 10 clusters (full result is in Additional file 4). The
clusters were further ordered by mean degradation rates
of genes in the clusters, from quick to slow, and named
as Cluster I, II, … IX, and stable (Fig. 4a). The clusters
contain more than hundreds of genes with exception of
Clusters IV and IX, containing small number of genes.
We excluded these two clusters from further analysis.
First, since we have shown that degradation is associ-

ated with gene expression level, we compared the mean

A B C

D

Fig. 3 Functional characters of quick, slow, and stable genes. a Result of Gene Ontology term enrichment analysis on quick, slow, and stable
genes. b Heat map image of clusters based on gene expression time course data. The clusters were labeled as “immediate up”, “early up”, “late
up”, “immediate down”, “early down”, or “late down” by visual inspection. c Bar plot of fraction of quick (red), slow (yellow) or stable (grey) genes
in each clusters. d Box plot of mean degradation rates of genes in each clusters. One-sided Mann-Whitney test was performed; *p < 1 × 10−3
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expression levels of genes in each cluster. As shown in
Fig. 4b, mean gene expression levels were comparable be-
tween all clusters, without significant differences (p > 0.05,
after Bonferroni correction), except for cluster VIII com-
pared to clusters I, II, V, VI, or VI (p < 0.05). This indicated
that although mean degradation rate is strongly associated
with mean expression level, the classification based on the
degradation kinetic patterns gives unique clustering of
genes different from that on gene expression level. The
clusters were further compared to gene expression
change-based clusters obtained in Fig. 3b. Hypergeometric
p values of overlap between two clusters were calculated
and shown in Fig. 4c. Cluster I, which contains large num-
ber of quickly degrading genes, has significant overlap
with immediately up-regulated gene set (p < 3 × 10−5), fur-
ther supporting quickly degrading genes are more likely to
be up-regulated at early time point after LPS stimulation.
The other significant overlap was found only between
Cluster V and late up-regulated gene (p < 0.05), suggesting
that time course of change in degradation pattern offers

different classification than gene expression time course
or mean degradation rate does.
Cluster I contains numbers of well-known quickly de-

grading genes such as Tnf, Zfp36, Tnfaip3and Nfkbia
[35]. Gene Ontology term enrichment analysis showed
that the cluster is associated with transcriptional regula-
tion and immune responses (Fig. 4d). The cluster also
contains Ppp1r10, Ier3 and Nfkbid as well as Tnf, known
targets for RNA-binding proteins Roquin and Regnase-1,
implying transcripts in the cluster are regulated by simi-
lar mechanism involving Roquin and Regnase-1 [37, 38].
Cluster II is preferentially associated with chromatin

modification genes such as Kdm6b and Setdb1, ubiquitin
ligases, and to lesser extent immune response genes,
such as Il6, Nfkbiz, Nfkb1, and Irak3. Il6 and Nfkbiz are
also known targets for Roquin and Regnase-1 [37, 38],
suggesting genes targeted by same RNA-binding pro-
teins do not necessarily share a pattern of degradation
kinetics, and regulatory mechanism of degradation of
the genes in the cluster is rather heterogeneous (Fig. 4e).

A

D E

B C

Fig. 4 Clustering of genes based on degradation patterns. a Heat map image of clusters of genes based on degradation patterns. Color codes
represent rank of degradation patterns. Grey represents “NA”. b Box plot of mean gene expression levels of genes in each degradation pattern-based
cluster (a). No significant differences were observed by two-sided Mann-Whitney test with Bonferroni correction (p > 0.05), except for cluster VIII
compared to clusters I, II, V, VI, or VI (p < 0.05) (c) Overlaps between the degradation pattern-based clusters (a) and the gene expression-based clusters
shown in Fig. 3b. Hypergeometric p values of overlaps are shown. d, e Gene Ontology term enrichment in clusters I (d) and II (e). GO terms in blue
letters represent immunity-related ones. Top 10 GO terms and significant (q < 0.05) immunity-related terms are shown
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De novo prediction of primary sequence motifs in 3′ UTRs
Stability of mRNAs is thought to be controlled largely
through their 3′ UTRs. Indeed, several primary sequence
motifs in 3′ UTR, such as AU-rich elements (AREs)
[39], are known to control mRNA stability. Thus it is
natural to apply de novo prediction of sequence motifs
to 3′ UTR sequences of genes in a cluster thought to be
controlled by similar degradation mechanism. To test if
the current classification of genes based on degradation
kinetics patterns helps the identification of sequence and
secondary structure motifs de novo, we first searched for
primary sequence motifs on 3′ UTRs of the transcripts
in Cluster I obtained above, since this cluster is enriched
for immune related genes. The procedure is shown in
Fig. 5a. First we cut the 3′ UTR sequences into 100 base
long bins with 50 bp overlap between adjacent bins.
Those bins were randomly picked from each gene to
make a set of 3′ UTR sequence bins in the cluster. Sets

were randomly generated for hundreds of times, and on
each set we used the de novo sequence motif prediction
program Weeder. After identifying motif candidates,
their over-representation in the cluster was assessed by
calculating FDRs.
A list of enriched motifs found in Clusters I is shown

in Fig. 5b and c, respectively. The identified motifs were
largely similar to each other. Tnf, Zfp36, and other genes
are known to be regulated through AREs in their 3′
UTRs [39]. Typical ARE has AUUUA pentamer, with
some variation in franking nucleotides [40]. As expected
from the presence of Tnf and Zfp36 in the cluster, the
enriched motifs in the cluster are abundant in U and to
lesser extent A. Furthermore, some of the motifs such as
motif.109.8 and 42.17 contain AUUUA-like stretch
(Fig. 5c), fitting with the consensus motif of AREs.
Moreover, these motifs resemble typical TTP binding
motif UAUUUAU [41], suggesting the control on

A B

D

C

Fig. 5 De novo sequence motif prediction. a Scheme for de novo motif prediction. The sequences of 3′ UTR were cut into 100 bases long bins
with 50 bases overlap in between adjacent bins (Step 1). From each gene one bin is randomly selected and sets of bins from each gene were
randomly generated for hundreds of times (Step 2). De novo motif prediction was performed over the sets (Step 3). Motifs found are then
subjected to over-representation analysis (Step 4). b The resulting over-represented motifs in Cluster I and (c) their sequence logos. d Number of
hits in quick, slow and stable gene sets. Hypergeometric p values with Bonferroni correction are also shown. Red letters represent significant
(p < 0.01) differences
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number of genes in the cluster by TTP. Finally, we
checked the number of presences of these motifs in
quick, slow or stable gene sets, and found that the set of
quickly degrading genes has significantly higher numbers
of instances than the sets of slowly degrading genes or
stable genes (Fig. 5d). Collectively, de novo prediction of
sequence motifs in genes sharing the same degradation
pattern identified ARE-like motifs, which are abundant
in 3′ UTR of quickly degrading genes.

De novo prediction of secondary structure motifs in 3′
UTRs
Unlike DNA, most cellular RNAs are single-stranded
and form secondary structure, such as stem loop struc-
ture. Typical examples are transfer RNA and ribosomal
RNAs, which form large secondary structure, and form
complex with proteins. For the interaction between
RNAs and proteins, such secondary structures are essen-
tial. Previous studies have identified various secondary
structure motifs bound by certain RNA binding proteins,
such as above mentioned RNA-binding proteins [37, 38,
41–43]. Their identification, however, has been based on
the prior knowledge that particular RNAs are targets of
a particular RNA-binding protein. Since there are
hundreds of RNA-binding proteins, it is favorable to
identify RNA motifs even when there is no such prior
knowledge. Thus, we further sought to identify second-
ary structure motifs enriched in the cluster in addition
to the sequence motifs.
Several methods to extract secondary structure motifs

from a set of transcript sequences have been proposed.
Some studies took advantage of pairwise or multiple align-
ment of RNA sequences considering both sequence similar-
ity and secondary structure [43, 44]. We utilized a similar
approach with modifications to detect motifs that are
enriched in a cluster of interest, but not necessarily form a
majority in the cluster. The latter point is crucial since we
are not starting from a set of transcripts identified as targets
of a common RNA-binding protein, but from a set of tran-
scripts which share only degradation kinetics.
The procedure is briefly depicted in Fig. 6a. We first

carried out pairwise sequence and structure alignment
of RNAs on 3′ UTR sequence bins. From Cluster I, over
6 million of alignments were found, which are regarded
as “seeds” for motifs. We checked the distribution of
scores and lengths of the alignments (Additional file 5)
and found that they are not independent. Thus, we first
divided the alignments into sets of the same length.
Then motif seeds were selected from each sets with the
following criteria: (1) Aligned sequences are conserved,
namely, have more than 0.7 mean phastCons score, and
(2) alignment score in the top 0.2% of the set with the
same alignment length. After this selection we retained
679 motif seeds from this cluster. Stochastic context free

grammar (SCFG) models [29] were built from the se-
lected motif seeds as described in the Methods, and
over-representation in the cluster was checked. As
shown in Fig. 6b, we obtained 13 motifs with less than
1.0 × 10−4 FDR and 10 or more instances in the cluster.
Roughly, they were divided into 3 different motifs (red,
black and blue in Fig. 6b). All the alignments with com-
mon structure for motif.0.271, motif.0.170, and
motif.0.107 are shown in Additional file 6. Among the
motifs, motifs 0.271, 0.34, 0.310, 0.236 and 0.551 were
found to be similar to the stem-loop motif bound by
Roquin- or Regnase-1 (Fig. 6b, in red). As shown in
Fig. 6c, Tnf, Ier3, Ppp1r10 and Nfkbid were found to
contain the motif, and the stem loops are almost identi-
cal to that of Roquin or Regnase-1 targets [37, 38].
Other members in the Cluster I, such as Ptger4, Iffo2,
Tagap, as well as known Roquin or Regnase-1 targets in
other clusters such as Nfkbiz and Roquin, also have the
stem loop. This indicates that the current procedure in
combination with genome-wide measurement of RNA
degradation kinetics successfully identified functional
secondary structure RNA motif without prior
information.
In addition to this known functional motif, other stem

loop motifs were identified in the current cluster. Motifs
indicated in black in Fig. 6b, including motif.0.107 and
0.580, have many AU repeats (Additional file 6), and it is
not clear if they represent functional protein binding
motifs. Motif.0.170, 0.199, and 0.379 (shown in blue let-
ters in Fig. 6b), on the other hand, were not identical to
the Roquin-binding stem loop and did not have repeat
sequences. As shown in Fig. 6d, Tnf, Zfp592, Btg2, and
Socs3, contain this stem loop structure. We checked GO
term enrichment for genes having motif.0.271 or
motif.0.170 (tables in Fig. 6c and d, respectively), and
found genes with motif.0.271, Roquin and Regnase-1 tar-
get, were associated with terms such as T cell prolifera-
tion, while those with motif.0.170 were preferentially
associated with terms such as JAK-STAT cascade, further
implying the role of those motifs in immune responses.
These results collectively suggest that degradation pat-
terns of genes in this cluster is regulated by mechanisms
which are different from those controlled by Roquin and
Regnase-1, and involve the binding of a regulator to this
stem-loop structure.

Discussion
In the current study we conducted genome-wide meas-
urement of RNA degradation kinetics, and used the dy-
namical pattern in degradation rates for predicting
sequence and structure motifs of genes under the similar
regulatory mechanism. A number of genome-wide RNA
degradation measurements have been reported before
[3–8]. Despite cell types and methods being differed
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between these studies, the reported range of half-life is
consistently from half an hour to 8–30 h, with median
values of around 1.5 to several hours. While many of
such studies focused to estimate degradation rates of
genes in a single condition, we aimed to identify the
change of degradation rates as a time course after stimu-
lating cells. Although we lacked replicates in our data
due to resource limitation, we attempted to circumvent
the limitation of quantitative accuracy of the estimated
degradation rates by a qualitative approach based on
clustering. Namely, we first classified the degradation
time courses and then calculated degradation rates for
the resulting clusters of time courses. Despite the limita-
tion, the approach led to results consistent with those
previous studies. Our result showed that range of half-
life is from around a quarter of hour to 24 h with

median of 3.8 h, indicating reasonable estimation of the
RNA degradation kinetics with our procedure.
It has been suggested that degradation of mRNA of

genes depends on their cellular functions [36]. Our
result confirmed that mRNAs of house-keeping genes
are degraded slowly, while those of genes involved in
transcriptional regulation and immune signaling, and
those of genes encoding cytokines are degraded quickly.
Moreover, since our data contains dynamics of gene ex-
pression after LPS stimulation, we could reveal associa-
tions between expression patterns and degradation
kinetics. For example, genes with immediate changes
(both induction and repression) in their expression level
after LPS stimulation are degraded quickly. In one of the
preceding studies, similar to ours, Rabani et al. [5] mea-
sured changes of the half-lives of RNAs after LPS

A B

D

C

Fig. 6 De novo secondary structure motif prediction. a Scheme for the de novo secondary motif prediction. The search was done over the sets of bins
generated as in Fig. 5a, Step 1 and 2. Pairwise alignment considering secondary structure was performed on the sets of bins, and conserved and
highly scored alignments were selected (Step 3). Using the alignments as “seeds”, SCFG model was generated (Step 4). Motifs were searched in all the
3′ UTRs in the clusters (Step 5-1), then hits were aligned (Step 5-2) and new SCFG model was generated (Step 5-3). This cycle was performed until no
new hits were obtained in the searching step. b The resulting over-represented motifs in Cluster I. Motifs with q < 1 × 10−4 and 10 or more hits in the
cluster were shown. Motifs in red letters, those in blue letters, or those in black letters represent similar motifs, respectively. c Representative structures
of motif.0.271 and the top 3 of preferentially associated GO terms in genes having the motif. d Representative structure of motif.0.170 and the top 3 of
preferentially associated GO terms in genes having the motif
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stimulation at genome-wide level. Although they only
reported gene expression and degradation kinetics of rela-
tively early time points (up to 3 h after stimulation), they
also concluded that immediately and transiently induced
genes have high degradation rates. Hao and Baltimore re-
ported consistent results on a smaller set of selected genes
[35]. Together, we have shown that degradation kinetics of
genes correlate with their physiological function and
pattern of gene expression level changes.
Some of aforementioned studies utilized ActD chase ex-

periments for measuring degradation as we did in the
current study, while others utilized chemical labeling of
RNAs with nucleotide analogs [45]. Tani et al. [8] showed
that ActD slowed down the degradation of a large fraction
of non-coding RNAs. Indeed, we found many genes,
including non-coding RNAs, were classified as “stable”.
Furthermore, in our procedure, the degradation rates of
many genes could not be calculated. Together, it is pos-
sible that the distribution of degradation rates in cells not
perturbed with ActD is different from the current result.
Nevertheless, we observed a general consistency with
former results on a genome-wide level as discussed above.
Immune cells induce or repress many genes after

stimulation. RNA degradation is suggested to be import-
ant for controlling this drastic change in expression [39].
Several RNA cis element and RNA-binding proteins have
been found to be involved in the process, but our
general understanding remains poor. One reason is that
the identification of regulatory RNA motifs is very chal-
lenging. The prediction of RNA motifs is therefore of
great interest. Typically, motif prediction starts from a
set of sequences of which all or a large fraction are
expected to share a common motif. Most RNA motif
prediction approaches are designed for cases where such
prior information is available. Therefore, identification of
such RNA motifs has required particular RNA-binding
protein specific information obtained by using RIP-seq
data [37, 38, 41, 43]. Instead, in the current study we
first performed pairwise alignment considering both
sequence and structural similarity. We built SCFG
models based on the alignments and iteratively refined
the models within a cluster of interest. This procedure
can successfully find motifs even if they are not abun-
dant in the cluster, and thus it is advantageous for the
current case in which genes in a cluster share degrad-
ation kinetics patterns but do not necessarily share a
common motif. By using this procedure, we started from
a classification of genes based on degradation patterns
and found known functional RNA motifs, and also pre-
dicted new candidate motifs, without prior information
of binding proteins, although further experimental verifi-
cation is needed to ensure the function of the motifs.
The successfully identified model of Roquin-and

Regnase-1-binding motifs, which was build based on a

cluster of interest, also identified the stem loop motif in
genes in other clusters, such as Nfkbiz and Roquin, sug-
gesting that the model generated by the procedure has
generality for finding targets at a genome-wide level. How-
ever, the same model failed to identify some of known tar-
get genes of the RNA-binding proteins, such as Il6 and
Zc3h12a/Regnase-1 [34, 37, 38]. Since the current proced-
ure builds models by an iterative search-alignment-build
cycle in a cluster, it is presumable that the motif model is
biased by sequences in the cluster. Alternatively, this find-
ing might suggest the existence of some variety in the mo-
tifs recognized by Roquin and Regnase-1.

Conclusion
The current study presents a comprehensive map of pat-
terns of RNA degradation kinetics and indicates that the
map facilitated de novo RNA motif prediction. We found
strong association between degradation patterns and ex-
pression dynamics. Based on the degradation patterns
we could find, not only known functional sequence and
secondary structure motifs, but also unknown motifs in
3′ UTR RNA sequences. The result implied existence of
post-transcriptional controls different from that by
known pairs of RNA-binding protein and RNA motif.
The analysis scheme presented in this study is applicable
to other types of genome-wide degradation data and will
contribute to elucidating the biology of gene expression
control, especially at the post-transcriptional level.
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