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Uukuniemi virus (UUKV) is a model system for investigating the genus Phlebovirus of the Bunyaviridae. We report the UUKV
glycome, revealing differential processing of the Gn and Gc virion glycoproteins. Both glycoproteins display poly-N-acetyllac-
tosamines, consistent with virion assembly in the medial Golgi apparatus, whereas oligomannose-type glycans required for DC-
SIGN-dependent cellular attachment are predominant on Gc. Local virion structure and the route of viral egress from the cell
leave a functional imprint on the phleboviral glycome.

The genus Phlebovirus, in the family Bunyaviridae, includes ap-
proximately 70 arboviruses with a near-worldwide distribu-

tion, many of which are zoonotic and of significance to human
health (1). Although Rift Valley fever virus (RVFV) is endemic in
many parts of Africa and the Middle East (2, 3), other phlebovi-
ruses, such as the Heartland virus (HRTV) (4–6) and severe fever
with thrombocytopenia syndrome virus (SFTSV) (7, 8), have only
recently emerged in North America and China, respectively. The
emergence of the highly pathogenic SFTSV (fatality rates near
30%), for example, has been rapid, with known lineages originat-
ing approximately 100 to 150 years ago (9). Although this genus is
a subject of intensive research (10–15), there are currently no spe-
cific therapeutics to prevent or treat Phlebovirus infection in hu-
mans. Furthermore, a detailed understanding of the posttransla-
tional modifications of the virion surface is lacking.

Uukuniemi virus (UUKV) was first isolated in 1960 from ticks
in southeast Finland (16) and has been adopted as a prototype for
studying phlebovirus ultrastructure (17, 18) and pathobiology
(19). In addition to ticks, UUKV has been serologically detected in
humans, cows, birds, reindeer, and rodents (20, 21). Like all other
phleboviruses, UUKV is enveloped and possesses a negative-sense
genome which is divided into three segments, S, M, and L. The
glycoprotein precursor, which is encoded by the M segment, is
cotranslationally cleaved in the endoplasmic reticulum (ER) by
cellular proteases into two transmembrane glycoproteins, Gn
(�70 kDa) and Gc (�65 kDa), both of which are required for host
cell entry (22). X-ray crystallographic analysis of the Gc glycopro-
tein from the closely related RVFV has revealed a class II fusion
glycoprotein architecture (23). The structure of the Gn glycopro-
tein remains unknown.

Phleboviruses enter host cells through receptor-mediated en-
docytosis (24, 25). Entry into mammalian dendritic cells is
thought to be instigated through an initial viral attachment inter-
action between virion glycoprotein-associated oligomannose-
type glycans and a tetrameric C-type lectin, DC-SIGN (26, 27).
UUKV Gn and Gc both contain four N-linked glycosylation se-
quons. It is unknown whether both viral glycoproteins are in-
volved in lectin-mediated cellular attachment.

Studies using baby hamster kidney 21 (BHK-21) cells as a
model system to examine posttranslational modifications on
UUKV have revealed that both Gn and Gc contain endoglycosi-

dase H-resistant and -sensitive N-linked glycans (26, 28, 29). Fol-
lowing upon these earlier electrophoretic analyses, we performed
a complete glycomic analysis of the N-linked glycans displayed by
UUKV. UUKV was propagated by infection of BHK-21 cells at a
multiplicity of infection of 0.1, and the cells were maintained with
Glasgow minimal essential medium supplemented with 10%
tryptose phosphate broth and 5% fetal bovine serum at 37°C in an
atmosphere containing 5% CO2. Media containing secreted
UUKV were collected 42 h following infection. Cell supernatants
were clarified and virions were concentrated by ultracentrifuga-
tion through a 20% sucrose cushion, as previously described (30).
Virus pellets were resuspended in neutral-pH buffer.

The purity and sample integrity of concentrated UUKV virions
were verified by electrophoretic analysis (Fig. 1A) and electron
cryo-microscopy (cryo-EM) (Fig. 1B), respectively. Consistent
with previous structural analyses of phleboviruses (17, 31–33),
electron micrographs revealed spherical virions, with glycopro-
tein spikes extending from the viral membrane. Binding of puri-
fied UUKV virions to recombinant DC-SIGN ectodomain was
confirmed by ELISA, demonstrating the functional integrity of the
virions in the context of receptor recognition (Fig. 1C and D).
These data confirmed that our UUKV was of sufficient quality and
purity to warrant mass-spectrometric analysis of virion-associ-
ated N-linked glycosylation (Fig. 1E).

To study the N-linked glycome of UUKV, SDS-PAGE gel
bands corresponding to the Gn and Gc glycoproteins were excised
and digested with PNGase F, as previously described (34, 35). Gn
and Gc glycans were subjected to ion mobility mass spectrometry
(electrospray ionization) and collision-induced dissociation
(CID) analysis, a highly sensitive method which can separate con-
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taminating compounds resulting from the extraction process
(36). Mass spectrometry was carried out in negative-ion mode
with a Waters Synapt G2 traveling wave ion mobility mass spec-
trometer (Waters MS Technologies, Manchester, United King-
dom). We resolved singly, doubly, and triply charged glycan ions
by the computational mining of a Waters Driftscope plot, which
displays m/z versus drift time (Fig. 1E). The mass of each glycan
was used as a fingerprint to reveal monosaccharide composition.
Negative-ion fragmentation analysis confirmed these assignments
and enabled accurate assignment of isomers (37–40). A represen-
tative analysis of five glycan ions is presented in Fig. 2.

The ESI mass spectra of the isolated Gn and Gc glycans are
shown in Fig. 3 and 4, respectively, and reveal that although both
glycoproteins display a mixture of fully processed and underpro-
cessed glycans, Gc has a greater level of underprocessed glycans
than Gn (Man5–9GlcNAc2; green peaks in Fig. 3 and 4). The total

spectrum of Gn was dominated by complex-type structures (Fig.
3A), with a prominent population of disialylated, core-fucosy-
lated biantennary glycans (m/z 1,183.9). Smaller populations of
monosialylated mono- and biantennary structures were also ob-
served, together with a number of hybrid- and oligomannose-type
structures. This spectrum contrasts that of the total spectrum of
Gc (Fig. 4A), which had only a minor population of disialylated
complex-type glycans and larger populations of lesser-processed
hybrid- and oligomannose-type glycans (e.g., Man5Gal1GlcNAc3

and Man5–9GlcNAc2, respectively). These differences in glycan
composition are also reflected in our electrophoretic analysis,
where the relatively sharp band of Gc correspondingly exhibited
more homogenous and less biosynthetically processed glycans
than the more diffuse band of Gn (Fig. 1A).

Mining of the computational Driftscope plot (Fig. 1E) demon-
strated that many glycan species were suppressed in the total ion

FIG 1 UUKV preparation, DC-SIGN binding and glycan isolation. (A) SDS-PAGE analysis with Coomassie staining revealing protein bands corresponding to
the structural proteins Gn, Gc, and N. (B) Cryo-EM of purified UUKV virions. Purified UUKV from BHK-21 cells was vitrified by rapid plunge-freezing on
electron microscopy grids (C-flat; Protochips, Raleigh, NC, USA) into liquid ethane. Electron cryomicroscopy was performed using a 300-kV transmission
electron microscope (F30 Polara; FEI, Eindhoven, Netherlands) operated at a temperature of approximately 100 K. Images of UUKV were taken at �5 �m
defocus using a charge-coupled device (CCD) camera (Ultrascan 4000SP; Gatan, Pleasanton, CA) at a nominal magnification of 59,000�, corresponding to a
calibrated pixel size of 0.2 nm with a dose of approximately 20 e�/Å2. (C) Reducing SDS-PAGE analysis with Coomassie staining of purified DC-SIGN
ectodomain (DC-SIGNecto), revealing two bands corresponding to monomeric (white arrowhead) and putative residual, tetrameric (black arrowhead) species.
DC-SIGNecto containing the C-terminal carbohydrate recognition motif and five tandem repeats (residues 135 to 404; UniProt accession number Q9NNX6,
synthesized by GeneArt) was cloned into the pHLsec vector and expressed in human embryonic kidney (HEK) 293S cells (58, 59). His-tagged DC-SIGNecto was
purified by metal affinity and size exclusion chromatography. (D) ELISA plot showing the interaction between tetrameric DC-SIGNecto and immobilized UUKV
virions. Binding of UUKV to DC-SIGNecto was determined by ELISA in the presence of 20 mM HEPES buffer containing 100 mM NaCl, 2 mM CaCl2. UUKV in
complex with DC-SIGNecto was detected with a rabbit anti-hexahistidine antibody (ab9108; Abcam, Cambridge, United Kingdom). Horseradish peroxidase-
conjugated goat anti-rabbit IgG (PI-1000; Vector Laboratories, Peterborough, United Kingdom) was added to the sandwich ELISA for detection using the ABTS
[2,2=-azinobis(3-ethylbenzthiazolinesulfonic acid)] kit (Vector Laboratories). (E) Driftscope plot (drift time against m/z, negative ions, log scale) of N-linked
glycans from the UUKV Gn (left) and Gc (right) glycoproteins. Regions occupied by singly (oval 1), doubly (oval 2), and triply (oval 3) charged glycan ions
contain the ions displayed and analyzed in subsequent figures.
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spectra (Fig. 3A and 4A), particularly in the analysis of Gn. Anal-
ysis of singly charged populations (Fig. 3B and Fig. 4B) enabled
detailed examination of glycans that were obscured by the more
dominant populations. The improved signal-to-noise ratio
achieved by this extraction process enabled additional low-abun-
dance structures to be detected, and we were able to resolve a
minor population of oligomannose-type structures on Gn (e.g.,
m/z 1,817.5). These results reveal that Gc displays a greater abun-
dance of oligomannose-type glycans, yet both Gn and Gc exhibit
ligands for DC-SIGN. However, it is unknown which of these are
accessible for lectin recognition during cell entry.

Steric occlusion of N-linked glycans can impose compositional
constraints upon the viral glycome through the inhibition of gly-
can biosynthesis in the host cell (35). This can be achieved through
intramolecular glycan-glycan or glycan-protein interactions, as
illustrated by the glycosylation of gp120 from human immunode-
ficiency virus type 1 (HIV-1) (41). Similarly, glycan-protein inter-
actions have a functional role for dengue virus, leading to the
formation of oligomannose-type glycans and a productive inter-
action with DC-SIGN (42).

It is possible to postulate which enzymatic steps are most sen-
sitive to disruption due to the physical presentation of glycans

FIG 2 Examples of mobility-extracted, negative ion CID (transfer region) spectra of representative N-linked glycans from UUKV. (A) Man5GlcNAc2; (B)
Man9GlcNAc2; (C) Man5GlcNAc3Gal1; (D) Man3GlcNAc4Gal2Fuc1; (E) Man3GlcNAc4Gal2Fuc1Neu5Ac1. A key to the symbols used for the glycan structures is
displayed in the upper right hand corner of panel A (60). Ion nomenclature follows that proposed by Domon and Costello (61) with spectral interpretation
performed as described by Harvey et al. (38, 40).
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during UUKV biogenesis. In contrast to the competing reactions
that occur in the medial and late Golgi apparatus, the early stages
of glycan processing in the ER and cis-Golgi are comparably linear
(43). In our analysis of both UUKV Gn and Gc, there is no evi-

dence that any one step of glycan biosynthesis is absolutely inhib-
ited. However, the presence of the Man6 –9GlcNAc2 series, partic-
ularly on Gc, indicates reduced sensitivity to ER �-mannosidase I
and Golgi �-mannosidases IA to -C (Fig. 3 and 4). Similarly, the

FIG 3 Mass-spectrometric analysis of N-linked glycans from UUKV Gn. (A) Raw electrospray ionization spectrum; (B to D) corresponding spectra of isolated
glycans with singly (B), doubly (C), and triply (D) charged ions. Fragment ions are annotated with an encircled F. Neutral glycans form [M�H2PO4]� ions.
Sialylated glycans form [M�H]� (singly charged), [M�H2]2� (doubly charged), and [M�H3]3� (triply charged) ions. Peaks corresponding to Man5–9GlcNAc2

are green. Symbols used for glycan structures are defined in the legend to Fig. 2.
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presence of Man5GlcNAc2 indicates an inefficiency of GlcNAc
transferase (GnT) I (Fig. 3 and 4). Finally, the presence of hybrid-
type glycans on Gc, which are typically at very low abundance, can
be attributed to lessened sensitivity to Golgi �-mannosidase II

(43). Our comparison of Gn and Gc glycan composition shows
that Gn exhibits more highly processed glycans than Gc and is
therefore more likely to be accessible to processing enzymes.

Due to the presence of complex-type glycans on both glyco-

FIG 4 Mass-spectrometric analysis of N-linked glycans from UUKV Gc. (A) Raw electrospray ionization spectrum; (B to D) corresponding spectra of isolated
glycans with singly (B), doubly (C), and triply (D) charged ions. Neutral glycans form [M�H2PO4]� ions. Sialylated glycans form [M�H]� (singly charged),
[M�H2]2� (doubly charged), and [M�H3]3� (triply charged) ions. Peaks corresponding to Man5–9GlcNAc2 are green. Symbols used for glycan structures are
defined in the legend to Fig. 2.
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proteins, we deduce that the underprocessed glycans arise as a
result of steric occlusion, rather than differential transit through
the host cell. Driftscope analysis of doubly and triply charged ions
enabled identification of glycan structures not previously reported
for phleboviruses (Fig. 3C and D; Fig. 4C and D). In both spectra
of Gn and Gc glycans, we observed a small population of large and
highly processed poly-N-acetyllactosamine extensions. Poly-N-
acetyllactosamines have been observed on the nonstructural
NS1-B glycoprotein of influenza B virus, on a variety of isolates
derived from a range of cell types (44). Such structures have also
been observed on macrophage-derived HIV-1 (45) and HIV-2
(46) as well as on the small hydrophobic protein of human and
bovine respiratory syncytial viruses derived from bovine nasal tur-
binate cells and HEp-2 cells, respectively (47).

Poly-N-acetyllactosamine structures arise through the dual ac-
tion of medial-Golgi apparatus-resident �1-4-galactosyltrans-
ferase and GnT V (which catalyzes the transfer of GlcNAc�1-6 to
galactose). Although no functional role has been ascribed to phle-
boviral poly-N-acetyllactosamine structures, we suggest that their
presence provides a marker for phlebovirus biosynthesis and is
indicative of prolonged glycan residence time in the medial Golgi
apparatus (48). This hypothesis is supported by previous studies
by Nabi et al., which revealed a direct correlation between the rate
of Golgi-residence egress and the extent of poly-N-acetyllac-
tosamine formation (49, 50). This observation is entirely consis-
tent with established pathways of UUKV glycoprotein biosynthe-
sis and assembly, where Gn-Gc heterodimers (51), produced in
the ER, are retained in the medial Golgi apparatus as a result of a
Golgi retention signal in the cytoplasmic tail of Gn (52, 53). Such
prolonged localization during phleboviral assembly is also consis-
tent with viral budding taking place in the ERGIC (ER-Golgi in-
termediate compartment) and Golgi apparatus (54, 55).

Here, through the application of ion mobility mass spectrom-
etry, we have structurally characterized the glycans presented on
the Gn and Gc glycoproteins from the mature UUKV virion. Sur-
prisingly, we observed that both glycoproteins display a range of
glycans spanning from ER-associated oligomannose-type to large
and highly processed poly-N-acetyllactosamine structures. We
show that even though the major class of glycosylation on Gn was
of the highly processed complex type, there were small popula-
tions of hybrid- and oligomannose-type glycans. In contrast, Gc
was dominated by DC-SIGN-binding, oligomannose-type gly-
cans, with remaining structures primarily of the hybrid type.

Viral glycan structure and composition are key determinants
in virus-host pathobiology and may be modulated by both the
virus and the host (35). In the case of UUKV phlebovirus, our
analysis defined populations of mannose-terminating glycan
structures on the virion surface and demonstrated direct recogni-
tion of the virion by DC-SIGN, consistent with C-type lectin cell
attachment (26). We also observed two examples of differential
processing of the Gn and Gc glycoproteins. First, despite exiting
more slowly from the ER than Gn (28) and thus having longer
exposure to �-mannosidases, Gc showed a higher proportion of
oligomannose-type glycans than Gn. Second, despite being osten-
sibly exposed to processing enzymes during virion assembly in
the Golgi apparatus, Gc exhibited somewhat smaller poly-N-
acetyllactosamine extensions than Gn. These observations lead us
to propose that structural constraints limit UUKV glycan process-
ing, predominantly on the Gc glycoprotein.

There is an interesting paradox that steric occlusion drives the

formation of oligomannose-type glycans while not precluding the
productive interaction of these same glycans with cellular recep-
tors. This may arise because glycan processing is highly sensitive to
intramolecular glycan-protein interactions. For example, the oc-
clusion of a single glycan branch may prevent processing of the
entire glycan, leaving functionally important termini exposed for
receptor recognition. Alternatively, this phenomenon may arise
because cellular receptors are smaller than glycan processing en-
zymes. The immunological properties of oligomannose-type gly-
cans are also of interest. They can be potent activators of the innate
immune system and as immunologically “self” structures do not
elicit a strong antibody response (56). Although potent neutraliz-
ing antibodies have now been identified that recognize mixed gly-
can-protein epitopes (57), one may expect a limited antibody re-
sponse against oligomannose-type glycans.

In conclusion, we suggest that the extremes of glycan process-
ing result from a combination of local viral protein architecture
and the route of virus egress through the cell. Given the correla-
tion between the biosynthetic pathway and the observed glycan
structures, we postulate that low-abundance poly-N-acetyllac-
tosamines are a conserved feature of the Phlebovirus genus. Our
glycomic analysis reveals virion-directed glycosylation strategies
for host cell entry, provides a sensitive reporter for the route of
virion assembly, and refines the antigenic surface of phlebovi-
ruses.
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