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Abstract: Based on the statistical self-similar fractal characteristics of the microstructure of porous
media, the total flow rate and permeability of Newtonian fluids in the rough fracture network and
rough matrix pores are derived, respectively. According to the connection structure between fractures
and pores, the permeability analysis model of fluids in a matrix-embedded fracture network is
established. The comparison between the predicted values of the model and the experimental data
shows that the predicted values of the permeability of the rough fracture network and the rough
matrix pores decrease with the increase in the relative roughness of the fractures and matrix pores,
and are lower than the experimental data. Meanwhile, the predicted total flow rate of a rough
fractured dual porous media is lower than that of a smooth fractal model and experimental data.
In addition, it is also found that the larger the average inclination angle and the relative roughness
of the fracture network, the smaller the permeability of the fractured dual porous media, and the
relative roughness of the fracture network has a far greater influence on fluid permeability in the
fractured dual porous media than the relative roughness of the matrix pores.

Keywords: Newtonian fluid; fractured dual porous media; permeability; rough

1. Introduction

Natural porous media, such as oil and gas reservoirs, coal reservoirs, mineral resources,
groundwater resources, and rock and soil, not only contain micropores, but also have a
large number of large-scale channels and fractures. The study on the seepage characteristics
of the fluid in this kind of rough fracture dual porous media has important significance
and wide practical application fields, such as the spontaneous self-priming of fluids in
rough porous media [1], effective thermal conductivity and heat and mass transfer [2,3],
development of tight oil and gas reservoirs, transportation of natural gas in complex
pores of tight sandstone [4,5], control of working fluid leakage and reservoir protection in
fractured oil and gas reservoirs [6], regular packing in industrial separation processes [7],
fractal study on electrolyte diffusion in charged porous media [8], and the improvement of
fuel cell performance [9].

Previous studies have shown that the pore size distribution of porous media satisfies
the fractal relationship [10,11]. Yu et al. [12] gave the statistical characteristics of porous
media based on fractal theory, proposed a unified model suitable for fractal porous media,
and gave the criteria for judging whether porous media can be studied by fractal theory.
Since the seepage characteristics of fluids in porous media are affected by many factors.
Considering the shape, the spatial distribution of pores, and the characteristics of the fluids
in rock formations, scholars have proposed various models and methods to simulate fluid
flow in the porous medium. Based on fractal features, Yu et al. [13] considered factors such
as tortuosity, particle size, pore area, and porosity, and used the box counting method to
calculate the fractal dimension, established a bidisperse porous media model and verified
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its effectiveness. Based on fractal theory, Wang et al. [14] equated fractured rocks with rect-
angular and elliptical pipes with cross-sections, respectively, and established a prediction
model for the total flow rate and effective permeability of power-law fluid in porous media.
Zhu et al. [15] used the tree-like fractal bifurcation network to characterize the fracturing
fracture morphology of low permeability reservoirs, established the permeability model of
the fracturing fracture network with elliptical and rectangular cross-sections, and discussed
the influence of fracture bifurcation series, fracture aspect ratio, cross-section shape and
other factors on the permeability of the fracture network. The analytical expression of the
relative permeability of wet and non-wet phases was derived by Cai et al. [16], based on
the fractal characteristics of pore size distribution and tortuosity in porous media. These
models have been established based on fractal theory. Zhang et al. [17] combined the
multi-scale finite element method with deep learning to simulate the flow of fluids in
porous media based on a set of coarse grids and a set of fine grids. Zeng et al. [18] based on
capillary bundles and tree-like network models, established apparent permeability models
of gas in single capillaries and fractures by considering such factors as dynamic variation
of fracture width, water saturation and actual gas effect, and provided the influence of
matrix structural parameters on permeability. Although the above studies have made some
progress, only one smooth feature is considered.

The fracture network is embedded into the matrix porous medium to form the so-
called dual porous media, and dual porous media is widely present in nature. When
exploiting natural gas resources or solving surface pollution problems, dual porosity and
dual porous media are involved. Therefore, the transport characteristics of dual-porosity,
dual porous media has aroused extensive and lasting research interest. Miao et al. [19]
extended the fractal porous media theory to fracture networks and deduced the perme-
ability research model of fracture-pore porous media and found that the maximum pore
diameter and maximum trace length have a great influence on fluid seepage characteristics.
Miao et al. [20] also considered the transfer flow behavior of fluids from matrix pores to
fractured media, and proposed a dimensionless permeability model for porous media,
finding that the ratio of fracture pressure difference to matrix pore pressure difference
has an important impact on fluid flow from matrix pores to fractured media. Based on
the topology model and complex network theory, Zhu et al. [21] proposed the power-law
distribution of edges with node degree and established the permeability analytical formula
of the dual porous medium, and found that the self-similarity index and the clustering
coefficient of pore nodes play a decisive role in the permeability characteristics of the dual
porous medium. By considering the channeling between the capillary bundle and the
fracture, Wu et al. [22] established the effective permeability model of a power-law fluid
in a fracture-pore type medium and found that the effective permeability of power-law
fluid in a dual porous medium would be affected by the characteristics of the power-law
fluid, structural parameters of fractures and pores, and pressure difference. Xiong et al. [23]
represented rock fractures and pores as elliptical cross-section microtubules, calculated
the permeability of a three-dimensional fracture network under the action of periodic
pressure, and analyzed the variation rule of permeability. These are all studies of smooth
porous media.

Since smooth surfaces are almost non-existent in nature, any surface (such as skin,
desktop, road, glass, and tiny devices), regardless of its smoothness, is microscopically
displayed as rough because of a large number of structural defects or geometric defects.
Rough topography has an important influence on other transport mechanisms such as the
flow resistance of fluids along rough surfaces, so it is necessary to characterize and describe
the characteristics of rough surfaces accurately and simply. Qu [24] summarized the de-
scription methods of rough fracture structures, including raised height characterization
method, joint roughness coefficient method, and fractal dimension method, and got the
rough fracture surface characteristic description parameters such as tortuosity, roughness,
and inclination. In practical research, fractal dimension, tortuosity, roughness, and inclina-
tion are generally used to characterize the rough surface of the rock stratum. Yang et al. [25]



Materials 2022, 15, 4662 3 of 26

simplified the rough element on the surface of the microchannel into a cone and proposed
the permeability fractal model of the rough capillary bundle, the effect of relative roughness
on microchannel permeability was studied. Xiao et al. [26] derived the fractal model of
fluid flow through a single rough curved capillary in fibrous porous media, elucidating
the physical properties of fluid flow in a rough fiber porous medium. Liang et al. [27]
calculated the immersion depth of the fluid in the curved capillary and used fractal theory
to discuss the effect of relative roughness with immersion depth. He et al. [28] introduced
tortuosity based on a fractal binary tree model, established a fractal network model of
tortuosity fractal binary tree, and obtained the fluidity change law of gas in the shale
reservoir fracture network. All the above models studied the permeability of the fluid in a
single rough fracture but did not study in-depth the effect of roughness on fluid seepage in
dual porous media.

Zhang et al. [29] wrote a calculation program based on the Boltzmann method to
simulate the fluid flow in a single fracture with different JRC values and openings, and
compared the simulated values with the results of the tortudic modified cubic law without
considering roughness, and found that the tortudic modified cubic law predicted the
flow with a certain deviation. Wang et al. [30] made 30 fractured rock samples with
10-level roughness (JRC value) and 3 different gap widths made by 3D printing technology
into interpenetrating and filled fractured rock samples, and tested their permeability.
Experiment data show that when the confining pressure is small, the greater the roughness,
the greater the difference in fracture permeability of rock samples with different gap widths.
Based on ten Barton standard lines, Li et al. [31] used COMSOL numerical simulation
software to establish a rough single-fracture seepage model to detect the change of seepage
velocity under different roughness. The results showed that the larger the roughness
coefficient (JRC), the smaller the maximum and average flow velocity of fluid seepage.
They described the effect of roughness on fluid seepage qualitatively, and considered
that roughness is one of the important factors to be considered in the study of fluid
seepage characteristics in fractures. According to the actual physical significance, roughness
can reduce the actual fluid flow space, increase the flow resistance, and then reduce the
permeability. Therefore, roughness is a factor that cannot be ignored.

Considering the roughness factor can result in a more comprehensive analysis of the
permeability variation trend of porous media, and can also improve the accuracy of the
model. At the same time, the roughness model can also be extended to other research
fields, such as the development of shale gas, the study of thermal conductivity of porous
media, and the development of tight oil and gas reservoirs. The literature [29–31] did not
quantitatively describe the roughness. In order to quantitatively study the influence of
roughness on permeability variation trend, based on the fractal theory and the basic formula
of fluid mechanics, the permeability model of rough dual porous media is established. In
Section 2, the fractal theory of fracture and pore size distribution in fractured dual porous
media is presented. In Section 3, the rough surface of the fractured dual-porous media
is characterized, and the specific expression of relative roughness is given. In Section 4,
the permeability model of coarse fractured dual porous media is derived. In Section 5, the
effectiveness of the model is verified by comparing the predicted values with experimental
data, and the influence of structural parameters on the permeability of fractured porous
media is studied. In Section 6, the conclusions of this study are given.

2. Fractal Theory of Fractured Dual Porous Medium

Many studies have shown that the pore size distribution of porous media meets the
fractal scale law [10–12,32,33]. Yu et al. [33] gave the fractal scale relation of pore size
distribution. Miao et al. [19] extend the fractal scale rate into the fracture network and give
the fractal scale relationship of the distribution of fracture trace length. In this section, the
fractal scale law is further extended to the fractured dual porous media, and the fractal
relations satisfied by pore diameter and fracture trace length are given, respectively.
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A fractured double porous medium is composed of a fracture network and porous
matrix, because the representative elementary volume of the fracture network is much larger
than that of the matrix pore [15,19], so the following research is based on the representative
elementary volume of the fracture network. Figure 1 is the cross-section structure diagram
of the representative elementary volume of the fracture network.
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Figure 1. The cross-section structure diagram of the representative elementary volume of the
fracture network.

Due to the difference in geological structure, the diagenetic environment, and other
factors, the fractures and matrix pores have different morphological characteristics, and
their cross-sections may be: rectangular, polygonal, circular, ellipse, etc. For fractured dual
porous media, to simplify the model, it is assumed that the cross-section of the fracture is
rectangular and the shape of the fracture is represented by a cuboid. The cross-section of
the matrix pores is circular, and its structure is characterized by a capillary bundle model.
Figure 2 is the characterization diagram of the rough fracture, the fracture opening is a,
the fracture trace length is l, and the fracture inclination angle is θ. Figure 3 shows the
characterization diagram of the rough capillary, the diameter of the capillary is λ, the
characteristic length is L0, and the actual length is Lt. Additionally, the fractal theory of
fractures and pores is established based on Figures 2 and 3, respectively.
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2.1. Fractal Theory of Fracture Networks

Since the trace length of fractures satisfies the fractal scaling law [12,19], its power law
expression can be written as [33]:

N(L ≥ l) ∝ l−D f , lmin < l < lmax (1)

where N(l) represents the total number of fractures whose trace lengths are greater than
or equal to l, and lmin and lmax represent the minimum and maximum lengths of fracture
traces in the fracture network, respectively. D f represents the fractal dimension of fracture
trace length in two dimensions, 0 < D f < 2, in three dimensions, 0 < D f < 3 . According
to the fractal scaling relationship [13,19], Equation (1) can be further rewritten as:

N(L ≥ l) = kl−D f (2)

where k is the scale factor and an unknown quantity, lmin ≤ l ≤ lmax. Due to the large num-
ber of fractures in the fracture network, Equation (2) can be approximated as a continuously
differentiable equation, then the number of fractures in [l, l + dl] is:

− dN(l) = kD f l−(D f +1)dl (3)

where the negative sign indicates that the number of fractures decreases with the increase
in fracture trace length, which is the same as the actual situation. The total number of
fracture trace lengths between lmin and lmax is denoted as Nt. According to Equation (3),
there holds:

−dN(l)
Nt

=
k

Nt
D f l−(D f +1)dl = f (l)dl (4)

where f (l) is the trace length of the fracture, that is:

f (l) =
k

Nt
D f l−(D f +1) (5)

normalized by the probability density function, there holds:

∫ lmax

lmin

f (l)dl =
k

Nt
lmin

−D f

[
1−

(
lmin

lmax

)D f
]

= 1 (6)

and in porous media there is lmin/lmax < 10−2, i.e., lmin << lmax, there holds:

k
Nt

lmin
−D f = 1 (7)

the expression of k is:
k = Ntlmin

D f (8)

substituting Equation (8) into Equation (5), the exact expression for the probability density
function is:

f (l) = D f lmin
D f l−(D f +1) (9)
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Yu et al. [13,34] gave the total number of pores when the size distribution of pore
diameters satisfies the fractal scaling rate, Majumdar et al. [35] gave the total number of
rough spots on the engineering surface, When studying the pores of porous media, it
can be compared with the contact points on engineering surfaces, so the total number of
fractures is:

Nt =

(
lmax

lmin

)
D f (10)

substituting Equation (10) into Equation (8), we obtain the exact value of the proportionality
coefficient k:

k = lmax
D f (11)

then substitute Equation (11) into Equation (3) to obtain the exact fractal scaling rate
satisfied by the fracture trace length:

− dN(l) = D f lmax
D f l−(D f +1)dl (12)

Yu et al. [12,34] presented the relationship between porosity and fractal dimension
when studying fractal scaling rate of porous media. Then, the fractal dimension of the
fracture trace length can be defined as:

D f = dE −
ln φ f

ln(lmin/lmax)
(13)

where dE is Euclid dimension, dE is 2 in two dimensions, dE is 3 in three dimensions, φ f
represents the porosity of the fracture network, and refers to the ratio of the total area Ap f
of fracture pores to the total area A f of cross-section in the cross-section of the fracture
network representative elementary volume. According to Equation (13), the expression of
porosity φ f of the fracture network can be written as:

φ f = (lmin/lmax)
dE−D f (14)

at the same time, according to the physical meaning of fracture network porosity φ f , φ f
can also be defined as [36]:

φ f = Ap f /A f (15)

where A f is the cross-sectional area of the representative elementary volume, Ap f represents
the total area of fractured pores in that area. According to Equation (12), the total area
Ap f of fracture pores on the cross-section of the representative elementary volume can be
calculated as [36]:

Ap f = −
∫ lmax

lmin

a · ldN =
βD f l2

max

2− D f

(
1− φ f

)
(16)

then substitute Equation (16) into Equation (15), and the cross-sectional area A f of the
fracture network representative elementary volume is obtained as [36]:

A f =
Ap f

φ f
=

βD f l2
max

2− D f

(
1− φ f

)
φ f

(17)

where β = a/l, l is the length of the fracture, a is the opening of the fracture. According to
Equation (12), the total trace length of the fractures in the feature element body is:

Ltotal = −
∫ lmax

lmin
ldN(l) =

∫ lmax
lmin

D f l
D f
maxl−D f dl

=
D f

1−D f
lmax

[
1−

(
lmin
lmax

)1−D f
] (18)
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according to Equation (14), Equation (18) can be further simplified as:

Ltotal =
D f

1− D f
lmax

(
1− φ f

1−D f
2−D f

)
(19)

In a two-dimensional fracture network, the fracture areal density D is defined as [37]:

D =
Ltotal
A f

(20)

substituting Equations (17) and (19) into Equation (20), the expression of fracture areal
density D is [36]:

D =

(
2− D f

)(
1− φ f

1−D f
2−D f

)
φ f

βlmax

(
1− D f

)(
1− φ f

) (21)

Equation (21) shows that the areal density of the fracture network is a function of
the maximum length lmax of the fracture, and the proportional coefficient β, the fracture
porosity φ f , and the fractal dimension D f of the fracture length.

2.2. Fractal Theory of Matrix Pores

Considering the matrix porous medium as a curved capillary whose pore diameter
satisfies the fractal scaling law [13,34], the total number N(λ) of pores with diameters
greater than or equal to λ meets the fractal scale rate:

N
(
λ′ ≥ λ

)
= (λmax/λ)Dp , λmin < λ < λmax (22)

where λmin and λmax are the minimum and maximum values of pore diameter, respectively.
Dp is the fractal dimension of pore diameter, and its value range is the same as that of
fracture length. The total number of pores is:

Nt(λ ≥ λmin) = (λmax/λmin)
Dp (23)

due to the large number of matrix pores, Equation (23) can also be regarded as continuously
differentiable functions. The number of pores in [λ, λ + dλ] is:

− dN(λ) = Dpλ
Dp
maxλ−(Dp+1)dλ (24)

where the negative sign indicates that the total number of pores decreases with the increase
in pore diameter, which is the same as the actual situation. According to Equations (23)
and (24), the probability density function of pore diameter is:

f (λ) = Dpλ
Dp
minλ−(Dp+1), (25)

According to the relationship between porosity and fractal dimension [12,34], the
fractal dimension Dp of the pore diameter can be defined as:

Dp = dE −
ln φm

ln(λmin/λmax)
(26)

where dE is Euclidean dimension, φm is the porosity of the matrix pores, which refers to the
ratio of the total pores area Ap to the cross-sectional area Am in the cross-section of matrix
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representative elementary volume, according to Equation (26). The effective porosity of
matrix porous media can be expressed as [12,34]:

φm =

(
λmin

λmax

)dE−Dp

(27)

at the same time, according to the physical meaning of matrix porosity φm, φm can be
expressed as [36]:

φm =
Ap

Am
(28)

According to Equation (24), the total pore area on the cross-section of matrix represen-
tative elementary volume can be calculated as:

Ap = −
∫ λmax

λmin

πλ2

4
dN =

πDλ2
max(1− φs)

4
(
2− Dp

) (29)

according to Equation (28), the cross-sectional area of matrix representative elementary
volume is expressed as:

Am =
Ap

φm
=

πDpλ2
max

4
(
2− Dp

) 1− φm

φm
(30)

The average diameter of pores according to Equations (24) and (25) is:

λ =

λmax∫
λmin

λ f (λ)dλ =
Dp(

Dp − 1
)λmin

[
1−

(
λmin

λmax

)Dp−1
]

(31)

The actual length Lt(λ) and characteristic length L0 of the capillaries satisfy the
relation [12,34]:

Lt(λ) = λ1−DT LDT
0 (32)

The tortuosity is defined as [38]:

τ =
Lt

L0
=

(
L0

λ

)DT−1
(33)

The average tortuosity is defined as [39]:

τ =
1
2

1 +
1
2

√
1− φm +

√
1− φm

√(
1√

1−φm
− 1
)2

+ 1
4

1−
√

1− φm

 (34)

The tortuosity fractal dimension DT can be defined as [34,40]:

DT = 1 +
ln τ

ln L0
λ

(35)

where τ is the average tortuosity of the capillary, and L0 is the characteristic length of the
capillary. λ is the average diameter of the pores, 1 < DT < 2 in two-dimensional space,
1 < DT < 3 in three-dimensional space. When DT = 1, the capillary is straight, the greater
the DT , the greater the bending degree of the capillary.

3. Characterization of Rough Surfaces of Fractured Double Porous Media

Qu et al. [24] presented the description methods of rough surface: fractal dimension
method, convex height characterization method, tortuosity, roughness and inclination
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angle. Yang et al. [25] used the convex height method to represent rough elements with
cones. He et al. [28] use tortuosity to characterize rough surfaces, They both quantitatively
studied the effect of rough surfaces on permeability. In this section, the cone-shaped
roughness element model is introduced into the fractured dual porous media, and the
roughness representation of fracture and pore surface is given, respectively, according to
the distribution of roughness element on the fractured rock surface meets the fractal scale
rate [41,42].

3.1. Characterization of Rough Surfaces of Fracture Networks

In the following research, Rough elements of rough fracture surfaces are approximated
as cones [25,43,44], analogous to Equations (1) and (22), the distribution of the bottom
diameter d of the cone follows the fractal scaling law [41,42]:

N
(
d′ ≥ d

)
= (dmax/d)Ds (36)

Equation (36) is the fractal scaling law satisfied by the cumulative number N(d) of
a rough element whose bottom diameter is greater than or equal to d. Due to a large
number of rough elements, Equation (36) can be considered continuous and differentiable.
Differential with Equation (36), the number of rough element bottom surface diameter in
[d, d + dd] is:

− dN(d) = DsdDs
maxd−(Ds+1)dd (37)

where Ds is the fractal dimension of the bottom diameter of the cone, and the larger Ds,
the larger the bottom diameter of the rough element, in two dimensions, 1 < Ds < 2, in
three dimensions, 1 < Ds < 3. By analogy with Equations (13) and (26), Ds can be defined
as [12,34]:

Ds = dE −
ln φs

ln(dmin/dmax)
(38)

where φs denotes the percentage of the total bottom area S1 of all cones to the total surface
area S0 of fractures in a fracture network representative elementary volume, and dE is the
Euclidean dimension. According to Equation (38), φs is [12,34]:

φs = (dmin/dmax)
dE−Ds (39)

At the same time, according to the physical meaning of φs, φs can also be defined
as [25]:

φs =
S1

S0
(40)

where S1 is the total undersurface area of all cones in the representative elementary volume
of the fracture network, and S0 is the total area of the fracture surface. The ratio of the
height of the cone to the diameter of the base is denoted as σ, that is:

σ = h/d (41)

where d is the bottom diameter of the cone, and h is the height of the cone. The bottom area
Si and volume Vi of a small cone can be expressed as:

Si =
πdi

2

4
(42)

Vi =
1
3

Sihi =
πd3

i σ

12
(43)
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According to Equation (37), the total volume Vt and the total bottom area S1 of all
cones in the fracture network representative elementary volume are:

Vt = −
∫ dmax

dmin

VidN =
πσ

12
Ds

3− Ds
d3

max

(
1−

(
dmin

dmax

)3−Ds
)

(44)

S1 = −
∫ dmax

dmin

SidN =
π

4
Dsd2

max
2− d

(1− φs) (45)

According to Equations (40) and (45), the total area of the fracture surface is:

S0 =
S1

φs
=

π

4φs

Dsd2
max

2− d
(1− φs) (46)

According to the total volume expression by Equation (44) for all cones and the total
area expression by Equation (36) for the fracture surface, the effective average height of the
cone can be expressed as [25,43–45]:

hs =
Vt

S0
=

σφsdmax

3
2− Ds

3− Ds

1− (dmin/dmax)
3−Ds

1− φs
(47)

Then, the relative roughness of the fracture surface is:

εr =
2hs

a
=

2σφsdmax

3a
2− Ds

3− Ds

1− (dmin/dmax)
3−Ds

1− φs
(48)

In Equation (48) are functions of fracture opening a, fractal dimension Ds of rough
element bottom diameter, maximum value dmax and minimum value dmin of rough element
bottom diameter, and proportional coefficient σ. When the effective average height of the
small cone h = 0, i.e., σ = 0, the fracture surface is smooth, i.e., εr = 0. This corresponds to
the actual physical meaning.

3.2. Characterization of Rough Surfaces of Matrix Pores

Similar to the characterization of the rough elements of the fracture network, the surface
rough masses of the curved capillary channel can also be approximated as cones [25,43,44],
according to Equations (44) and (46). The effective average height of rough elements on
rough capillaries can be expressed as:

hc =
Vt

S0
=

σφsdmax

3
2− Ds

3− Ds

1− (dmin/dmax)
3−Ds

1− φs
(49)

The relative roughness of the rough capillary bundle microchannel is [25,43,44]:

εc =
hc

λ/2
=

2σφsdmax

3λ

2− Ds

3− Ds

1− (dmin/dmax)
3−Ds

1− φs
(50)

Equation (50) shows that the greater the effective average height of the rough element,
the greater the relative roughness of the capillary channel. When the effective average
height of the rough element is zero, the capillary channel surface is smooth.

4. Fractal Model of Seepage in Rough Fractured Dual Porous Media

Miao et al. [19] established a fracture network permeability model considering the
spatial orientation of fractures. The distribution of fractures in space is generally charac-
terized by azimuth, dip angle, and strike [19,46]. The spatial distribution of fractures is
shown in Figure 4 below [47], where AB is the fracture strike, CD is the maximum inclined
direction, θ is the fracture inclination, and α is the fracture azimuth. Due to a large number
of fractures in complex fracture networks and random distribution patterns in space, to
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simplify the study of fluid permeability in fractures, in this study, the average inclination
angle and average azimuth angle of fractures are generally taken to represent the spatial
orientation of the fracture network. It is assumed that the average inclination angle of
fractures is θ and the average azimuth angle is α.
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Yang et al. [25] proposed a permeability model in a single horizontal rough pore by
assuming that the fluid moves along the same direction. In this section, relative roughness,
spatial orientation and tortuosity are introduced into the fractured dual porous media to
obtain the seepage theory of fractured dual porous media.

4.1. Seepage Characteristics of Rough Fracture Networks

Firstly, the horizontal rough single fracture is studied. It is assumed that the fluid
flows in the same direction, namely the X direction, and only the velocity component in the
X direction is not zero, and the pressure gradient along the X direction remains unchanged.
The spatial Cartesian coordinate system shown in Figure 5 is established for research [25].
The fracture is approximately regarded as a cuboid, and the width of the cuboid is the trace
length l, the fracture opening is a.
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According to the Hagen–Poiseuille law, the fluid motion equation in fracture mi-
crochannel is [48]:

∂2u
∂z2 +

∂2u
∂y2 =

1
µ

dp
dx

(51)

where dp/dx is the pressure gradient along the flow direction X, u is the flow velocity
along the X direction, and µ is the viscosity coefficient. Since the fracture opening is much
smaller than the fracture trace length, namely a� l, Equation (51) is simplified to:

d2u
dz2 =

1
µ

dp
dx

(52)

Assuming that the fracture microchannel is symmetric, the non-slip boundary condi-
tion is [25,48]: {

z = ±
(

a
2 − hs

)
, uR = 0

z = 0, ∂uR
∂z = 0

(53)

where hs is the effective average height of the roughness element on the fracture surface,
uR is the flow velocity of the fluid in the fracture microchannel, and the solution is:

uR =
1

2µ

dp
dx

[( a
2
− hs

)2
− z2

]
(54)

where dp/dx is the absolute value of the pressure gradient along the flow direction. Equa-
tion (54) shows that the flow velocity in the fracture network is a function of the absolute
value of the pressure gradient dp/dx, the effective average height of the rough surface hs,
and the distance |z| of the fluid from the center of the pipe wall. At the same time, it can
be found that the closer the distance |z| of the fluid to the center of the pipe, the greater
the flow velocity of the fluid, and the greater the effective average height of the roughness
element, the smaller the flow velocity of the fluid. This is consistent with objective facts.
The average velocity of the fluid through the rough fracture microchannel is:

uR =
1

b/2

∫ b
2

0
uRdz =

1
12µ

dp
dx

(
a− 2hs

)2
(55)

If hs = 0, then Equation (55) is simplified to:

uR =
1

12µ

dp
dx

a2 (56)

This is the average velocity of the fluid in the smooth fracture network. According to
Equation (56), through the horizontal rough single fracture, the volume of fracture trace
length l is:

qR =
∫ a

2−hs

−( a
2−hs)

uRldz =

(
a− 2hs

)3
l

12µ

dp
dx

(57)

Secondly, considering the spatial orientation of the fracture [19,47], the flow rate in the
rough single fracture in the representative elementary volume of the fracture network is:

qR =

(
a− 2hs

)3
l

12µ

∆p
L0

(
1− cos2 α sin2 θ

)
(58)

Equation (58) shows that the volume flow rate in a single rough fracture is the function
of effective opening hs of the fracture surface rough element, pressure difference 4p,
average inclination angle θ, azimuth angle α, and fracture opening a, in the representative
elementary volume of the fracture network. At the same time, it can be found that when
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other quantities are constant, the greater the effective opening of the rough element, the
smaller the volume flow in the microchannel of a single rough fracture. In addition, when
the volume flow in a single rough fracture is constant, the greater the effective opening of
the rough element, the greater the pressure difference between the two ends of the fracture,
and the greater the flow resistance of the fluid. According to Equation (12), the total flow of
fluids through the rough fractures network representative elementary volume as:

Q f (l) =
∫ lmax

lmin

(a−2hs)
3
l

12µ
∆p
L0

(
1− cos2 α sin2 θ

)
dl

=
∫ lmax

lmin

a3(1−εr)
3l

12µ
∆p
L0

(
1− cos2 α sin2 θ

)
dl

= β3

12µ

D f (1−cos2 α sin2 θ)
4−D f

∆p
L0

l4
max(1− εr)

3

(59)

where εr is determined by Equation (47). Equation (59) shows that the total flow in the
fracture network is the function of average inclination angle θ and azimuth angle α, pressure
difference4p, the relative roughness εr of fracture, the fracture length fractal dimension
D f , and the maximum length lmax of the fracture. When other quantities are constant, the
larger the relative roughness of the fracture, the smaller the flow of the fracture network,
which is in line with objective physical facts.

According to Darcy’s Law:

Q =
KA f

µ

∆p
L0

(60)

The permeability of the fracture network is:

K f =
β3

12A f

D f
(
1− cos2 α sin2 θ

)
4− D f

l4
max(1− εr)

3 (61)

Substituting the A f value in Equation (17) into Equation (61), the permeability of the
fracture network can be simplified as:

K f =
β2l2

max
12

(
2− D f

)(
1− cos2 α sin2 θ

)
4− D f

φ f

1− φ f
(1− εr)

3 (62)

By substituting Equation (21) into Equation (61), the permeability of the fracture
network can be expressed as:

K f =
β3D
12

1− D f

4− D f

l3
max
(
1− cos2 α sin2 θ

)1− φ

1−D f
2−D f
f

 (1− εr)
3 (63)

Equation (63) shows that the permeability of the rough fracture network is a function
of the structural parameters of the fracture medium (fracture length fractal dimension D f ,
fracture area density D, porosity φ f , relative roughness εr, maximum fracture trace length
lmax, average fracture inclination angle θ and azimuth angle α, proportional coefficient β),
and is negatively correlated with the relative roughness εr of the fracture network. When
εr = 0, Equation (63) can be simplified as:

K f =
β3D
12

1− D f

4− D f

l3
max
(
1− cos2 α sin2 θ

)1− φ

1−D f
2−D f
f

 (64)

This is the permeability when the microchannel wall of the fracture network is smooth.



Materials 2022, 15, 4662 14 of 26

4.2. Seepage Characteristics of Pores in Rough Matrix

Firstly, the seepage characteristics of the fluid in the rough straight capillary are
studied. Assuming that the fluid flows in the X direction, only the velocity component
in the X direction is not zero, and the pressure gradient along the X direction is constant,
and the spatial rectangular coordinate system shown in Figure 6 is established [25]. The
diameter of the capillary is λ and the radius is r0.
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Analogous to the calculation of fluid flow rate in rough fracture, the equation of
motion of fluids in rough straight capillaries in fracture microchannels is [25]:

∂2u
∂z2 +

∂2u
∂y2 =

1
µ

dp
dx

(65)

The no-slip boundary condition for flow is [25]:{
r = ±

(
r0 − hm

)
, um = 0

r = 0, ∂um
∂r = 0

(66)

where hm is the effective average height of roughness element on matrix pore surface, and
um is the flow rate of the fluid in pore microchannel. The flow rate of fluids in the rough
capillary microchannel is:

um =

[(
r0 − hc

)2
− r2

]
4µ

dp
dx

(67)

The average flow rate is:

um =
1
r0

∫ r0

0
umdr =

(
r0 − hc

)4

8µ

dp
dx

(68)

The flow rate through a single rough straight capillary in a matrix representative
elementary volume is:

q(λ) =
π

128µ

∆p
Lt

(
λ− 2hce f f

)4
=

π

128µ

∆p
Lt

λ4(1− εc)
4 (69)

Second, considering the tortuosity characteristics of rough capillary, according to
Equation (23) and Equation (32), the total flow of fluids through the matrix representative
elementary volume is:

Qm(λ) =
πL1−DT

0
128µ

∆p
L0

Dp

3 + DT − Dp
λ3+DT

max (1− εc)
4 (70)
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Equation (70) is the function of fractal dimension of tortuosity, the fractal dimension
of pore diameter, pressure difference, the maximum diameter of the pore, and the relative
roughness of matrix pores. According to the definition of Darcy’s law and Equation (70),
the permeability of rough matrices pores can be expressed as:

Km =
πL1−DT

0
128Am

Dp

3 + DT − Dp
λ3+DT

max (1− εc)
4 (71)

Equation (71) shows that the permeability of rough matrix pores is the function of
structure parameters of matrix pore (the maximum diameter λmax of the pore, fractal
dimension Dp of the pore diameter, fractal dimension DT of the tortuosity, the relative
roughness εc of the pore). When other quantities are constant, the permeability of the rough
matrix decreases with the increase in the relative roughness of the pores. When εc = 0,
Equation (71) can be simplified to:

Km =
πL1−DT

0
128Am

Dp

3 + DT − Dp
λ3+DT

max (72)

This is the permeability when the pore wall of the matrix is smooth.

4.3. Permeability Model of Rough Fractured Double Porous Media

Because the characterization unit of the fracture network is larger than that of matrix
pore and contains multiple matrix units [15,19], the unit body of the dual porous media is
selected as the unit body of the fracture network, there holds:

A f = n · Am (73)

That is:
βD f l2

max

2− D f

(
1− φ f

)
φ f

= n ·
πDpλ2

max

4
(
2− Dp

) 1− φm

φm
(74)

Since the flow into the porous media is equal to the flow out of the porous media [49],
the total flow of fluids in the fractured dual porous media is equal to the sum of the flow in
the matrix and the fracture network:

Q = Qn,m(λ) + Q f (l) = n ·Qm(λ) + Q f (l)

= n · πL1−DT
0

128µ
∆p
L0

Dp
3+DT−Dp

λ3+DT
max (1− εc)

4

+ β3

12µ

D f (1−cos2 α sin2 θ)
4−D f

∆p
L0

l4
max(1− εr)

3

(75)

The permeability of Newtonian fluids in rough fractured double porous media is
defined by Darcy’s law, as:

K =
πL1−DT

0
128Am

Dp
3+DT−Dp

λ3+DT
max (1− εc)

4

+ β3

12A f

D f (1−cos2 α sin2 θ)
4−D f

l4
max(1− εr)

3
(76)

Equation (76) is a function of fracture network structure parameters (cross-sectional
area A f of the fracture network characteristic unit body, fracture average inclination θ
and azimuth α, fractal dimension D f of fracture length, relative roughness εr of fracture,
and proportional coefficient β) and matrix pore structure parameters (fractal dimension
Dp of pore diameter, tortuosity fractal dimension DT , maximum diameter λmax of pore,
cross-sectional area Am of matrix pore characteristic unit body, and relative roughness εc
of pore). Meanwhile, the increase in the relative roughness of the fracture network and
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the relative roughness of the matrix pores lead to the decrease in permeability of fractured
dual porous media.

To study the contribution of porous matrix and the fracture network to fluid perme-
ability, dimensionless permeability K+ is defined, namely [19,20]:

K+ = Km/K f (77)

where Km and K f represent the permeability of matrix pores and fracture networks, respectively.

5. Results and Discussion

Firstly, the reliability of the rough fracture network model is verified. Figure 7 com-
pares the predicted value of the permeability model of the rough fracture network with
the numerical simulation value in the literature [50] under different relative roughness.
The authors of [50] selected 22 fracture types with different scales in southwestern Turkey,
and the digital fracture model was imported into commercial modeling software, and the
equivalent fracture network permeability was calculated by constructing a 3 D model with
a network size of 100 m × 100 m × 10 m. Among them, the largest fracture length is 1 m,
and the fracture inclination angle θ = 0. In the calculation, take β = 0.002, and calculate
the predicted value of the model according to Equation (61).
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According to Figure 7, the permeability of the rough fracture network increases with
the increase in fractal dimension D f of fracture trace length, because the increase in fractal
dimension of fracture trace length leads to the increase in fracture cross-sectional area. In
addition, when the relative roughness εr of the fracture network is 0 and 0.1, the predicted
permeability of the fracture network calculated by Equation (61) is 78.23% and 29.93%
higher than that of the experimental simulation value. When the relative roughness εr of
the fracture network is 0.3 and 0.5, respectively, the predicted permeability of the fracture
network calculated by Equation (61) is 38.87% and 77.72% lower than the experimental
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simulation value. This shows that under the same fracture fractal dimension D f , the larger
the relative roughness εr, the smaller the fracture permeability, this is because the larger
the roughness, the smaller the volume of the fracture pores, the space for fluid to flow is
reduced, and the flow resistance is increased. Through the comparison of Figure 7, it is
found that the established rough fracture network model is effective, and the influence of
roughness on permeability is also very large.

The influence of fracture geometry parameters on the permeability of rough fracture
model is studied. Figure 8 shows the relationship between fracture network permeability
and porosity under different roughness and fracture network inclination. In the calculation,
β = 0.01 , fracture maximum length lmax = 10 mm, and fracture spatial azimuthal angle
α = 0, according to Equations (13) and (62), the corresponding rough fracture network
permeability is calculated. According to Figure 8, the permeability of the rough fracture
network increases with the increase in fracture porosity, and the greater the inclination and
relative roughness of the fracture, the smaller the permeability of the rough fracture. This
is due to the increase in fracture porosity, which will increase the volume of fracture pores
and increase the flowable volume of fluid, so that the fluid flow resistance decreases. The
increase in inclination angle will increase the flow resistance and the increase in fracture
relative roughness will reduce the effective opening of the fracture.

Materials 2022, 15, 4662 19 of 29 
 

 

The influence of fracture geometry parameters on the permeability of rough frac-
ture model is studied. Figure 8 shows the relationship between fracture network perme-
ability and porosity under different roughness and fracture network inclination. In the 

calculation, 0.01β = , fracture maximum length max 10 mml = , and fracture spatial 

azimuthal angle =0α , according to Equations (13) and (62), the corresponding rough 
fracture network permeability is calculated. According to Figure 8, the permeability of the 
rough fracture network increases with the increase in fracture porosity, and the greater the 
inclination and relative roughness of the fracture, the smaller the permeability of the rough 
fracture. This is due to the increase in fracture porosity, which will increase the volume of 
fracture pores and increase the flowable volume of fluid, so that the fluid flow resistance 
decreases. The increase in inclination angle will increase the flow resistance and the in-
crease in fracture relative roughness will reduce the effective opening of the fracture. 

 
Figure 8. Permeability of the rough fracture network varies with fracture porosity under different 
inclination and relative roughness. 

Figure 9 shows the relationship between fracture network permeability and fracture 
surface density under different relative roughness, in the calculation, the maximum frac-
ture length max 10 mml = , the fracture dip angle  = 45θ  , the average porosity of the 
fracture network is 0.018, the average fractal dimension of the fracture network is 1.3, 

and =0.01β . According to Equation (63), the corresponding rough fracture network 
permeability is calculated. According to Figure 9, the permeability of the rough fracture 
network increases with the increase in the fracture surface density. The greater the rela-
tive roughness of the rough fracture network, the smaller the permeability, and the ef-
fect of relative roughness on the fracture permeability is very obvious. This is due to the 
increase in fracture surface density will increase the length of fracture trace and reduce 
the fluid flow resistance. The increase in the relative roughness of the fracture will in-
crease the flow resistance of the fluid. 

Figure 8. Permeability of the rough fracture network varies with fracture porosity under different
inclination and relative roughness.

Figure 9 shows the relationship between fracture network permeability and fracture
surface density under different relative roughness, in the calculation, the maximum fracture
length lmax = 10 mm , the fracture dip angle θ = 45◦, the average porosity of the fracture
network is 0.018, the average fractal dimension of the fracture network is 1.3, and β = 0.01.
According to Equation (63), the corresponding rough fracture network permeability is
calculated. According to Figure 9, the permeability of the rough fracture network increases
with the increase in the fracture surface density. The greater the relative roughness of the
rough fracture network, the smaller the permeability, and the effect of relative roughness
on the fracture permeability is very obvious. This is due to the increase in fracture surface
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density will increase the length of fracture trace and reduce the fluid flow resistance. The
increase in the relative roughness of the fracture will increase the flow resistance of the fluid.
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Figure 10 is a comparison of the predicted pore permeability of the rough matrix
with the numerical simulation values of smooth matrix permeability in [51]. The authors
of [51] measured the permeability and other data of 30 natural mudstones collected from
oil wells at depths of two to three km, among them, the permeability was measured
on disks with a thickness of 0.005–0.008 m and a diameter of 0.0254 m. The porosity is
between 0.06 and 0.27, the average radius of the pore is between 2.8 and 1403.4 nm, and
no fractures are found. So the maximum pore diameter is 2806.8 nm and the minimum
is 5.6 nm. Equation (26) can be used to calculate Dp, Equations (31), (34) and (35) can be
used to calculate DT , and Equation (71) can be used to calculate the corresponding matrix
permeability prediction value.

Figure 10 shows that when the relative roughness of matrix pores is 0.1, 0.2, and 0.4,
the predicted values of matrix pore permeability calculated by Equation (71) are 66.4%,
79.05%, and 93.37% lower than the experimental simulation data, respectively. Through
comparison, it is found that the predicted value of the rough pore permeability model is
smaller than the experimental data, and the greater the relative roughness of the pore, the
smaller the pore permeability, which further illustrates the effectiveness of this model.

Figure 11 shows the relationship between the total flow and the pressure difference for
a Newtonian fluid, when the temperature is 25 ◦C and the confining pressure is 500 Kpa,
the total flow prediction of a Newtonian fluid through the fractured double porous media,
and the flow prediction through the fracture network and the matrix pore are compared
with the experimental data [52], which simulated the smooth dual porous media. In the
calculation, the average inclination angle of the fracture is θ = 0◦, the minimum diameter
of the matrix capillary is 2 nm, the viscosity coefficient of the water is µ = 1.12× 10−3 Pas,
and the maximum length of the fracture is 10 mm. The relationship between the max-
imum and minimum pore diameter and the fracture length is λmin/λmax = 0.001, and
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lmin/lmax = 0.001. According to the literature [52], the matrix porosity is φm = 0.25, and
the fracture porosity is 1/100 of the matrix, that is φ f = 0.0025. Then, the corresponding
flow rates of the fracture network, matrix pores, and fractured dual porous media are
calculated according to Equations (59), (70), and (75).
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According to Figure 11, when the relative roughness of the matrix pore and the
fracture network are εr = εc = 0 and εr = εc = 0.1, the total flow prediction value of the
fractured dual porous media calculated by Equation (75) is 7.53% and 32.62% lower than
the experimental simulation values, respectively, This indicates that the flow rate of rough
fractal model is lower than the total flow of smooth fractal model and the experimental
data, and further shows that the roughness of the porous medium has a greater influence
on fluid flow. This is because when the relative roughness increases, the flow resistance of
the fluid increases, resulting in a decrease in the total flow through it, this is the same as
the actual physical situation and further indicates the validity of the established model. At
the same time, when the relative roughness of the fracture network is 0, 0.1, the predicted
value of the total fracture network flow calculated by Equation (70) is 7.94% and 32.98%
lower than the experimental simulation value, respectively, and it can be found that the
flow of the fracture network is almost the same as that of the fractured dual porous media,
and the flow of the matrix pore is much smaller than the flow of the fracture network, and
the relative roughness of the matrix pore has little effect on the matrix flow.

The influence of structural parameters on permeability of fractured dual porous media
is studied below. When the structural parameters (φ f , φm, Dp, DT , β, α, θ, L0) of the
fractured dual porous media are known, the permeability prediction can be calculated
using Equation (76). The structural parameters in the calculation process take the values
in the literature [19], where the maximum diameter of the matrix pores is λmax = 2 µm ,
the average inclination angle of the fracture network is θ = π/6, the maximum value of
the fracture length is lmax = 0.010 m, the average azimuth angle of the fracture network
is α = 0, the linear length of the matrix pore is L0 = 0.1 m, and the ratio of the minimum
and the maximum pore diameters λmin/λmax and the ratio of the minimum and maximum
fracture length lmin/ lmax are all 0.001.

Firstly, when the structural parameters of matrix porous medium are determined, the
influence of fracture network structural parameters on the permeability of fractured dual
porous media is studied.

Figure 12 shows the change of permeability K of fractured dual porous media when
the relative roughness εr and εc of the fracture network and matrix pores and the fractal
dimension D f of fracture length take different values. In the calculation, take β = 0.01,
φm = 0.25. According to Equations (14), (26) and (35), the fractal dimension Dp of the
pore diameter, the porosity φ f of the fracture network, and the fractal dimension DT of
the tortuosity can be determined, and the cross-sectional area A f , Am of the fracture and
matrix characterization element can be determined by Equations (17) and (30). Then, the
corresponding permeability of fractured dual porous media can be determined according
to Equation (76). According to Figure 12, the permeability of fractured dual porous media
increases with the increase in fractal dimension of fracture trace length. When the fractal
dimension of fracture trace length is constant, the permeability of dual porous media
decreases with the increase in the relative roughness of fracture and matrix. At the same
time, it can also be found that when the values of εr, εc are 0.3, 0.1 and 0.3, 0.3, respectively,
the permeability of the fractured dual porous media is almost equal, indicating that the
relative roughness of the matrix pores has little effect on the seepage of the fluid. When
εr, εc are 0.1 and 0.3, respectively, the permeability of fractured dual porous media is far
greater than that of εr, εc is 0.3 and 0.3, respectively, and is almost equal to that of εr, εc is
0.1 and 0.1, respectively. This indicates that the relative roughness of the fracture network
has a very large influence on the seepage of the fluid, which further indicates that the
main function of matrix pores is storage, and the fracture network can be the main channel
of fluid seepage. Thus, when studying the permeability of rough fractured dual porous
media, the influence of matrix roughness can be ignored, considering that the matrix pores
are smooth.
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Figure 13 shows the variation law of the permeability of the fractured dual porous
media when the ratio β of fracture opening to trace length, the relative roughness εr of the
fracture network, and the average inclination θ change. In the calculation, take φm = 0.25,
φ f = 0.0025. According to Figure 13, the permeability K of fractured dual porous media
increases with the increase in the ratio β of fracture opening to the fracture length, and
the greater the β, the faster the increase in K . At the same time, the greater the average
inclination angle θ and relative roughness εr of the fracture network, the smaller the
permeability K of the fractured dual porous media, and the slower its increase rate with the
increase in β. This indicates that the greater the average inclination angle and the relative
roughness of the fracture network, the greater the flow resistance of the fluid.

Secondly, when the structural parameters of the fracture parameters are determined,
the influence of matrix pore structural parameters on fluid permeability is studied. Ac-
cording to Equations (76) and (77), when the structural parameters of the fracture net-
work are determined, the dimensionless permeability K+ is only affected by matrix pore
structural parameters.

Figure 14 shows the changing trend of dimensionless permeability K+ with matrix
porosity φm, fracture network and matrix relative roughness εr, εc. In the calculation, the
structural parameters of the fracture network are taken from the values in [19]. As can be
seen from Figure 14, when the relative roughness εr, εc of the fracture network and the
matrix are constant, K+ increases with the increase in the matrix porosity φm, and when
relative roughness εr, εc increases at the same time, the dimensionless permeability K+

decreases, indicating that the decreases rate of matrix permeability is less than that of
fracture network permeability. This further shows that relative roughness has a greater
impact on fracture networks. In addition, the permeability of matrix pores is much smaller
than that of the fracture network, no matter how the relative roughness changes, in other
words, the main function of the matrix pores is storage, and fracture networks serve as the
main channels for fluid flow. Additionally, because the fluid has a dissolution effect, the
pores of the porous medium will gradually become large caves, and the fractures will also
become large fractures.
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6. Conclusions

Based on the hypothesis that the fracture network is composed of rectangular pipes
of different sizes and satisfies the fractal distribution, the matrix pores are composed of
curved capillaries with circular cross-sections, and the roughness is characterized by small
cones. The fractal theory is used to deduce the total flow rate and permeability model of
a Newtonian fluid in rough fractured dual porous media, and the relationship between
the permeability of dual porous media and the fractal dimension

(
D f , Dp, DT

)
, relative

roughness (εr, εc), fracture network inclination θ, fracture porosity φ f , matrix porosity φm
and other parameters of the fracture network and matrix pores is obtained. By comparing
with the experimental data, it is found that the total flow rate of rough fractured dual porous
media decreases with the increase in relative roughness and is lower than the experimental
data, indicating the reliability of the established model. Through comparison, it is found
that the permeability of the fractured dual porous media increases with the increase in the
fracture porosity, the ratio of fracture opening to trace length, and the porosity of the matrix;
and the greater the relative roughness of the fracture and matrix and fracture inclination
angle, the smaller the permeability of the fractured dual porous media. In addition, the
relative roughness of the fracture network has a much greater influence on the permeability
of fractured dual porous media than the relative roughness of matrix pores; therefore, the
roughness of the matrix pores can be ignored in this study, assuming that it is smooth.
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Nomenclature

a The opening of the fracture
l The trace length of the fracture
θ The average inclination angle of fractures
α The average azimuth angle of fractures
β The ratio of fracture opening to fracture trace length
λ The diameter of the capillary
D f The fractal dimension of fracture trace length
Dp The fractal dimension of pore diameter

φs
The percentage of the total bottom area of all cones to the total area of fracture surface in the
fracture network representative elementary volume

φ f The porosity of the fracture network
φm The porosity of the matrix pores
hs The effective average height of rough elements in fracture
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hc The effective average height of rough elements on rough capillaries
εr The relative roughness of the fracture surface
εc The relative roughness of the rough capillary bundle
τ The average tortuosity of the capillary
λ The average diameter of the pores
Q f The total flow of fluids through the rough fractures network representative elementary volume
Qm The total flow of fluids through the matrix representative elementary volume
K f The permeability of the fracture network
Km The permeability of rough matrices pores
L0 The characteristic length of the capillary
Lt The actual length of the capillary
d The bottom diameter of the cone
h The height of the cone
σ The ratio of the height of the cone to the diameter of the base
DT The tortuosity fractal dimension
Ds The fractal dimension of the bottom diameter of the cone
S1 The total bottom area of all cones in representative elementary volume
S0 The total area of fracture surface in representative elementary volume
Ap f The total area of fracture pores
Ap The total matrix pores area
A f The cross-section area of the representative elementary volume of the fracture network
Am The cross-sectional area of matrix representative elementary volume
Si The bottom area of a small cone
Vt The total volume of all cones in the representative elementary volume
Vi The volume of a small cone
D The fracture areal density
Q The total flow of fluids in the fractured dual porous media
K The permeability of a Newtonian fluid in rough fractured double porous media
K+ The dimensionless permeability
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