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Abstract – Multi-omic data can better characterize complex cellular signaling 

pathways from multiple views compared to individual omic data. However, integrative 

multi-omic data analysis to rank key disease biomarkers and infer core signaling 

pathways remains an open problem. In this study, our novel contributions are that we 

developed a novel graph AI model, mosGraphFlow, for analyzing multi-omic signaling 

graphs (mosGraphs), 2) analyzed multi-omic mosGraph datasets of AD, and 3) 

identified, visualized and evaluated a set of AD associated signaling biomarkers and 

network. The comparison results show that the proposed model not only achieves the 

best classification accuracy but also identifies important AD disease biomarkers and 

signaling interactions. Moreover, the signaling sources are highlighted at specific omic 

levels to facilitate the understanding of the pathogenesis of AD. The proposed model 

can also be applied and expanded for other studies using multi-omic data. Model 

code is accessible via GitHub: https://github.com/FuhaiLiAiLab/mosGraphFlow  
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Introduction 

The advent of multi-omic data has revolutionized the field of biomedical research by 

providing a comprehensive view of the complex biological processes underlying 

various diseases. Unlike single-omic approaches, which focus on a specific type of 

molecular data such as genomics, transcriptomics, or proteomics, multi-omic data 

integrates information from multiple molecular layers to measure and characterize the 

multi-level molecular genotype of diseases. This integrative approach offers a more 

holistic understanding of cellular signaling pathways, enabling researchers to uncover 

intricate molecular interactions and regulatory mechanisms. Multi-omic datasets have 

proven invaluable in identifying essential disease biomarkers and elucidating 

dysfunctional signaling pathways, particularly in understanding the genetic 

heterogeneity of diseases at multiple levels. Despite its potential and demonstrated 

utility, the effective integration and analysis of multi-omic data to identify key disease 

biomarkers and elucidate core signaling pathways remain significant challenges. 

Traditional AI models often struggle to fully leverage the richness of multi-omic data 

due to its complexity and high dimensionality. However, recent advancements in 

graph AI models have shown promise in addressing these challenges by utilizing 

graph-based representations to capture the intricate relationships within multi-omic 

datasets, offering new avenues for biomarker discovery and pathway inference. This 

approach can be instrumental in enhancing our understanding of disease 

pathogenesis and in designing more effective therapeutic interventions. 

 

Alzheimer's disease (AD) is the most prevalent cause of dementia, primarily affecting 

individuals over the age of 65, though cases in younger individuals starting from 

around age 40 are increasingly observed. Characterized by progressive cognitive 

impairment, AD manifests through the hallmark neuropathological features, 

extracellular amyloid-β plaques and intracellular neurofibrillary tangles (NFT), caused 

by amyloid-β accumulation and tau hyperphosphorylation1. Linked to these hallmarks 

are blood-brain barrier disruption, mitochondrial impairment, neuroinflammation, 
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synaptic impairment and neuronal loss. The prevalence of AD in America was 

estimated at 6.7 million in 2023, with projections suggesting a doubling to 13.8 million 

by 20602. Despite extensive research in the last century, there remains no cure for AD, 

and current treatments are symptomatic rather than disease-modifying. With the 

increasing prevalence of AD driven by an aging population, there is an urgent need for 

continued research into its pathogenesis and the development of more effective 

therapeutic interventions. 

 

Given these challenges, leveraging multi-omic data through advanced graph AI 

models presents a promising frontier in AD research. By integrating multi-omic data 

with graph-based techniques, researchers can more effectively identify critical 

disease biomarkers and uncover the core signaling pathways involved in AD. This 

approach offers the potential to not only enhance our understanding of AD 

pathogenesis but also pave the way for the development of targeted and 

disease-modifying treatments. In this study, we explore the application of a graph AI 

model on multi-omic datasets to identify key biomarkers and signaling interactions in 

AD, demonstrating its superiority in classification accuracy and its capability to 

highlight significant molecular mechanisms at various omic levels. 

 

Recently, Graph Neural Networks (GNN) have gained prominence due to their 

capability to model relationships within graph-structured data3–6. And numerous 

studies have applied the GNN with the integration of the multi-omics data. 

MOGONET7 (Multi-Omics Graph cOnvolutional NETworks) initially creates similarity 

graphs among samples by leveraging each omics data, then employs a Graph 

Convolutional Network (GCN3) to learn a label distribution from each omics data 

independently. Subsequently, a cross-omics discovery tensor is implemented to refine 

the prediction by learning the dependency among multi-omics data. MoGCN8 adopts 

a similar approach by constructing a patient similarity network using multi-omics data 

and then using GCN to predict the cancer subtype of patients. GCN-SC9 utilizes a 
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GCN to combine single-cell multi-omics data derived from varying sequencing 

methodologies. MOGCL10 takes this further by exploiting the potency of graph 

contrastive learning to pretrain the GCN on the multi-omics dataset, thereby achieving 

impressive results in downstream tasks with fine-tuning. Nevertheless, none of the 

aforementioned techniques contemplate incorporating structured signaling data like 

KEGG into the model. Moreover, general GNN models are limited by their expression 

power, i.e., the low-pass filtering or over-smoothing issues, which hampers their ability 

to incorporate many layers. The over-smoothing problem was firstly mentioned by 

extending the propagation layers in GCN11. Moreover, theoretical papers using 

Dirichlet energy showed diminished discriminative power by increasing the 

propagation layers12. And multiple attempts were made to compare the expressive 

power of the GCNs13, and it is shown that WL subtree kernel14 is insufficient for 

capturing the graph structure. Hence, to improve the expression powerful of GNN, the 

� -hop information of local substructure was considered in various recent 

research13,15–19. However, none of these studies was specifically designed to well 

integrate the biological regulatory network and provide the interpretation with 

important edges and nodes20. In this study, the unique and major contributions of this 

study are as follows: 1) developed a graph neural network (GNN) model for the 

mosGraphs, 2) analyzed multi-omic mosGraph datasets of AD, and 3) identified, 

visualized and evaluated a set of AD associated signaling biomarkers and network. 

 

Methodology and Materials 

Multi-omics datasets of Alzheimer’s Disease To study Alzheimer's Disease, 

multi-omics datasets were sourced from publicly accessible databases, specifically 

the ROSMAP datasets (refer to Table 1). Upon downloading these datasets, they 

were transformed into 2-dimensional data frames, structured with columns for sample 

IDs, sample names, etc., and rows for probes, gene symbols, gene IDs, etc. 

Integrating multi-omics data with clinical data necessitated identifying identical 

samples across the datasets. This process involved standardizing the rows (probes, 
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gene symbols, gene IDs, etc.) into a uniform gene-level format, either by aggregating 

measurements for each gene or removing duplicates caused by gene synonyms. 

Genes were then aligned to a reference genome to ensure accurate final annotation 

in the multi-omics data. Standardization of gene counts across datasets was 

performed, and missing values were imputed with zeros or negative ones where 

necessary. Once all columns were aligned to standard sample IDs and all rows to 

standard gene IDs, and the number of samples and genes were unified, the data was 

ready for integration into Graph Neural Network (GNN) models. In these models, 

epigenomics, genomics, and transcriptomics data served as features for protein 

nodes. 

 

KEGG Regulatory Network Construction 

For constructing the knowledge graph, genes were selected by intersecting 

multi-omics datasets with gene regulatory networks from the KEGG database, which 

includes 2241 genes and 21041 edges. This intersection resulted in 2144 gene 

entities. 

 

Table 1. ROSMAP Database resources 

Database Description Link 

ROSMAP_arrayMe
thylation_imputed 
 

Methylation data was generated on prefrontal cortex 
samples collected from 708 individuals using the 
Illumina HumanMethylation450 BeadChip 

https://www.sy
napse.org/#!Sy
napse:syn3168
763     
 

ROSMAP_RNAseq
_FPKM_gene 
 
 

Samples were extracted using Qiagen's miRNeasy 
mini kit (cat. no. 217004) and the RNase free DNase 
Set (cat. no. 79254), and quantified by Nanodrop and 
quality was evaluated by Agilent Bioanalyzer. 

https://www.sy
napse.org/#!Sy
napse:syn3505
720 

ROSMAP.CNV.Mat
rix(Mutation) 
 

The TCGA Unified Ensemble "MC3" gene-level 
mutation dataset identifies somatic mutations in 
various cancers, marking non-silent mutations (1) that 
alter protein sequences and wild type (0) for no 
mutations. 

https://www.sy
napse.org/#!Sy
napse:syn2626
3118 
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GEO GPL16304 
Platform 
 

Illumina HumanMethylation450 BeadChip [UBC 
enhanced annotation v1.0] 
 

https://www.nc
bi.nlm.nih.gov/
geo/query/acc.
cgi?acc=GPL1
6304 
 

ROSMAP_clinical Contains patient clinical features. A large amount of 
clinical and pathological data have been collected 
from individuals in the ROSMAP studies. The 
remainder of the clinical and pathological data may be 
accessed directly from the Rush Alzheimer's Disease 
Center. 

https://www.sy
napse.org/#!Sy
napse:syn3191
087 

 

 

Figure 1. Architecture of mosGraphFlow 
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Architecture of the mosGraphFlow model The proposed mosGraphFlow model 

enhances the analysis and prediction capabilities in multi-omics data, which aims to 

provide a comprehensive and interpretable analysis of AD dataset. The integrated 

approach offers a robust solution for multi-omics data analysis with generation of 

� � ��, �� , where |�| � 
 . In details, there are 3 types of nodes in the graph. 


������ , 
������  and 
�	
���  have the same number of nodes and 
 �  
������ �
 
������ � 
�	
��� . Furthermore, the whole graph �  can be decomposed into 

subgraphs � � and �

�, where �� � � \ �

�; �� is the internal signaling flow graph 

which only contains the signaling flows from promoters to proteins; �

�  is the 

protein-protein interaction (PPI) graph ( |�

�| � 
�	
��� ). Correspondingly, the 

adjacency matrices �, �� and �

� for whole graph �, internal graph �� and PPI 

graph �

� will be generated. And the proposed model can be denoted as ����, the 

graph-based deep learning model. It will predict the patient outcome ��� � �����, 
being constructed with ���, �, ��� , �

�� � �, where � � �����, ���� , … , ����, … , ����� 
����� � ����� denotes all � data points in the dataset and ���� is the �-th data 

points. And ��� � ����� is the adjacency matrix that demonstrates the node-node 

interactions, and the element in adjacency matrix � such as ���  indicates an edge 

from � to �. �� ��� � ����� is the adjacency matrix which only includes the node 

interactions from promoters to proteins, corresponding to the graph ��. Regarding the 

set of subgraphs in the PPI, �

� � ��� , �� , … , �	 , … , �
� �	 � ������! , these 

subgraphs will partition the whole PPI graph adjacent matrix �

�  into multiple 

subgraphs with the annotation of each individual signaling pathway, where the 

vertices in these partitioned subgraphs can be denoted as ��, ��, … , �	 , … , �
, where 

�

� � " �	

	�� . In each subgraph �	, there are nodes interactions between its internal 


	 nodes and each subgraph has its own corresponding subgraph node feature 

matrix �	 � ����� .  

 

Internal Modular Message Propagation In the graph message passing stages of 

our architecture (see Figure 1 step 2), we introduced the message passing between 

the internal links via matrix �� with following formula: 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 3, 2024. ; https://doi.org/10.1101/2024.08.01.606219doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.01.606219
http://creativecommons.org/licenses/by-nc-nd/4.0/


#���� � GNN�� ���� , ��!#�1�  

, where GNN�� is the selected message propagation network and #���� � �������� is 

the embedded node features after internal message propagation. 

 

Multi-hop Message Propagation in Signaling Pathway Subgraphs Following the 

internal message passing stages, the local structure for each signaling pathway 

subgraph can be integrated via following formula: 

#	
���	� � AVG*GNN��	 #����, �	!+#�2�  

, where GNN��	  is - -hop attention-based graph neural network borrowed from 

M3NetFlow21 framework and #	
���	� � �����

����� .  The aggregated node features 

#���	� � ���������  will be generated by AVG function for averaging the node included 

over multiple sub-signaling pathways in the set �

�.  

 

Global Bi-directional Message Propagation Following the message propagation in 

the multiple internal subgraphs, the global weighted bi-directional message 

propagation22 will be performed via formula 

#����� � WeBGNN #���	� , �!#�3�  

���� � Output #�����!#�4�  

, where WeBGNN  (Weighted Bi-directional Graph Neural Network) is the graph 

signaling flow framework and #����� � �������	�. And linear transformation function 

8: �����	� : � will be applied to outputting stage to predict the patient outcome with 

����. 
 

Results 

Experimental Settings  We utilized 437 samples from the ROSMAP dataset, 

categorized by disease status (275 AD, 162 non-AD) and gender (276 females, 161 

males). Among the AD samples, there were 177 females and 98 males. To address 

the significant data imbalance, we performed downsampling for both classification 
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tasks. For the AD vs. non-AD classification, we downsampled the AD samples to 

match the 162 non-AD samples, resulting in a dataset with 162 AD and 162 non-AD 

samples. For the gender classification within the AD samples, we downsampled the 

female AD samples to match the 98 male AD samples, resulting in a balanced dataset 

of 98 female and 98 male AD samples. We used 5-fold cross-validation to evaluate 

the performance of our models on both AD/non-AD and gender classification task. 

  

Model hyperparameters The model was implemented using PyTorch and PyTorch 

Geometric, with the Adam optimizer employed for training. For the AD classification 

task, the initial learning rate was set to 0.002, and the training epochs were empirically 

set to 80. For the gender classification task within AD samples, the initial learning rate 

was set to 0.001, and the training epochs were set to 50. The hidden dimension was 

set to 10, and the leaky ReLU parameter was configured to 0.1. The output dimension 

was initially 30, which was subsequently reduced to 1 dimension through max pooling 

over the receptive field in the final pooling layer. A 5-fold cross-validation approach 

was utilized. The mean square error (MSE) and the correlation between the predicted 

gene effect scores and the experimental gene effect scores were used as the loss 

functions. 

 

Model performances and comparisons Tables 2 and 4 present the accuracy and 

negative log likelihood (NLL) loss values for both the training and testing datasets, 

with Table 2 displaying the values for AD/non-AD and Table 4 for female/male. The 

results indicate that the model achieved comparable performance on both datasets. 

Additionally, the proposed model was compared with other widely used models, 

namely GCN23, GAT5, GIN6, and UniMP24 (see Table 3 and Table 5). The proposed 

model significantly outperformed the GAT, GCN, GIN, and UniMP models. 

 

 

Table 2. NLL and accuracy values of the proposed model on the 5-fold 

cross-validation datasets (AD/non-AD) 
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Number of 

folds 

NLL on 

Training data 

NLL on 

Testing data 

Accuracy of 

Training data 

Accuracy of 

Testing data 

1st fold 0.5443 0.5874 0.7192 0.6718 

2nd fold 0.5125 0.6913 0.7692 0.6563 

3rd fold 0.6309 0.6442 0.6423 0.6406 

4th fold 0.5696 0.6407 0.6961 0.6718 

5th fold 0.7248 0.6009 0.6931 0.5588 

 

Table 3. Model comparison with other GNN network (AD/non-AD) 

Models 

The Average 

NLL on Training 

data 

The Average 

NLL on Testing 

data 

The average 

accuracy of 

Training data 

The average 

accuracy of 

Testing data 

Proposed 

model 
0.5964±0.0604 0.6329±0.0365 0.7039±0.0674 0.6398±0.0641 

GAT 0.6649±0.0075 0.6935±0.0134 0.5942±0.0232 0.5710±0.0036 

GCN 0.6753±0.0059 0.7824±0.1681 0.5734±0.0160 0.5553±0.0544 

GIN 0.6756±0.0083 0.6832±0.0051 0.5469±0.0245 0.5377±0.0301 

UniMP 0.6632±0.0029 0.8149±0.1583 0.6027±0.0271 0.5713±0.0219 

 

Table 4. NLL and accuracy values of the proposed model on the 5-fold 

cross-validation datasets (female/male) 

Number of 

folds 

NLL on 

Training data 

NLL on 

Testing data 

Accuracy of 

Training data 

Accuracy of 

Testing data 

1st fold 0.6731 0.6734 0.7134 0.6667 

2nd fold 0.6884 0.6923 0.5987 0.5897 

3rd fold 0.6879 0.6892 0.6433 0.6410 

4th fold 0.6830 0.6869 0.6306 0.6154 

5th fold 0.6852 0.6937 0.6090 0.5500 
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Table 5. Model comparison with other GNN network (female/male) 

Models 

The Average 

NLL on Training 

data 

The Average 

NLL on Testing 

data 

The average 

accuracy of 

Training data 

The average 

accuracy of 

Testing data 

Proposed 

model 
0.6835±0.0062 0.6871±0.0081 0.6390±0.0451 0.6126±0.0452 

GAT 0.6790±0.0109 0.7369±0.0804 0.5880±0.0437 0.5562±0.0422 

GCN 0.6753±0.0300 0.7553±0.0735 0.5549±0.0810 0.4586±0.1014 

GIN 0.6963±0.0074 0.7296±0.0464 0.5051±0.0337 0.3924±0.0601 

UniMP 0.6526±0.0220 0.6922±0.0488 0.6084±0.0254 0.5458±0.1070 

 

Signaling pathway inference To interpret the underlying mechanisms of AD, the 

best-performing model was selected after training and validation process, then it was 

analyzed to extract attention scores from various graphs, which were used to infer 

signaling pathways related to the disease and key nodes (genes, promoters, and 

proteins). For each patient, the attention matrices of 1-hop neighbor nodes were 

calculated in every fold of the cross-validation process. Depending on the specific 

analysis, patients were stratified into different categories based on either their AD 

status (AD or non-AD) or gender (female or male), and for each category, the average 

attention matrices were computed. To quantitatively assess the significance of each 

node within these networks, the weighted degree of each node for every patient was 

calculated based on these attention scores, as detailed in the following formula: 

;���<<<<<<< � 1
- = >;�

���?���
�

���

#�5�  

;��� � 1
A����A = ;���<<<<<<<

����
�

#�6�  

C���� � 1

 *= ;��

���

�

�

� = ;��

���

�

�

+#�7�  
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, where >;�

���?��� � ������	�������	� represents the attention-based matrix extracted 

from the first hop attention for patient � in the E-th fold; ;��

��� � � denotes the 

element of --fold averaged attention matrix for patient � in the �-th row and �-th 

column for patient type F; C���� � � represents the node degree, which quantifies the 

importance of the node 8 within the network from the type of patient F. 

 

Afterwards, the unimportant signaling flows in the attention-based matrix for certain 

type of patient will be filtered out by 

;�

��� � G ;��� , H!#�8�  

, where G��� is the filtering mapping function by providing selection of each element 

in the matrix with  

G�J, H� � KJ, if J N H
0, if J P H Q #�9�  

, where J � � is the element in the input matrix and ;�
��� � ������	�������	� is the 

filtered matrix. Hence, the filtered node set for patient type F, �����, will be generated 

by removing independent nodes and nodes in those small connected components 

with number of nodes lower than S, resulting in |�����| nodes. 

 

Sample-specific Network Visualization The distinctions between AD/non-AD or 

female/male AD patients were made, and the relevant features for each group were 

identified. Subsequently, p-values for the gene features, such as methylations in 

promoter nodes, mutations and genes expression in gene nodes and proteins 

expression in protein nodes were calculated. The p-value calculation for these 

features was conducted by using the chi-squared test to check the differences 

between AD/non-AD samples or female/male of AD patients. This statistical method 

determined whether there were significant differences in the gene features between 

the samples of AD/non-AD or female/male from AD. By constructing contingency 

tables and performing the chi-squared test for each gene feature, p-values indicating 
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the statistical significance of the observed differences were obtained. Ultimately, the 

top T gene features associated with AD or gender were selected based on these 

p-values. 

 

After finalized important gene features ranked by p-values in top T, the network was 

pruned by iteratively removing the nodes which are only connected to one another 

unimportant node in a linear branch with node recursive algorithm (check details of 

this algorithm in Appendix A.1 and Figure S1). This ensures that each remaining 

nodes is either linked to an important node or is part of a more complex interaction 

network, enhancing the purity and reliability of the gene interaction data.  

 

Subsequently, nodes degree were calculated to identify hub node (node degree larger 

than 2). The set of middle nodes for certain path U which connects two hub nodes V 

and W can be denoted as X������ � Y
�, 
�, … , 

, … , 
 Z���, where [ � 1 is the length 

of path. Hence, the average edge weight on the path X������  can be generated by 

\������ � 1
[ = ;��,���


���

"#�


��

#�10�  

, where ;��,���


���  is the edge weight from node 

 to node 

$�. For all of the paths 

detected between the hub node V and hub node W, the nodes on the top ] paths 

will be kept. Additionally, p-value middle nodes, which are crucial due to their 

statistical significance, will be retained along with middle nodes that are adjacent to 

these p-value nodes. (check Appendix Section A.2 for details). 

 

 

Inferred core signaling networks of selected patient type. By setting an edge 

threshold H as 0.12, and a small component threshold S as 20, we identified 183 

and 175 potential important protein nodes for AD and NOAD, respectively. Then, by 

calculating the p-value < 0.2, the top 70 gene features associated with Alzheimer's 

Disease were selected. By pruning linear branches and keeping the nodes via top 2 
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(] � 2) paths between hub nodes, we filtered out non-essential nodes, reducing the 

number of potential important protein nodes to 152 for AD and 136 for non-AD. The 

corresponding gene weights C����  for these top 70 (T � 70 ) gene features for 

AD/non-AD were calculated. These top 70 gene features and gene weights are shown 

in Figure 4 and detailed in Table 6. In Figure 2 and Figure 3, these node from top 

gene features (promoters, transcriptions and mutations) are represented by non-blue 

nodes derived from the blue nodes, with different colors indicating various types of 

gene features. Different sizes of the nodes represent the varying importance of the 

gene features, with larger nodes indicating greater significance based on their 

p-values. 
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Figure 2. Top 70 important nodes signaling network interaction in AD samples 
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Figure 3. Top 70 important nodes signaling network interaction in non-AD samples 
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Figure 4. Bar chart displaying the weight of important genes in AD and non-AD 

samples, ranking by their p-values. (The red dashed line indicates a p-value threshold 

of 0.05) 

 

Table 6. Top 70 gene features associated with Alzheimer's Disease 

Gene Feature AD-Associated 

Gene Weight 

non-AD-Associate

d Gene Weight 

P-Value 

GNG8 gene-expression 0.028657 0.029071 6.75E-12 

RXFP2 gene-expression 0.056909 0.054871 5.52E-11 

PLA2G4F gene-expression 0.074441 0.074519 2.57E-10 

MYLK2 gene-expression 0.050141 0.050021 5.01E-07 

MYLK3 gene-expression 0.050364 0.050207 3.12E-06 

PLA2G4C cnv_mcnv 0.073377 0.073444 4.24E-06 

CXCL11 gene-expression 0.040901 0.04051 8.08E-05 

NGF gene-expression 0.143775 0.143223 0.00036 

ADCY7 gene-expression 0.038475 0.037988 0.000911 

SOCS5 methy-Core-Promoter 0.018193 0.017789 0.000922 

PPP3R2 gene-expression 0.073852 0.073571 0.001813 
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PLA2G4D gene-expression 0.074015 0.074265 0.002279 

GH1 gene-expression 0.22892 0.253275 0.004101 

PTGER3 gene-expression 0.143773 0.143726 0.004223 

GNGT2 gene-expression 0.028687 0.028941 0.008618 

VIPR2 gene-expression 0.142289 0.142326 0.013325 

GNB2 cnv_dup 0.033168 0.033322 0.019134 

PYGL methy-Core-Promoter 0.0431 0.042836 0.033782 

ARF6 methy-Core-Promoter 0.189565 0.182505 0.035547 

CCNE1 gene-expression 0.104095 0.104137 0.035565 

CALML3 gene-expression 0.109917 0.093629 0.045373 

HOMER2 gene-expression 0.125778 0.125694 0.045878 

CYTH3 cnv_mcnv 0.202702 0.195158 0.046332 

SOCS6 gene-expression 0.018504 0.018101 0.047876 

CDK6 gene-expression 0.101204 0.101132 0.049132 

NOS2 cnv_mcnv 0.053613 0.052373 0.053408 

CAMK2A cnv_del 0.046639 0.045075 0.054769 

AKT3 cnv_del 0.090665 0.090761 0.060884 

ADCY8 gene-expression 0.038721 0.038233 0.063363 

PLCG2 gene-expression 0.043707 0.04358 0.06904 

PHKG1 cnv_mcnv 0.034225 0.034151 0.072593 

PRKAG1 gene-expression 0.022448 0.022669 0.078084 

CCND3 methy-Core-Promoter 0.054583 0.054449 0.078502 

NFATC3 gene-expression 0.100691 0.101477 0.079976 

RPS6KA2 gene-expression 0.127804 0.127952 0.080445 

RAP1B gene-expression 0.072328 0.072474 0.084409 

ADRB2 gene-expression 0.138529 0.138618 0.085867 

GNG4 gene-expression 0.062998 0.054095 0.086379 

STAT5B cnv_mcnv 0.048991 0.049569 0.090318 

NFKBIE gene-expression 0.142403 0.141709 0.092928 

NRAS gene-expression 0.256776 0.256652 0.097002 

GNAI3 gene-expression 0.029551 0.030035 0.100274 

CALML5 gene-expression 0.030025 0.031135 0.103881 

PHKA2 gene-expression 0.034168 0.034086 0.10782 

CAMK2D gene-expression 0.049445 0.049662 0.109556 

ADRA1A cnv_dup 0.13139 0.131343 0.112475 

RPS6KA6 gene-expression 0.068861 0.068947 0.113181 

MAPK8 gene-expression 0.180929 0.180883 0.117508 

PLA2G4C gene-expression 0.073377 0.073444 0.123726 

AKT3 gene-expression 0.090665 0.090761 0.13052 

ADCY3 gene-expression 0.038885 0.038425 0.135153 

ADCY9 
methy-Proximal-Promote

r 
0.039888 0.039259 0.13921 

GNG10 methy-Downstream 0.028307 0.028526 0.13921 
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CAMK1D cnv_del 0.04617 0.044635 0.140356 

STAT5B gene-expression 0.048991 0.049569 0.140505 

MAPKAPK3 gene-expression 0.177494 0.177479 0.144226 

TAB2 gene-expression 0.066552 0.066589 0.144503 

VEGFC gene-expression 0.031504 0.031545 0.14513 

MAP3K20 gene-expression 0.111759 0.110785 0.146585 

MAP3K1 methy-Core-Promoter 0.182266 0.182241 0.146783 

MAP3K1 gene-expression 0.182266 0.182241 0.150047 

FGFR4 gene-expression 0.024498 0.024981 0.151893 

MAP3K8 gene-expression 0.092779 0.09283 0.155135 

CYTH2 gene-expression 0.205629 0.199315 0.163059 

NOS2 gene-expression 0.053613 0.052373 0.164687 

GNG5 methy-Core-Promoter 0.028576 0.028865 0.166597 

GNG11 gene-expression 0.028252 0.028477 0.167867 

PPP1R3C gene-expression 0.047769 0.047898 0.173382 

ADCY6 gene-expression 0.038738 0.038269 0.175968 

RASGRP1 gene-expression 0.020834 0.020818 0.17653 

 

Similarly, Figure 5 and Figure 6 shows the inferred core signaling networks with top 

70 gene features for female and male subjects, and these the top 70 gene features 

and gene weights are shown in Figure 7. In this analysis, through node optimization 

process, similar to the above, we identified 214 potential important protein nodes for 

females and 214 for males. Notably, we observed a significant overlap between the 

protein nodes selected from the AD signaling networks and those from the female 

signaling networks. Specifically, there are 81 overlapping protein nodes between the 

152 protein nodes identified in the AD signaling networks and the 214 protein nodes 

identified in the female signaling networks (see Appendix B Table S1). Furthermore, 

there is an overlap of 15 gene features between the top 70 AD/non-AD gene features 

and the top 70 female/male gene features (see Appendix B Table S2). This overlap 

further supports the feasibility of our proposed model in identifying key target genes 

for AD. 
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Figure 5. Top 70 important nodes signaling network interaction in females  
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Figure 6. Top 70 important nodes signaling network interaction in males 
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Figure 7. Bar chart displaying the weight of important genes in female and male, 

ranking by their p-values. (The red dashed line indicates a p-value threshold of 0.05) 

 

Model validation: pathway enrichment analysis 

Pathway enrichment analysis was conducted on the top 70 genes associated with AD 

using ShinyGO 0.80 and the KEGG pathway database. This analysis revealed the top 

20 signaling pathways involving these genes (see Figure 8), enhancing our biological 

understanding of their roles in AD pathogenesis. 

To gain a comprehensive view of the complex nature of these signaling pathways, we 

utilized a Sankey diagram to visualize the interconnectedness between the top 70 

genes and their associated pathways (see Figure 9). The KEGG pathway database 

categorizes signaling pathways into seven broad categories: metabolism, genetic 

information processing, environmental information processing, cellular processes, 

organismal systems, human diseases, and drug development. However, for a more 
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detailed focus on function or disease-related aspects, specific categories are 

highlighted (see Figure 9 and Appendix C Table S3).  

 

Figure 8. Lollipop plot showing the negative base-10 logarithm of the False Discovery 

Rate (FDR) and number of genes of the top 20 signaling pathways based on the top 

70 gene features found to be associated with AD. Generated by ShinyGo 0.80 after 

performing pathway enrichment analysis with FDR cutoff at 0.05. 

 
Figure 9. Sankey diagram illustrating the relationship between the identified signaling 
pathways and corresponding genes using the top 70 genes features found to be 
associated with AD 
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The identification of the top 20 genes associated with AD in females and males, listed 

in Table 8, represents a significant step forward in understanding the genetic 

underpinnings of this condition. The genes were ranked using our novel graph AI 

model, which integrated multi-omic data to highlight key biomarkers and signaling 

interactions relevant to AD. Notably, the same genes were identified for both sexes, 

underscoring their critical role in AD pathogenesis. Table 8 provides a comprehensive 

overview of these genes, detailing their functions and specific relations to AD. The 

function of each gene and its contribution to AD pathology are pivotal for elucidating 

the complex biological mechanisms driving the disease. The consistency of gene 

rankings between females and males emphasizes the universal importance of these 

biomarkers in AD. This uniformity suggests that the identified genes play fundamental 

roles in the disease's progression, regardless of sex. This finding enhances the 

potential for developing targeted therapies that could benefit a broad patient 

population. 

 

Signaling Pathways 

The Apelin signaling pathway regulates apoptosis, autophagy, synaptic plasticity, and 

neuroinflammation. Apelin-13, a key member of the apelin family, has significant 

neuroprotective functions that help prevent AD by modulating these cellular 

processes. The Apelin/APJ system influences several signaling pathways, such as 

PI3K/Akt, MAPK, and PKA, which are essential for cell proliferation and protection 

from excitotoxicity25. Alterations in apelin expression are linked to inflammatory 

responses, oxidative stress, Ca2+ signaling, and apoptosis, all related to AD 

pathology26. The intersection of the Apelin signaling pathway with the WNT signaling 

pathway suggests a broader regulatory network influencing AD-associated 

pathologies27. The apelinergic system's involvement in brain physiology, including its 

protective effects against neurological disorders, highlights its importance in 

maintaining cognitive function and preventing neurodegeneration28. 
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The relaxin signaling pathway influences neuroinflammation, neurovascular integrity, 

and cognitive functions. Relaxin, a peptide hormone, modulates brain functions such 

as arousal, stress responses, and social recognition, which are critical in 

neuropsychiatric disorders29. It inhibits aberrant myofibroblast differentiation and 

collagen deposition through the TGF-β1/Smad2 axis and stimulates matrix 

metalloproteinases via the RXFP1-pERK-nNOS-NO-cGMP-dependent pathway, 

mitigating neuroinflammation and fibrosis, key features of AD pathology30. Relaxin 

also enhances neurovascular health by stimulating cAMP production and activating 

the PI3K/PKCζ pathway, leading to increased VEGF expression31. The pathway's 

interaction with the WNT signaling pathway, crucial for cell adhesion and 

differentiation, further underscores its potential impact on AD. 

 

The oxytocin (Oxt) signaling pathway influences social behavior, neuroinflammation, 

and cognitive function. Oxt administration has been shown to reverse learning and 

memory impairments in AD models, suggesting its potential as a therapeutic target32. 

Key mechanisms include inhibiting microglial activation and reducing inflammatory 

cytokine levels by blocking the ERK/p38 MAPK and COX-2/iNOS NF-κB pathways, 

which prevents cognitive impairment and delays hippocampal atrophy33. Oxt also 

reduces brain inflammation and corrects memory deficits by promoting Aβ deposition 

in dense core plaques, offering neuroprotective effects34. Chronic intranasal Oxt 

administration restores cognitive functions, reduces acetylcholinesterase activity, and 

lowers levels of β-amyloid and Tau proteins35. These effects are supported by 

decreased hippocampal ERK1/2 and GSK3β levels, reduced neuronal death, low 

caspase-3 activity, and improved histopathological profiles, highlighting Oxt's potential 

in modulating AD pathology35. 

 

Calcium signaling regulates neuronal function and survival. Dysregulation of calcium 

homeostasis is evident at all stages of AD and is linked to mitochondrial failure, 

oxidative stress, chronic neuroinflammation, and the formation of NFTs and Aβ 

plaques36. Glutamatergic NMDA receptor (NMDAR) activity is particularly significant, 
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as NMDAR-mediated neurotoxicity is a key factor in AD progression36. Calcium 

dyshomeostasis is also associated with tau hyperphosphorylation, abnormal synaptic 

plasticity, and apoptosis37. Disruptions at the ER-mitochondria membrane contact site 

and decreased calcium-binding buffers further contribute to cellular toxicity in AD38. 

 

Cellular Processes 

Circadian entrainment influences various physiological and pathological processes. 

Disruptions in circadian rhythms are common in AD, often preceding cognitive 

symptoms and exacerbating pathology through increased Aβ production, impaired 

clearance, and neuroinflammation39. Core circadian clock genes like BMAL1, PER, 

and CRY show altered expression in AD, contributing to symptoms such as disrupted 

sleep patterns, activity changes, and mood fluctuations40. AD model mice display 

novel circadian behaviors, including heightened sensitivity to light cues and faster 

re-entrainment to shifted light-dark cycles, indicating that AD pathology affects retinal 

light sensing39. Brain-wide spatial transcriptomics reveal progressive disruptions in 

diurnal transcriptional rhythms in AD, linking these alterations to disease pathology41. 

These findings suggest that targeting circadian clock genes and regulatory pathways 

could offer therapeutic strategies, such as optimizing drug administration timing or 

employing chronotherapeutics to mitigate disease progression and improve quality of 

life for AD patients. 

 

Morphine addiction can significantly impact the development and progression of AD 

as opioids like morphine interfere with insulin signaling pathways via crosstalk 

between the insulin receptor and the mu-opioid receptor, crucial for neuronal health42. 

Morphine also affects neurotransmitter regulation, involving acetylcholine, 

norepinephrine, GABA, glutamate, and serotonin, which are implicated in AD, 

contributing to cognitive impairment and neuroinflammation43. Morphine 

downregulates BACE-1 and upregulates BACE-2 expression, affecting Aβ production 

through a nitric oxide-dependent mechanism, potentially leading to chronic 

vasoconstriction, brain hypoperfusion, and neuronal death44. Individuals with opioid 
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use disorder have a significantly higher risk of developing AD and dementia, 

especially in younger populations45. Machine learning models suggest that including 

data on AD drugs and cognitive scores improves AD progression prediction, indicating 

that managing opioid addiction could help mitigate the disease's advancement46. 

 

Gastric acid secretion influences AD through its impact on gut health and the brain-gut 

axis. Proper gastric acid levels are essential for nutrient absorption, gut homeostasis, 

and protection against pathogens. Disruption in gastric acid secretion can lead to gut 

dysbiosis and increased gut permeability, which are linked to AD. For example, 

conditions like Helicobacter pylori infection, which alter gastric acid levels, can cause 

gut inflammation and subsequent neuroinflammation47.  Gut inflammation in the gut 

can activate C/EBPβ/δ-secretase signaling, leading to the formation of Aβ and tau 

fibrils, which can then propagate to the brain via the vagus nerve, exacerbating AD48. 

Altered gastric acid secretion also affects gastrointestinal mucus production, 

compromising the gut barrier and increasing susceptibility to systemic inflammation49. 

Not to mention, the gut microbiota, influenced by gastric acid levels, plays a role in 

neuroinflammation and the formation of AD-related brain plaques and NFTs50. 

 

Inflammatory mediators significantly regulate TRP channels, which particularly 

TRPV1 and TRPC6, are involved in neuroinflammation and calcium homeostasis 

disruption51,52. TRPV1 modulates neuroinflammation by influencing the production of 

inflammatory mediators and oxidative stress responses52. Its activation can rescue 

microglial dysfunction and restore immune responses, including phagocytic activity 

and autophagy, through the AKT/mTOR pathway, reducing amyloid pathology and 

reversing memory deficits in AD models51,53. TRPC6 affects calcium signaling 

pathways, which are disrupted in AD51. The regulation of TRP channels by 

inflammatory mediators also helps maintain the integrity of the BBB and 

neurovascular coupling, both compromised in AD. TRP channels are activated by 

reactive oxygen species, linking oxidative stress to neurodegenerative disease 
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progression54. This interplay highlights the role of TRP channels in modulating 

neuroinflammation and oxidative stress, offering promising avenues for AD treatment. 

 

Dysfunctions in Neurotransmitter Systems The development and progression of 

AD are intricately linked to dysfunctions in neurotransmitter systems, including 

glutamatergic, cholinergic, GABAergic, and dopaminergic synapses. Glutamatergic 

synapses, essential for cognitive and behavioral functions, are significantly affected in 

AD. Dysregulated glutamatergic mechanisms contribute to cognitive impairments and 

disease progression through interactions with neuronal hyperactivity, Aβ, tau, and glial 

dysfunction55. Aβ disrupts glutamate receptors like NMDA and AMPA, leading to 

calcium dyshomeostasis and impaired synaptic plasticity, characterized by 

suppressed long-term potentiation and enhanced long-term depression56. Additionally, 

altered glucose metabolism affects glutamate levels, exacerbating synaptic 

dysfunction in AD57. 

 

Cholinergic synapses are also critically involved, with cholinergic atrophy accelerating 

cognitive decline. The cholinergic hypothesis posits that deficits in cholinergic 

signaling lead to abnormal tau phosphorylation, neuroinflammation, and cell 

apoptosis58. The basal forebrain cholinergic innervation of cortical areas is particularly 

vulnerable, and cholinergic receptor regulation is a hallmark of AD progression59. 

 

GABAergic synapses, responsible for inhibitory signaling, are disrupted in AD due to 

alterations in the GABAA receptor system and perineuronal nets, leading to synaptic 

hyperactivity and abnormal brain oscillations, contributing to cognitive deficits60. 

Although less studied, dopaminergic synapses also play a role in AD, with D2 

dopaminergic receptors implicated in symptomatology59. 

 

Synaptic dysfunction is a common pathogenic trait in AD, with synapse loss closely 

correlating with cognitive decline. The interplay between Aβ and tau at the synapse 

exacerbates synaptic deficits, making targeting these dysfunctions crucial for 
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developing therapeutic strategies. Aberrant neurotransmission, including cholinergic, 

adrenergic, and glutamatergic networks, underpins cognitive decline in AD, with 

NMDAR dysfunction being particularly significant. Together, these neurotransmitter 

system alterations highlight the complexity of AD pathogenesis and the need for 

targeted interventions to mitigate synaptic dysfunction and cognitive decline. 

 

Viral Infections 

Research indicates that HCMV may contribute to poorer cognitive abilities and 

augment tauopathy by interacting with TRA CDR3 and tau peptides61. Additionally, 

HCMV, along with other herpesviruses, has been shown to impact AD-related 

processes such as Aβ formation, neuronal death, and autophagy through virus-host 

protein-protein interactions62. Persistent HCMV infections can lead to the generation 

of AD hallmarks, including Aβ plaques and NFTs composed of hyperphosphorylated 

tau proteins, by exploiting pathways involved in oxidative stress and 

neuroinflammation63. 

 

Kaposi Sarcoma-associated Herpesvirus (KSHV), a member of the Herpesviridae 

family, is known to impact AD-related processes such as Aβ formation, neuronal death, 

and autophagy, which are critical in the pathogenesis of AD62. The "infectious 

hypothesis" of AD suggests that pathogens, including viruses like KSHV, may act as 

seeds for Aβ aggregation, leading to plaque formation and cognitive decline64. Viral 

infections, including those caused by herpesviruses, can trigger neuroinflammatory 

pathways, disrupt the BBB, and activate microglia, leading to neural cell death and 

neurodegeneration65. Specifically, KSHV, along with other herpesviruses, has been 

shown to influence processes crucial for cellular homeostasis and dysfunction, 

potentially exacerbating AD pathology through virus-host protein-protein interactions62. 

Additionally, the reactivation of herpesviruses during acute infections, such as 

SARS-CoV-2, can create a synergistic pathogenic effect, further promoting 

neurodegenerative processes like Aβ formation and oxidative stress response62. 
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Innate Immune Signaling Pathways The chemokine signaling pathway plays a 

critical role in AD pathogenesis by driving neuroinflammation and regulating immune 

cell activity. Dysregulated chemokines, such as CCL5, CXCL1, and CXCL16, are 

found in both brain tissues and blood of AD patients, correlating with Aβ and tau 

pathology, and suggesting their potential as biomarkers for AD66. The CCL5/CCR5 

axis is particularly notable for its dual role in normal physiology and 

neurodegeneration67. Chronic microglial activation, fueled by persistent Aβ deposition, 

leads to a loss of neuroprotective functions and increased neuronal damage68. 

Chemokines like CX3CL1 are vital in balancing microglial activity between 

neuroprotection and neurotoxicity68. Overexpression of chemokines can disrupt the 

BBB, facilitating immune cell infiltration and prolonged inflammation, which in turn 

enhances Aβ production, aggregation, impairs its clearance, and promotes tau 

hyperphosphorylation, contributing to neuronal loss and AD progression69. Elevated 

levels of chemokines in AD patient plasma further underscore their role in the 

disease70. 

 

Hemostasis 

Platelets are a major peripheral source of Aβ, providing about 90% of circulating Aβ, 

which is a hallmark of AD71,72. Elevated platelet activity, particularly in APOE4 carriers, 

correlates with disease severity and cognitive decline, making platelet activity a 

potential marker for AD progression71. Platelets show altered levels of amyloid 

precursor protein, metabolic enzymes, oxidative stress markers, and 

neurotransmitters, reflecting changes seen in the central nervous system of AD 

patients73. The PI3K/AKT pathway, which regulates platelet activity, influences Aβ 

production by regulating APP, BACE-1, ADAMs, and γ-secretase. ROS-induced 

oxidative stress, a key factor in AD, also leads to platelet hyperactivity, worsening 

neuroinflammation and neurodegeneration72,74. Additionally, in conditions like type 2 

diabetes mellitus, abnormal platelet reactivity and insulin resistance contribute to 

vascular dysfunction and Aβ aggregation, accelerating AD progression75. 
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Model validation: gene validation  

The identification of the top 20 genes associated with AD in females and males, listed 

in Table 8, represents a significant step forward in understanding the genetic 

underpinnings of this condition. The genes were ranked using our novel graph AI 

model, which integrated multi-omic data to highlight key biomarkers and signaling 

interactions relevant to AD. Notably, the same genes were identified for both sexes, 

underscoring their critical role in AD pathogenesis. Table 8 provides a comprehensive 

overview of these genes, detailing their functions and specific relations to AD. The 

function of each gene and its contribution to AD pathology are pivotal for elucidating 

the complex biological mechanisms driving the disease. The consistency of gene 

rankings between females and males emphasizes the universal importance of these 

biomarkers in AD. This uniformity suggests that the identified genes play fundamental 

roles in the disease's progression, regardless of sex. This finding enhances the 

potential for developing targeted therapies that could benefit a broad patient 

population. 

 

Table 8. Top 20 genes associated with Alzheimer's Disease in females and males 

Gene Function and Relation to AD 

RRAS2 

RRAS2 is a key regulator of G-protein-coupled receptor signaling and neuronal 

plasticity. Reduced expression of RRAS2 correlates with cognitive decline in AD 

patients 76. In AD mouse models, RRAS2 modulates neuronal hyperactivity, memory 

impairment, dendritic spine loss, and neuronal cell death 77. Notably, Aβ-induced 

neuronal hyperactivity can be mitigated by targeting the ryanodine receptor 2 (RyR2) 

to reduce its open time 78. Neuronal hyperactivity is an early defect observed in both 

familial and sporadic AD, accelerating the onset of neuronal dysfunction 79.  Given 

this, it is worthwhile to investigate the potential relationship between RRAS2 and 

RyR2. Understanding this interaction could lead to the development of novel 

therapeutics aimed at reducing neuronal hyperactivity and its associated 

neurodegenerative consequences, ultimately improving outcomes for AD patients. 

RAG1 

RAG-1 is vital for recombining immunoglobulin and T-cell receptor genes, essential 

for developing mature B and T lymphocytes, underscoring its critical immune role80. 

RAG-1 is also expressed in the brain, especially in high neural density regions like 
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the hippocampus, though its precise brain function is unclear81. Research shows that 

hippocampal RAG-1 knockdown impairs spatial learning and memory in rats, 

suggesting a cognitive role81. Additionally, studies found that RAG-1, but not RAG-2, 

deficiency impairs social recognition memory, indicating a specific memory 

function80. Pathway analysis reveals that RAG-1 absence inhibits signaling pathways 

controlling neurodegenerative disorders, including AD, supporting the view of these 

diseases as having an autoimmune component80. 

PPP1R3D 

N/A 

RAC2 

In AD, synaptic dysfunction and loss are key contributors to cognitive deficits, with 

RAC2 implicated in these processes. Studies have shown that RAC2 is dysregulated 

in AD patients, with altered expression in the brain, cerebrospinal fluid, and blood82. 

This dysregulation is linked to the disruption of the actin cytoskeleton, crucial for 

maintaining dendritic spine stability and synaptic plasticity. RAC2 and other 

actin-binding proteins regulate the actin cytoskeleton's dynamics, essential for 

dendritic spine morphology82. Furthermore, RAC2 is involved in the Rho GTPase 

pathway, which is deregulated in several neurodegenerative disorders, including AD. 

The translocation of Rho GTPases to neurofibrillary tangles in dystrophic neurites 

correlates with the neuronal dystrophy observed in AD, and RAC2 activity is crucial 

here83. Additionally, RAC2 mediates dendritic degeneration induced by the cleavage 

of g-adducin, a cytoskeleton-associated protein, by asparagine endopeptidase. This 

cleavage disrupts the spectrin-actin assembly, leading to defects in neurite outgrowth 

and contributing to AD-like pathology and cognitive deficits in transgenic mouse 

models84. The protective effects of treatments like acetylcholinesterase inhibitors, 

which mitigate RAC2-related damage by regulating neurite outgrowth-related genes, 

further underscore RAC2's role in AD pathology. 

NFATC3 

NFATc3, a member of the NFAT family, regulates the transcription of genes involved 

in T-cell activation and angiogenesis. It is essential for the expression of IL2 and 

COX2 in T cells, crucial for T-cell proliferation and inflammatory responses85. NFATc3 

also regulates COX2 expression in endothelial cells, necessary for COX2-dependent 

migration and angiogenesis in vivo85. Given the involvement of inflammation and 

vascular dysfunction in AD, NFATc3 could potentially play a significant role in this 

neurodegenerative disorder. Chronic inflammation is a hallmark of AD, and the 

up-regulation of inflammatory mediators like IL2 and COX2 could exacerbate 

neuronal damage and cognitive decline. Impaired angiogenesis and endothelial cell 

function are also implicated in AD, contributing to reduced cerebral blood flow and 

the breakdown of the blood-brain barrier. Dysregulation of NFATc3 could lead to 

increased inflammation and vascular abnormalities, both critical factors in AD 

development and progression. However, a direct role of NFATc3 in AD has not yet 

been established. 
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PLA2G4F 

N/A 

RPS6KA6 

RPS6KA6 is a serine-threonine kinase in the MAPK pathway, regulating cell 

proliferation, survival, growth, and movement. In AD, RPS6KA6 is linked to 

neuroinflammation and synaptic damage, key pathological features. Dysregulation of 

RPS6KA6 affects the neurotrophin pathway, crucial for neuronal survival, 

neuroplasticity, and neurogenesis86. Neurotrophins maintain neuronal health, and 

their dysregulation can lead to neurodegeneration and cognitive decline in AD. 

RPS6KA6 also regulates long-term potentiation and axon guidance, vital for learning 

and memory, suggesting that its dysregulation impacts synaptic plasticity, 

contributing to AD-related cognitive deficits86. Autoantibodies against RPS6KA6 have 

been identified as potential biomarkers for predicting age-related neurodegenerative 

diseases, including AD and advanced-stage Parkinson's disease86. Inhibitors of 

ribosomal s6 kinase (RSK) signaling have shown promise in preventing seizures with 

elevated RSK activity and normalizing dendritic spine density in mouse models of 

neurodevelopmental disorders, indicating potential therapeutic strategies for AD87. 

PLCG2 

PLCG2 significantly impacts AD pathology through its role in inflammation and 

microglial function. Research shows PLCG2 expression is upregulated in several 

brain regions of late-onset AD patients and correlates with amyloid plaque density 

and microglial markers AIF1 and TMEM11988. This upregulation is also seen in the 

5xFAD mouse model of AD, where PLCG2 expression increases with disease 

progression, especially in microglia88. The protective PLCG2 P522R variant has a 

slight hypermorphic effect on enzyme function, suggesting therapeutic benefits from 

activation rather than inhibition of PLCG289. This variant also recruits CD8+ T cells to 

the brain, enhancing microglial antigen presentation and T cell recruitment, 

contributing to a protective microglial transcriptional state90. Additionally, the 

rs72824905-G allele in PLCG2 is linked to a reduced risk of AD, frontotemporal 

dementia, and dementia with Lewy bodies, indicating overlapping PLCG2-related 

immune signaling pathways in these diseases91. Furthermore, as a downstream 

component of TREM2 signaling, PLCG2 promotes survival, proliferation, 

phagocytosis, and cytokine secretion, all crucial for neurodegenerative 

processes89,90.  

MAPK14 

One of the primary roles of MAPK14 in AD is its involvement in the 

autophagic-lysosomal pathway, which is crucial for the degradation of misfolded 

proteins. In healthy neurons, low levels of MAPK14 ensure proper autophagic flux 

and degradation of BACE1, a protein involved in amyloid plaque formation. However, 

in AD neurons, increased levels of MAPK14 impair autophagic-lysosomal protein 

degradation, leading to higher BACE1 levels and subsequent plaque formation. 

Reducing MAPK14 levels has been shown to suppress these autophagic defects, 

thereby reducing BACE1 levels and plaque formation, highlighting its potential as a 
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therapeutic target92. Additionally, MAPK14 activation is linked to the 

hyperphosphorylation of tau proteins, another hallmark of AD. Extracellular Aβ 

accumulation triggers intracellular MAPK14 activation, which in turn leads to tau 

hyperphosphorylation and further Ab accumulation, creating a vicious cycle that 

exacerbates AD pathology93.  

PIK3CD & 

AKT3 PIK3CD encodes the catalytic subunits for the PI3K heterodimer. In AD, the PI3K/Akt 

pathway is significantly implicated in forming NFTs and amyloid plaques, key disease 

features. PI3K activation produces PIP3, which recruits Akt to the cell membrane, 

where PDK1 and mTORC2 phosphorylate and activate it94,95. This cascade regulates 

downstream targets like GSK-3β, a key player in tau phosphorylation and 

subsequent NFT formation95,96. PI3K/Akt signaling also regulates Aβ production and 

deposition. Impaired PI3K/Akt signaling increases GSK-3β activity, enhancing Aβ 

production and aggregation, worsening AD pathology. Additionally, AD brains show 

decreased phosphorylation of PI3K/Akt pathway components, correlating with 

reduced insulin signaling and increased oxidative stress, which contribute to 

neuronal apoptosis and cognitive decline95,97. This pathway influences mitochondrial 

function and oxidative stress responses, essential for neuronal health. Dysregulation 

leads to increased oxidative stress and mitochondrial dysfunction, promoting 

neurodegeneration. 

VAV2 

VAV2, a guanine nucleotide exchange factor for Rho family GTPases, significantly 

impacts AD pathology through its interaction with the amyloid precursor protein 

(APP). APP is a crucial transmembrane protein in AD pathogenesis, and the tyrosine 

phosphorylation site Y682 on its intracellular tail is essential for its function. VAV2 

directly binds to the Y682-phosphorylated APP tail via its SH2 domain, inhibiting APP 

degradation and increasing the levels of APP and its cleavage products, which are 

implicated in AD98. VAV2 is also involved in various biological processes, including 

endothelial cell function, vasodilation, blood pressure regulation, and neurogenesis, 

indicating its importance in early brain development99. VAV2 regulates neurite 

outgrowth and branching and interacts with TrkB receptors upon BDNF stimulation, 

activating Rac1, which is crucial for synaptic development and plasticity100. 

Nonetheless, the interaction between VAV2 and APP, particularly the stabilization of 

APP and its cleavage products, suggests a potential mechanism by which VAV2 

contributes to Aβ accumulation. 

PLA2G4C 

N/A 

GNGT2 

Research has shown that GNGT2, along with ABI3, is part of a tightly co-expressed 

gene network in both AD patients and mouse models, indicating a potential 

collaborative role in AD pathogenesis101. The deletion of GNGT2, particularly in 

conjunction with ABI3, has been observed to influence AD pathology in distinct ways. 
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For instance, in the TgCRND8 mouse model, the loss of ABI3 and GNGT2 resulted in 

a significant reduction in amyloid plaque numbers and size, suggesting that these 

genes may modulate microglial behavior to enhance plaque clearance. This 

reduction in plaque pathology was accompanied by a decreased number of microglia 

clustering around the plaques, which implies that GNGT2 might be involved in the 

microglial response to amyloid deposition102. Additionally, transcriptomic analyses 

have revealed that the loss of GNGT2 leads to the upregulation of several 

AD-associated neurodegenerative markers, such as Trem2, Plcg2, and Tyrobp, even 

in the absence of typical AD neuropathology, further supporting its role in the 

disease's molecular mechanisms101. Systems biology approaches have also 

highlighted alterations in energy metabolism and the depletion of neuroprotective 

metabolites in AD, which could be linked to the dysregulation of genes like 

GNGT2103.  

TAB2 

TAB2, expressed in the brain and vascular endothelium, is suggested to regulate 

NFkB-mediated gene expression, which is crucial for inflammatory responses104. 

Recent studies highlight the potential of long non-coding RNAs (lncRNAs) in 

diagnosing and understanding AD. Exosomes, extracellular nanovesicles involved in 

immune response and neuronal function, carry lncRNAs differentially expressed in 

AD patients. Advanced bioinformatics and machine learning have identified specific 

lncRNAs, such as ENST00000608936 and ENST00000433747, as promising 

diagnostic markers for AD, with high sensitivity, specificity, and accuracy105. The 

interplay between TAB2's role in inflammation and the emerging significance of 

lncRNAs in AD suggests that TAB2 is a promising target for further investigation to 

gain deeper insights into the disease's pathology. 

CAMK4 

CAMK4 plays a significant role in the pathology of AD through its involvement in the 

hyperphosphorylation of tau protein and formation of NFTs, which are associated 

with neuronal death and cognitive dysfunction in AD patients106,107. The activation of 

CaMK4 is closely linked to calcium homeostasis within neurons. Elevated 

intracellular calcium levels, often resulting from Aβ deposition, activate the 

CaM-CaMK4 signaling pathway, leading to the phosphorylation of tau protein106. This 

process is exacerbated by the presence of familial Alzheimer's disease (FAD) mutant 

presenilins, which cause constitutive activation of CaMK4 and the transcription factor 

CREB, further promoting tau hyperphosphorylation and neuronal death108. 

Additionally, studies have shown that inhibiting the CaMKK-CaMK4 pathway can 

prevent the hyperphosphorylation of synapsin and CaMK4, suggesting that this 

pathway is crucial in the synaptic dysfunction observed in AD109. The neuroprotective 

effects of certain compounds, such as genistein and chrysophanol, have been 

attributed to their ability to modulate the CaM-CaMK4 pathway, thereby reducing tau 

hyperphosphorylation and offering potential therapeutic avenues for AD106,107.  

PPP1R3B 

PPP1R3B plays a role in glycogen metabolism and is associated with high-density 
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plasma lipoproteins, which previously has been documented to affect the clearance 

of β-amyloid in AD mouse brains110. Given the connection between lipid metabolism 

and AD, enhancing PPP1R3B activity could potentially improve lipid clearance 

pathways and reduce amyloid burden. This hypothesis is supported by findings that 

genetic variants influencing tau deposition, such as those in PPP2R2B, also affect 

metabolic pathways, suggesting a broader interplay between metabolism and 

neurodegeneration111. Therefore, targeting PPP1R3B to enhance glycogen 

metabolism and lipid clearance could be a novel therapeutic approach to mitigate 

amyloid accumulation in AD. 

PIK3CB 

PIK3CB is significantly downregulated in AD patients compared to controls, 

suggesting its potential involvement in the disease's progression112. The PI3K/AKT 

pathway, in which PIK3CB is a crucial component, is essential for cell survival, 

autophagy, neurogenesis, neuronal proliferation, differentiation, and synaptic 

plasticity, all of which are critical for maintaining cognitive function and neuronal 

health113. In Jnk3 null mice, an increase in PIK3CB transcription and protein levels 

was observed, leading to enhanced PI3K activity and AKT phosphorylation, which 

are associated with neuroresistance to cell death114. This suggests that PIK3CB may 

have a protective role against neurodegenerative processes. Additionally, the 

dysregulation of calcium signaling, which is closely related to AD pathology, can be 

influenced by PIK3CB through its interaction with the PI3K-AKT pathway and BCL-2, 

a protein known for its anti-apoptotic effects114. The intersection of these pathways 

highlights the multifaceted role of PIK3CB in AD, where its downregulation may 

contribute to the disease by impairing cell survival mechanisms and promoting 

neurodegeneration.  

VAV3 

Astrocytes, which are essential for neuronal support, glutamate uptake, and 

modulation of neuronal activity, show altered behavior in the absence of VAV3. 

Specifically, VAV3-deficient astrocytes exhibit enhanced regenerative capabilities 

and an altered cytokine release profile, including a complete lack of CXCL11, 

reduced levels of IL-6, and increased release of CCL5115. These changes can 

significantly influence the neuronal environment and potentially affect the 

progression of neurodegenerative diseases like AD. Given that VAV3 influences the 

release of cytokines and other signaling molecules from astrocytes, it is also 

plausible that VAV3 indirectly affects the inflammatory and immune responses in the 

AD brain, potentially modulating the formation and clearance of Aβ plaques116. 

Additionally, the altered axonal and dendritic morphology observed in VAV3-deficient 

neurons, such as increased axonal lengths and complexities, could impact neuronal 

connectivity and function, further contributing to the pathological mechanisms of 

AD115. Therefore, while direct evidence linking VAV3 to AD pathology is limited, its 

regulatory role in astrocyte function and neuron-glia interactions suggests that VAV3 

could be an important modulator in the disease's progression, influencing both 

neuroinflammatory responses and neuronal structural integrity. 
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GNG4 

GNG4 expression decreases in the brain with age and is notably downregulated in 

rodent models of AD117. This suggests a potential role in neurodegenerative 

processes, as GNG4 is involved in hemostasis and glucagon response, which are 

critical for cellular homeostasis. GNG4 expression is highest in the human 

hippocampus, a region crucial for memory and cognitive function and severely 

affected in AD117. A gender-specific aspect of GNG4's influence on cognitive decline 

has been observed; its association with cognitive decline was replicated in an 

all-female cohort but not in an all-male cohort, suggesting a possible interaction with 

estrogen, a hormone known to modify dementia risk117. Additionally, a weighted gene 

co-expression network analysis, have identified GNG4 as one of synapse-associated 

genes that is dysregulated in AD, specifically downregulated in the dorsolateral 

prefrontal cortex118. 
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Figure S1. Diagram of the processing procedures for core signaling networks 

visualization.  

Figure S1 illustrates the process of filtering and pruning network connections. Initially, 

the network connections are processed through edge threshold filtering and small 

component threshold filtering. Then, a recursive node pruning algorithm is applied to 

remove insignificant nodes. Next, it checks if any single branch remains; if so, 

pathway filtering is performed. Finally, a filtered network connection is obtained. The 

diagram also provides examples of the initial and filtered network connections, along 

with detailed steps of the recursive node pruning and pathway filtering algorithms. 

 

Section B  

Table S1. Top 70 AD-Female overlapping protein nodes (overlapped gene features 

marked with pink) 

AD Female AD Female 
Node Node Node Node 

ADCY3-PROT ACACB-PROT PIK3R6-PROT MAPK10-PROT 

ADCY4-PROT ACVR1B-PROT PLA2G4C-PROT MAPK11-PROT 

ADCY5-PROT ACVR1C-PROT PLA2G4D-PROT MAPK12-PROT 
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ADCY6-PROT ACVR2A-PROT PLA2G4F-PROT MAPK13-PROT 

ADCY7-PROT ACVR2B-PROT PLCG2-PROT MAPK14-PROT 

ADCY8-PROT ADCY3-PROT PLD2-PROT MAPK8-PROT 

ADCY9-PROT ADCY4-PROT PPP1R3C-PROT MAPKAPK3-PROT 

ADCYAP1R1-PROT ADCY5-PROT PPP3CB-PROT MEF2B-PROT 

ADRA1A-PROT ADCY6-PROT PPP3CC-PROT MEF2C-PROT 

ADRB2-PROT ADCY7-PROT PPP3R1-PROT MEF2D-PROT 

ADRB3-PROT ADCY8-PROT PPP3R2-PROT MS4A2-PROT 

AKT3-PROT ADCY9-PROT PRKACB-PROT MYH7-PROT 

ARF6-PROT ADCYAP1-PROT PRKACG-PROT MYLK2-PROT 

ATF6B-PROT ADCYAP1R1-PROT PRKAG1-PROT MYLK3-PROT 

CALM3-PROT ADORA2B-PROT PTGER3-PROT MYLK4-PROT 

CALML3-PROT ADRA1D-PROT PYGL-PROT NCK2-PROT 

CALML5-PROT ADRA2A-PROT RAC2-PROT NFATC2-PROT 

CAMK1D-PROT ADRA2C-PROT RAC3-PROT NFATC3-PROT 

CAMK2A-PROT ADRB1-PROT RAF1-PROT NFATC4-PROT 

CAMK2D-PROT ADRB2-PROT RAP1B-PROT NFKBIB-PROT 

CAMK2G-PROT ADRB3-PROT RASGRP1-PROT NFKBIE-PROT 

CCND2-PROT AKT1S1-PROT RPS6KA2-PROT NGF-PROT 

CCND3-PROT AKT2-PROT RPS6KA3-PROT NOD2-PROT 

CCNE1-PROT AKT3-PROT RPS6KA6-PROT NOS2-PROT 

CDK6-PROT ALDOA-PROT RXFP2-PROT NOX4-PROT 

CDKN1A-PROT ATF4-PROT SOCS2-PROT NPPC-PROT 

CDKN1B-PROT ATF6B-PROT SOCS3-PROT NRG2-PROT 

CHRM2-PROT ATG16L1-PROT SOCS4-PROT NRG3-PROT 

CXCL11-PROT ATG5-PROT SOCS5-PROT PAK2-PROT 

CYTH2-PROT BECN2-PROT SOCS6-PROT PAK4-PROT 

CYTH3-PROT BIRC3-PROT SOCS7-PROT PCK2-PROT 

CYTH4-PROT BMPR1B-PROT SPHK2-PROT PIK3CB-PROT 

DRD2-PROT BMPR2-PROT STAT2-PROT PIK3CD-PROT 

ESR2-PROT CAB39L-PROT STAT3-PROT PIK3R2-PROT 

FGFR2-PROT CALM2-PROT STAT4-PROT PIK3R3-PROT 

FGFR3-PROT CALM3-PROT STAT5A-PROT PIK3R5-PROT 

FGFR4-PROT CALML3-PROT STAT5B-PROT PIK3R6-PROT 

FSHR-PROT CALML4-PROT STAT6-PROT PLA2G4B-PROT 

GH1-PROT CALML5-PROT TAB2-PROT PLA2G4C-PROT 

GIPR-PROT CALML6-PROT TSC2-PROT PLA2G4D-PROT 

GNAI2-PROT CAMK2B-PROT TSHR-PROT PLA2G4E-PROT 

GNAI3-PROT CAMK2D-PROT VAV2-PROT PLA2G4F-PROT 

GNB1-PROT CAMK2G-PROT VAV3-PROT PLCB2-PROT 

GNB2-PROT CAMK4-PROT VEGFC-PROT PLCB3-PROT 

GNB3-PROT CASP1-PROT VIPR2-PROT PLCG2-PROT 

GNB4-PROT CCND2-PROT 
 

PLD2-PROT 

GNB5-PROT CCND3-PROT 
 

PPP1CB-PROT 
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GNG10-PROT CCNE1-PROT 
 

PPP1R3B-PROT 

GNG11-PROT CDK6-PROT 
 

PPP1R3D-PROT 

GNG12-PROT CDKN1A-PROT 
 

PPP3CB-PROT 

GNG13-PROT CDKN1B-PROT 
 

PPP3CC-PROT 

GNG2-PROT CREB3-PROT 
 

PPP3R1-PROT 

GNG3-PROT CREB3L1-PROT 
 

PPP3R2-PROT 

GNG4-PROT CREB3L2-PROT 
 

PRKAA2-PROT 

GNG5-PROT CREB3L3-PROT 
 

PRKAB1-PROT 

GNG7-PROT CREB3L4-PROT 
 

PRKAB2-PROT 

GNG8-PROT CREB5-PROT 
 

PRKACA-PROT 

GNGT1-PROT CXCL11-PROT 
 

PRKACB-PROT 

GNGT2-PROT DRD2-PROT 
 

PRKACG-PROT 

HOMER2-PROT EGLN1-PROT 
 

PRKAG2-PROT 

HOMER3-PROT EGLN3-PROT 
 

PRKAG3-PROT 

HRAS-PROT ERBB3-PROT 
 

PRKAR1A-PROT 

HSP90AB1-PROT ERBB4-PROT 
 

PRKCB-PROT 

IKBKE-PROT ESR2-PROT 
 

PRKCD-PROT 

IKBKG-PROT FGFR2-PROT 
 

PRKCE-PROT 

IRF5-PROT FGFR3-PROT 
 

PTGER3-PROT 

IRS2-PROT FGFR4-PROT 
 

RAC2-PROT 

IRS4-PROT FSHR-PROT 
 

RAC3-PROT 

LPAR2-PROT G6PC2-PROT 
 

RAF1-PROT 

LPAR3-PROT G6PC3-PROT 
 

RAG1-PROT 

LPAR4-PROT GABARAPL1-PROT 
 

RAP1B-PROT 

LPAR5-PROT GABARAPL2-PROT 
 

RAPGEF4-PROT 

LPAR6-PROT GABBR2-PROT 
 

RASGRF2-PROT 

MAP2K2-PROT GH1-PROT 
 

RIPK3-PROT 

MAP2K4-PROT GIPR-PROT 
 

RPS6KA2-PROT 

MAP2K6-PROT GNA12-PROT 
 

RPS6KA3-PROT 

MAP2K7-PROT GNA13-PROT 
 

RPS6KA5-PROT 

MAP3K1-PROT GNAI2-PROT 
 

RPS6KA6-PROT 

MAP3K20-PROT GNAI3-PROT 
 

RPS6KB1-PROT 

MAP3K8-PROT GNAQ-PROT 
 

RRAS2-PROT 

MAPK10-PROT GNAS-PROT 
 

S1PR2-PROT 

MAPK11-PROT GNB1-PROT 
 

S1PR3-PROT 

MAPK12-PROT GNG4-PROT 
 

S1PR4-PROT 

MAPK13-PROT GNGT2-PROT 
 

SHC2-PROT 

MAPK14-PROT HDAC5-PROT 
 

SHC3-PROT 

MAPK8-PROT HOMER2-PROT 
 

SHC4-PROT 

MAPKAPK3-PROT HOMER3-PROT 
 

SMAD2-PROT 

MYLK2-PROT HRAS-PROT 
 

SMAD3-PROT 

MYLK3-PROT HSP90AB1-PROT 
 

SMAD4-PROT 

NCK2-PROT IGF1R-PROT 
 

SOCS6-PROT 

NFATC2-PROT IKBKE-PROT 
 

SOS2-PROT 
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NFATC3-PROT IKBKG-PROT 
 

SPHK2-PROT 

NFATC4-PROT IL10-PROT 
 

STAT2-PROT 

NFKBIB-PROT INHBB-PROT 
 

STAT5B-PROT 

NFKBIE-PROT INHBC-PROT 
 

STRADB-PROT 

NGF-PROT INHBE-PROT 
 

TAB2-PROT 

NOS2-PROT IRF5-PROT 
 

TAB3-PROT 

NRAS-PROT IRS2-PROT 
 

TGFB2-PROT 

PAK2-PROT IRS4-PROT 
 

TGFB3-PROT 

PAK5-PROT KCNJ2-PROT 
 

TGFBR1-PROT 

PHKA2-PROT KCNJ3-PROT 
 

TGFBR2-PROT 

PHKG1-PROT KCNJ5-PROT 
 

TSC2-PROT 

PIK3CB-PROT KCNJ6-PROT 
 

TSHR-PROT 

PIK3CD-PROT MAP2K2-PROT 
 

VAV2-PROT 

PIK3R1-PROT MAP2K4-PROT 
 

VAV3-PROT 

PIK3R2-PROT MAP2K7-PROT 
 

VEGFC-PROT 

PIK3R3-PROT MAP3K8-PROT 
 

VIPR2-PROT 

 

Table S2. Top 70 AD/Non-AD and female/male overlapped gene features (overlapped 

gene features marked with pink) 

AD/non-AD Female/Male 
Node Category P_value P_value Category Node 

GNG8-TRAN gene-expression 6.75E-12 9.14E-09 gene-expression BECN2-TRAN 

RXFP2-TRAN gene-expression 5.52E-11 0.007756723 gene-expression RRAS2-TRAN 

PLA2G4F-TRA

N 
gene-expression 2.57E-10 0.018185728 gene-expression INHBC-TRAN 

MYLK2-TRAN gene-expression 5.01E-07 0.020674539 cnv_mcnv CCND3-TRAN 

MYLK3-TRAN gene-expression 3.12E-06 0.033829742 gene-expression RAG1-TRAN 

PLA2G4C-TRA

N 
cnv_mcnv 4.24E-06 0.03452494 gene-expression NOX4-TRAN 

CXCL11-TRAN gene-expression 8.08E-05 0.034866621 cnv_mcnv GNAI3-TRAN 

NGF-TRAN gene-expression 0.000359702 0.035947832 gene-expression INHBE-TRAN 

ADCY7-TRAN gene-expression 0.000911234 0.037749937 gene-expression DRD2-TRAN 

SOCS5-METH 
methy-Core-Promote

r 
0.00092192 0.038528984 gene-expression 

PPP1R3D-TR

AN 

PPP3R2-TRAN gene-expression 0.001813124 0.045670174 gene-expression KCNJ2-TRAN 

PLA2G4D-TRA

N 
gene-expression 0.002279484 0.046988483 

methy-Core-Promote

r 

PRKAB1-MET

H 

GH1-TRAN gene-expression 0.004101052 0.048508302 gene-expression ESR2-TRAN 

PTGER3-TRAN gene-expression 0.004223244 0.055998734 gene-expression RAC2-TRAN 

GNGT2-TRAN gene-expression 0.008618433 0.063497984 gene-expression SOCS6-TRAN 

VIPR2-TRAN gene-expression 0.013325126 0.064860243 cnv_mcnv IGF1R-TRAN 

GNB2-TRAN cnv_dup 0.019133547 0.0675451 
methy-Core-Promote

r 
ADRB1-METH 
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PYGL-METH 
methy-Core-Promote

r 
0.033782137 0.072344619 gene-expression 

NFATC3-TRA

N 

ARF6-METH 
methy-Core-Promote

r 
0.035546706 0.074044689 gene-expression VEGFC-TRAN 

CCNE1-TRAN gene-expression 0.035564682 0.079625213 gene-expression 
RPS6KA5-TR

AN 

CALML3-TRAN gene-expression 0.045372912 0.086516396 gene-expression 
PLA2G4F-TR

AN 

HOMER2-TRA

N 
gene-expression 0.045878072 0.08750897 gene-expression 

RPS6KA6-TR

AN 

CYTH3-TRAN cnv_mcnv 0.046332472 0.094427823 gene-expression 
RPS6KB1-TR

AN 

SOCS6-TRAN gene-expression 0.04787556 0.095928881 gene-expression 
ADRA1D-TRA

N 

CDK6-TRAN gene-expression 0.049131719 0.096149544 
methy-Core-Promote

r 

STRADB-MET

H 

NOS2-TRAN cnv_mcnv 0.053407637 0.096905839 gene-expression SHC3-TRAN 

CAMK2A-TRA

N 
cnv_del 0.054768972 0.100714155 gene-expression 

HOMER2-TRA

N 

AKT3-TRAN cnv_del 0.060883697 0.105503707 gene-expression BIRC3-TRAN 

ADCY8-TRAN gene-expression 0.063362866 0.105827501 gene-expression ERBB4-TRAN 

PLCG2-TRAN gene-expression 0.069040145 0.107718549 gene-expression 
TGFBR2-TRA

N 

PHKG1-TRAN cnv_mcnv 0.072592725 0.108603389 
methy-Core-Promote

r 
BMPR2-METH 

PRKAG1-TRA

N 
gene-expression 0.078084079 0.115480909 gene-expression KCNJ5-TRAN 

CCND3-METH 
methy-Core-Promote

r 
0.078502103 0.11759352 gene-expression 

ADCYAP1-TR

AN 

NFATC3-TRAN gene-expression 0.079976115 0.119975267 gene-expression PLCG2-TRAN 

RPS6KA2-TRA

N 
gene-expression 0.080445447 0.125172673 gene-expression PCK2-TRAN 

RAP1B-TRAN gene-expression 0.084409325 0.130790683 gene-expression 
ADRA2C-TRA

N 

ADRB2-TRAN gene-expression 0.085867328 0.13433473 gene-expression 
MAPK14-TRA

N 

GNG4-TRAN gene-expression 0.086378861 0.136112801 gene-expression 
PIK3CD-TRA

N 

STAT5B-TRAN cnv_mcnv 0.090317926 0.1415397 gene-expression VAV2-TRAN 

NFKBIE-TRAN gene-expression 0.092927834 0.14229562 cnv_mcnv 
PLA2G4C-TR

AN 

NRAS-TRAN gene-expression 0.097002183 0.14467517 cnv_mcnv 
CREB3L2-TR

AN 

GNAI3-TRAN gene-expression 0.100273561 0.145088547 gene-expression PRKAA2-TRA
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N 

CALML5-TRAN gene-expression 0.103880901 0.147635674 gene-expression GIPR-TRAN 

PHKA2-TRAN gene-expression 0.107819826 0.157288743 gene-expression 
TGFBR1-TRA

N 

CAMK2D-TRA

N 
gene-expression 0.109555996 0.160108111 gene-expression GNGT2-TRAN 

ADRA1A-TRAN cnv_dup 0.112474978 0.161868379 
methy-Core-Promote

r 
EGLN3-METH 

RPS6KA6-TRA

N 
gene-expression 0.113181202 0.162160643 gene-expression TAB2-TRAN 

MAPK8-TRAN gene-expression 0.117507535 0.162412933 
methy-Core-Promote

r 
CCND3-METH 

PLA2G4C-TRA

N 
gene-expression 0.123726151 0.163481254 

methy-Proximal-Pro

moter 

RASGRF2-ME

TH 

AKT3-TRAN gene-expression 0.130520188 0.165812164 gene-expression CAMK4-TRAN 

ADCY3-TRAN gene-expression 0.135152802 0.167083969 gene-expression 
CALML6-TRA

N 

ADCY9-METH 
methy-Proximal-Pro

moter 
0.139210251 0.168490697 gene-expression TGFB2-TRAN 

GNG10-METH methy-Downstream 0.139210251 0.173824731 gene-expression 
PPP1R3B-TR

AN 

CAMK1D-TRA

N 
cnv_del 0.140355889 0.174981722 gene-expression 

ADORA2B-TR

AN 

STAT5B-TRAN gene-expression 0.140505295 0.176584905 gene-expression CASP1-TRAN 

MAPKAPK3-TR

AN 
gene-expression 0.144226051 0.176615756 gene-expression KCNJ3-TRAN 

TAB2-TRAN gene-expression 0.144502583 0.178131469 gene-expression SMAD3-TRAN 

VEGFC-TRAN gene-expression 0.145129509 0.181224362 gene-expression ACACB-TRAN 

MAP3K20-TRA

N 
gene-expression 0.146585296 0.181670376 gene-expression 

ADRA2A-TRA

N 

MAP3K1-MET

H 

methy-Core-Promote

r 
0.146782904 0.185272357 gene-expression GNA13-TRAN 

MAP3K1-TRAN gene-expression 0.150047187 0.185272357 gene-expression PIK3CB-TRAN 

FGFR4-TRAN gene-expression 0.151893491 0.185272357 gene-expression AKT3-TRAN 

MAP3K8-TRAN gene-expression 0.155135468 0.188598923 gene-expression VAV3-TRAN 

CYTH2-TRAN gene-expression 0.163058983 0.189728096 gene-expression IRF5-TRAN 

NOS2-TRAN gene-expression 0.164686971 0.19189145 gene-expression SOS2-TRAN 

GNG5-METH 
methy-Core-Promote

r 
0.166597282 0.193214599 gene-expression CCNE1-TRAN 

GNG11-TRAN gene-expression 0.167867309 0.193214599 gene-expression S1PR3-TRAN 

PPP1R3C-TRA

N 
gene-expression 0.173381773 0.193678907 gene-expression GNG4-TRAN 

ADCY6-TRAN gene-expression 0.175967982 0.193823283 gene-expression 
PPP1CB-TRA

N 
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RASGRP1-TR

AN 
gene-expression 0.176529541 0.196317955 cnv_del AKT3-TRAN 

 

Section C  

Table S3. Pathway enrichment analysis results using ShinyGO 0.80 and KEGG 

database 
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Type Pathway Number 

of Genes 

Genes P-Value FDR 

Signaling 

Pathways 

hsa05200: 

Pathways in 

cancer 

28 GNG11,ADCY3,CCNE1,CDK6,ADCY8,FGFR4,STAT5B,

ADCY9,GNG8,GNB2,RASGRP1,ADCY6,CALML3,NOS2

,CAMK2D,PTGER3,NRAS,GNAI3,GNG5,CCND3,GNG1

0,CALML5,ADCY7,MAPK8,CAMK2A,GNGT2,VEGFC,P

LCG2 

3.36E-27 1.13E-24 

Signaling 

Pathways 

hsa04921: 

Oxytocin 

signaling 

pathway 

20 ADCY3,ADCY8,PLA2G4D,ADCY9,NFATC3,ADCY6,CAL

ML3,PRKAG1,CAMK2D,NRAS,GNAI3,PPP3R2,MYLK2

,CALML5,ADCY7,MYLK3,PLA2G4F,CAMK2A,PLA2G4

C,CAMK1D 

1.55E-26 2.6E-24 

Signaling 

Pathways 

hsa04014: Ras 

signaling 

pathway 

20 GNG11,RAP1B,PLA2G4D,FGFR4,ARF6,GNG8,GNB2,R

ASGRP1,CALML3,NGF,NRAS,GNG5,GNG10,CALML5,

MAPK8,PLA2G4F,GNGT2,PLA2G4C,VEGFC,PLCG2 

3.5E-23 2.35E-21 

Signaling 

Pathways 

hsa04371: Apelin 

signaling 

pathway 

19 GNG11,ADCY3,ADCY8,ADCY9,GNG8,GNB2,ADCY6,C

ALML3,PRKAG1,NOS2,NRAS,GNAI3,GNG5,GNG10,M

YLK2,CALML5,ADCY7,MYLK3,GNGT2 

8.58E-26 9.61E-24 

Viral Infections hsa05163: 

Human 

cytomegalovirus 

infection 

19 GNG11,ADCY3,CDK6,ADCY8,ADCY9,NFATC3,GNG8,

GNB2,ADCY6,CALML3,PTGER3,NRAS,GNAI3,GNG5,

GNG10,PPP3R2,CALML5,ADCY7,GNGT2 

6.63E-22 2.79E-20 

Signaling 

Pathways 

hsa04010: MAPK 

signaling 

pathway 

19 RAP1B,RPS6KA6,MAP3K8,PLA2G4D,FGFR4,NFATC3,

RASGRP1,TAB2,NGF,NRAS,PPP3R2,ZAK,MAPK8,PLA

2G4F,MAP3K1,MAPKAPK3,RPS6KA2,PLA2G4C,VEGF

C 

9.26E-20 2.22E-18 

Signaling 

Pathways 

hsa04020: 

Calcium signaling 

pathway 

18 ADCY3,ADCY8,ADCY9,ADRB2,CALML3,NOS2,CAMK2

D,PTGER3,PPP3R2,MYLK2,PHKA2,CALML5,ADRA1A,

ADCY7,MYLK3,CAMK2A,CAMK1D,PLCG2 

2.98E-21 1E-19 

Cellular 

Processes 

hsa04724: 

Glutamatergic 

synapse 

17 GNG11,ADCY3,ADCY8,PLA2G4D,ADCY9,GNG8,GNB2

,HOMER2,ADCY6,GNAI3,GNG5,GNG10,PPP3R2,ADC

Y7,PLA2G4F,GNGT2,PLA2G4C 

1.83E-23 1.54E-21 

Signaling 

Pathways 

hsa04926: 

Relaxin signaling 

pathway 

17 GNG11,ADCY3,ADCY8,ADCY9,RXFP2,GNG8,GNB2,A

DCY6,NOS2,NRAS,GNAI3,GNG5,GNG10,ADCY7,MAP

K8,GNGT2,VEGFC 

1.68E-22 8.06E-21 

Innate Immune 

Signaling 

Pathway 

hsa04062: 

Chemokine 

signaling 

pathway 

17 GNG11,RAP1B,ADCY3,ADCY8,STAT5B,ADCY9,GNG8,

GNB2,CXCL11,ADCY6,NRAS,GNAI3,GNG5,GNG10,A

DCY7,GNGT2,PLCG2 

5.99E-20 1.55E-18 

Cellular 

Processes 

hsa04713: 

Circadian 

entrainment  

16 GNG11,ADCY3,ADCY8,ADCY9,GNG8,GNB2,ADCY6,C

ALML3,CAMK2D,GNAI3,GNG5,GNG10,CALML5,ADC

Y7,CAMK2A,GNGT2 

6.56E-23 3.68E-21 

Signaling 

Pathways 

hsa04912: GnRH 

signaling 

pathway 

15 ADCY3,ADCY8,PLA2G4D,ADCY9,ADCY6,CALML3,CA

MK2D,NRAS,CALML5,ADCY7,MAPK8,PLA2G4F,CAM

K2A,MAP3K1,PLA2G4C 

2.52E-21 9.42E-20 

Innate Immune 

Signaling 

Pathway 

hsa04750: 

Inflammatory 

mediator 

regulation of TRP 

channels 

15 ADCY3,ADCY8,PLA2G4D,ADCY9,ADCY6,CALML3,CA

MK2D,NGF,CALML5,ADCY7,MAPK8,PLA2G4F,CAMK

2A,PLA2G4C,PLCG2 

5.31E-21 1.62E-19 

Cellular 

Processes 

hsa04725: 

Cholinergic 

synapse 

15 GNG11,ADCY3,ADCY8,ADCY9,GNG8,GNB2,ADCY6,C

AMK2D,NRAS,GNAI3,GNG5,GNG10,ADCY7,CAMK2A

,GNGT2 

4.57E-20 1.28E-18 

Viral Infections hsa05170: 

Human 

immunodeficienc

y virus 1 

infection 

15 GNG11,NFATC3,GNG8,GNB2,CALML3,TAB2,NRAS,G

NAI3,GNG5,GNG10,PPP3R2,CALML5,MAPK8,GNGT2

,PLCG2 

2.43E-16 4.53E-15 

Hemostasis hsa04611: 

Platelet 

activation 

14 RAP1B,ADCY3,ADCY8,PLA2G4D,ADCY9,RASGRP1,AD

CY6,GNAI3,MYLK2,ADCY7,MYLK3,PLA2G4F,PLA2G4

C,PLCG2 

8.3E-18 1.86E-16 

Signaling 

Pathways 

hsa04722: 

Neurotrophin 

13 RAP1B,RPS6KA6,NFKBIE,CALML3,CAMK2D,NGF,NR

AS,CALML5,MAPK8,CAMK2A,MAP3K1,RPS6KA2,PLC

G2 

1.48E-16 2.92E-15 
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