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Abstract: This study aims to estimate the eco-efficiencies of China at provincial levels.
The eco-efficiencies of production and treatment stages are disentangled by the network data
envelopment analysis (DEA) method. The key driving factors are identified by the integrative
use of driving force-pressure-state-impact-response frame model (DPSIR) model and partial least
squares structural equation modeling (PLS-SEM) method. This study provides several important
findings. In general, the eco-efficiencies of most regions in China are inefficient and show significant
regional differences. All DPSIR factors have significant and strong impacts on the eco-efficiency of the
treatment stage. The eco-efficiency of the production stage evidently outweighs the eco-efficiency in
economically well-developed regions. The originality of this study lies in three aspects. First, using
two-stage network DEA, this study dissects the overall eco-efficiency into production efficiency and
treatment efficiency. Empirical results provide insights into the root cause of the low efficiency of
each province (municipality). Second, on the basis of the DPSIR model, an expanded pool of driving
factors is investigated. Third, using the PLS-SEM method to analyze eco-efficiency is more reliable
and effective than applying other traditional regression models.

Keywords: eco-efficiency; network DEA; DPSIR model; PLS-SEM; environmental treatment

1. Introduction

China’s economy has achieved rapid progress since the reform and opening up policy initiated
in 1978. However, given the unprecedented economic achievements, rapid development in the past
three decades has also exerted immeasurable influence on the ecological environment. Eco-efficiency
means “do more with less”, which refers to the marginal impact of economic activities on the natural
environment. The WBCSD’s (World Business Council for Sustainable Development) definition is
generally accepted—limiting the consequent effect on the environment to a minimum level that is
consistent with the Earth’s potential capacity over its life cycle. In recent years, the measurement
of eco-efficiency has become a heated topic, and abundant relevant studies have been conducted
on different scales. Moreover, many scholars have investigated the various influencing factors
of eco-efficiency.

Most scholars generally regard resource consumption and environmental pollution as input
indicators. In order to test relationships among the economic activities, urbanization and carbon
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emissions, different frameworks are developed to evaluate the eco-efficiency of different areas,
industries or companies [1–3]. The empirical results, estimated through application of the system
generalized method of moment (GMM), shows that energy consumption, economic growth and
urbanization all significantly increase carbon emissions, thereby adding to serious environmental
challenges in the twelve developing East Asian and Pacific countries for the period 1990–2014 [4].
Meanwhile, some studies confirmed the positive impact of GDP and population on CO2 emissions
by a hierarchical regression model in the 50 largest world economies over the years 1990–2015 [5].
Many researches are conducted to measure and predict the carbon emissions and economic growth
forces in China [6,7]. Han [8] argues that the urban employment rate has the greatest impact on
carbon emission intensity, the per capita urban employment energy consumption has the least impact
on carbon emission intensity and the degree of other factors in proper order is: urbanization rate,
population intensity of GDP production and carbon emission density. The decomposition of total
CO2 emissions from energy quantity and composition indicates that CO2 emissions will not peak
in the business-as-usual scenario. CO2 emissions will peak at 10.69 gigatonnes (Gt) in 2030 in the
planned energy structure scenario [9]. Some researchers focus on the impact of land use to carbon
emission [10,11]. It was estimated that the average annual increase of carbon storage by urban forest
could offset 3.9% of the average annual increase in urban carbon emissions under China’s rapid urban
expansion and greening [12].

However, eco-efficiency measurements should focus not only on total factor input, but also process
analysis [12]. Bostian [13] demonstrated how these developments in modeling pollution-generating
technologies can be incorporated into a network model framework, with material balance conditions,
black box technologies and detailed processes within the black box considered. In the terms of
eco-efficiency measurement, the strand of literature on efficiency measures based on the perspective
of non-parametric methodology has gained growing popularity [14]. Some studies use the data
envelopment analysis (DEA) method to measure the eco-efficiency of the forest sector [15] and
agricultural eco-efficiency in Italian regions [16]. In recent years, the combined use of DEA and other
method has been widely adopted in assessment of eco-efficiency. Economic input-output life cycle
assessment (EIO-LCA) and data envelopment analysis (DEA) are combined to assess the environmental
impacts and eco-efficiency of China’s 26 economic sectors [17]. Rebolledo [18] compared the pros and
cons of two methods—the integration of life cycle assessment (LCA) and DEA and the combined use
of carbon footprint (CF) and DEA.

Most studies use the traditional DEA method to evaluate the ecological efficiency, and treat the
input-output process as a “black box”, that is, they only focus on the input and output factors, but rarely
further decompose the internal relationships between these factors. Network DEA can open the “black
box” by dividing the actual input-output process into production stage and environmental governance
stage [19]. By splitting the production process, network DEA can better identify the root cause of
the low efficiency of each decision-making unit (DMU) than the traditional DEA [20]. The two-stage
network DEA can be used in the evaluation of decision-making units (DMUs), which are composed of
two or more stages of subprocesses. Therefore, the underlying logic is closer to the organizing structure
in reality. Moreover, network DEA is widely applicable to environmental studies. Every input of a
subprocess could be the intermediate product of the previous subprocess. It could also be an external
input variable. Every output of a subprocess serves not only as an intermediate product of other inputs
of the subprocess but also as an end product [21]. When examining the further relationship among the
regional eco-efficiency of the driving forces in different stages, partial least squares structural equation
modeling (PLS-SEM) can select all protected features from the observed data on account of fewer
restrictions on the assumption of the normal distribution [22].

Many literatures have studied the influencing factors of ecological efficiency. The DPSIR framework
provides an analytical framework for systematically measuring the influencing factors of ecological
efficiency, namely, driving forces, pressure, state, impact and response [23]. The DPSIR analysis
framework integrates the causal relationship between human activities and their environmental and
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socio-economic consequences into one framework, and considers human activities as an integral part of
the ecosystem [24], so it is widely used in the analysis of environmental problems [25]. However, these
five factors cannot be directly measured. The SEM model is a common method to solve this problem;
that is, setting observation variables for latent variables that are difficult to be measured directly, and
using the relationships between these observed variables that can be used for statistical analysis to
study the relationships between latent variables [26]. The estimation of model parameters also needs to
choose an appropriate method. In this paper, the PLS method is used to estimate the SEM model, which
is mainly because the PLS-SEM model has the advantages of handling the measurement deviation of
variables, no requirements on data distribution and being effective in the case of small samples [27].

The purpose of this paper is to estimate the eco-efficiency of thirty provincial regions in China, and
to identify the driving factors of eco-efficiency. The contribution of this article includes the following:
(1) eco-efficiency is estimated and decomposed into two stages of production by means of a two-stage
DEA model. Empirical results shed light on the root cause of low efficiency in China at provincial level.
(2) To investigate the driving factors, extant literature mainly focuses on a limited number of assumed
variables. Based on the theoretical underpinnings of DPSIR, this research covers an expanded pool of
potential variables. (3) In terms of research method, this study uses the PLS-SEM approach to examine
the driving factors of eco-efficiency in different stages across 30 administrative regions at the provincial
level. This method provides more robust outcomes than traditional regression models.

The rest of the paper is organized as follows. The second section introduces the research methods
and data. The third and fourth sections discuss the evaluation results of ecological efficiency and the
influencing factors. The fifth section concludes the study.

2. Research Method and Data

2.1. Two-Stage Network DEA

DEA is a mathematical programming model which evaluates the comparative efficiency of
DMUs, calculating a relative ratio of weighted outputs to weighted inputs for each DMU and
explores the best-performing frontiers over the sample data [28]. Initially DEA was implemented in
the radial distance [29]. Non-radial measures were developed to take desirable properties into
consideration [30–32]. Since then, Cooper and Pastor [33], Briec [34], Cooper et al. [35] and
Pastor et al. [36] developed the DEA framework. The method is applied to estimate the efficiency or
effectiveness of a system based on various input and output indicators [37]. The DEA method has
some unique advantages in calculating the efficiency of the DMU [38]. The latest network DEA model
considers and connects the indirect input and outputs during a complete economic production process
and network. Specifically, two stage DEA is a commonly used model of network DEA. By decomposing
the input-output process into production process and environmental governance process, the “black
box” of the relationship between elements is opened [39].

First seen in Liang et al. [40], the two-stage DEA is a model that originated from cooperative
game and non-cooperative game. The two parts refer to the stages of production and pollutant
treatment. In this study, economic activities are divided into two stages, namely, production stage
and pollutant treatment stage. Then, the two-stage DEA model is used to calculate and evaluate the
comprehensive efficiency. To use this framework, the definition of input, intermediate variable and
output must be clarified first. The jth decision making unit is represented by DMUj(j ε N∗ ∩ (1, J)),
and each DMU refers to a provincial-level administrative region in China. We assume that DMUj has
initial inputs Xnj(n ε N∗ ∩ (1, N)) and final outputs Yrj(r ε N∗ ∩ (1, R)) with intermediate desirable
outputs Vmi(m ε N∗ ∩ (1, M)) and intermediate undesirable outputs Wkj(k ε N∗ ∩ (1, K)). For phase
two, the inputs are set to undesirable outputs W, along with a new external input Ztj(t ε N∗ ∩ (1, T)).

Figure 1 depicts the internal relationship of the model, involving input, intermediate and output
variables. In the first stage (production process), input variables include labor, capital stock, energy,
land and water and the expected output is GDP. At the same time, in the cycle of production,
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other pollution issues such as waste gas, wastewater and SO2, which are undesirable output variables,
emerged. In the second stage (treatment process), input variables are divided into two parts. The first
part refers to the serious pollutants that need to be noted and treated in the first stage, including
waste gas, wastewater and SO2. The second part derives from the government’s enormous funding in
environmental protection every year, and as new input, it enters the second stage as well. The outputs of
the second stage include solid waste utilization, wastewater treatment and greening rate. Among them,
the greening rate refers to the ratio of the greenbelt area within the scope of construction land to the
construction land area. In addition to pollution control, the government’s investment, represented by
Z, also promotes the advancement of the process. In this stage, the final output is energy consumption,
followed by the reduction of pollutant emissions. The next segment will provide more definitions and
the indicator analysis. The DEA model described in this study can be expressed by the following linear
optimization model.

θs1
0 = max 1

2

(
1
N

N∑
n=1

θn + 1
K

K∑
k=1

αk

)
s.t.

J∑
j=1
λjXnj ≤ θnXnj0, n ε N∗ ∩ (1, N),

J∑
j=1
λjVmj ≥ Vmj0, m ε N∗ ∩ (1, M),

J∑
j=1
λjWkj = αkWkj0, k ε N∗ ∩ (1, K),

J∑
j=1
λj = 1, λj ≥ 0,∀jε N∗ ∩ (1, J)

(1)
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In model (1), λ =
(
λ1, λ2, . . . , λj

)T
refers to intensive variables connected by a convex combination

to the input and output of each DMU. The constraint of the sensitivity variables λj to a limit of
1 returns to scale. Furthermore, the implementation of x and v inequality constraints models the
high input disposability and desirable outputs. Undesirable outputs are slightly less disposable, and
the equity constraint is assured. Apart from the limitations, two worthwhile observations are made.
Next, the control factors θn and αk are used to decrease the inputs and unnecessary outputs.

Notably, these reduction factors are fixed for each DMU. The reduction of unity is unified among
the regions. Then, the objective function is divided into two parts. The weight of each part is 0.5, which
refers to the pollution output effect αk and the energy input effect θn, respectively. Given the conditions
of phase one, we can characterise the unified energy and environmental efficiency in the production
process as θslm

0 , which is called the production process efficiency (proeff). If proeff = 1, then the
corresponding DMU will be considered inefficient. Thus, the consumption and emissions could be
reduced. When the efficiency value of multiple DMUs is equal to 1, that is, when there are multiple
effective DMUs, we adopt the super efficiency DEA model [37] to sort them. The specific operation
of the super efficiency DEA model is: when evaluating the efficiency of a decision-making unit, it is
excluded firstly. In the evaluation, for the invalid DMU, its production frontier is unchanged, so its
final efficiency value is the same as that measured by the traditional DEA model; for the effective DMU,
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on the premise of its efficiency value unchanged, the input increases proportionally, and the proportion
of input increase is recorded as the super efficiency evaluation value. As the production front moves
backward, the measured efficiency value should be greater than or equal to 1 [41]. Stage two introduces
the DEA model as follows.

θS2

0 = max 1
T

T∑
t=1
βt

s.t.
J∑

j=1
λjZtj ≤ βtZtj0, t ε N∗ ∩ (1, T),

J∑
j=1
λjYrj ≥ Yrj0, r ε N∗ ∩ (1, R),

J∑
j=1
λjWkj = Wkj0, k ε N∗ ∩ (1, K),

J∑
j=1
λj = 1, λj ≥ 0,∀j ε N∗ ∩ (1, J)

(2)

In the expression, λ refers to the same variable as that in model (1). For each DMU to be evaluated,
its undesirable output w, as well as the linear combination of the undesirable output of all j DMUs,
are the same. We assume that the pollutants created in the first stage would all enter the second
stage without reduction. Variable βt represents the change of efficiency after pollution treatment with
government funding.

θs2
0 denotes the energy-saving treatment efficiency. In addition, stage two emission reduction is

called treatment efficiency (TREATEFF). If TREATEFF = 1, then the DMU to be calculated is considered
effective in stage two. However, the corresponding DMU is inefficient if TREATEFF < 1, thus making
the treatment of emissions more effective. For a comprehensive view of the two stages, model (3)
provides the overall efficiency of the two stages. According to Liang et al. [40], the reduction of
intermediate measures to acquire optimal efficiency scores is collaboratively determined by the two
stages. These stages simulate real-life scenarios, such as the practice of pricing goods together by the
manufacturer and the retailer, to maximize the profit. In a cooperative game, both stages’ efficiency
scores are maximized in the meantime. The model below calculates the scores:

θall
0 = max 1

2

(
1

N+K

(
N∑

n=1
θn +

K∑
k=1

αk

)
+ 1

T+K

(
T∑

t=1
βt +

K∑
k=1

αk

))
s.t.

stage1 :
J∑

j=1
λjXnj ≤ θnXnj0, n ε N∗ ∩ (1, N),

J∑
j=1
λjVmj ≥ Vmj0, m ε N∗ ∩ (1, M),

J∑
j=1
λjWkj = αkWkj0, k ε N∗ ∩ (1, K),

stage2 :
J∑

j=1
λjZtj ≤ βtZtj0, t ε N∗ ∩ (1, T),

J∑
j=1
λjYrj ≥ Yrj0, rε N∗ ∩ (1, R),

J∑
j=1
λjWkj = αkWkj0, kε N∗ ∩ (1, K)

J∑
j=1
λj = 1, λj ≥ 0,∀jε N∗ ∩ (1, J)

(3)

In these two stages, W is regarded as an unacceptable output and should be reduced to minimize
the quality of pollution. The target function incorporates two parts, each representing the production
stage and the pollutant treatment stage. θall

0 is defined as the two-stage global level of efficiency and is



Int. J. Environ. Res. Public Health 2020, 17, 8702 6 of 31

generally called ALLEFF. If ALLEFF = 1, then the efficiency of the DMU to be evaluated is recognized
in the global two stages. Otherwise, this DMU is considered inefficient.

2.2. PLS-SEM Model

This work further examines the relationship between provincial regional eco-efficiency in China
and its driving factors using an SEM model. Structural equation model (SEM) is a multivariate
estimation method which can effectively test the relationship between indexes and latent variables,
latent variables and latent variables [42]. There have been two major methods in estimating the
parameters of SEM. The PLS method to SEM has been proposed as a component-based estimation
procedure different from the classical covariance-based approach [43].

The covariance-based technique adopts maximum likelihood-based estimations and thus the
difference between the estimated and sample covariance matrices is minimized. In contrast,
maximization of the explained variance of the endogenous latent variable(s) is performed by the
PLS-SEM which estimates partial model relationships in an interactive sequence of ordinary least
squares regressions [44]. The estimation process is per se an iterative algorithm that separately
solves the blocks out of the estimation model and then calculates the path coefficients in the SEM
model. The latent variable scores estimated by the PLS-SEM modeling technique are the exact linear
combination of their associated manifest variables. The latent variable scores are also recognized as
perfect substitutes for the manifest variables. The scores capture the variance information, which sheds
light on understanding the endogenous latent variable(s). The estimation model based on ordinary
least squares regressions suggests that the PLS-SEM “relaxes” the presumption of the multivariate
normality required for maximum likelihood-based SEM estimations [44].

This paper further examines the relationship among provincial regional eco-efficiency in China
and its driving factors using a PLS-SEM model. The structural equation consists of measurement
equation and structural equation. The measurement equation refers to the link between indexes and
latent variables, whereas the structural equation refers to the relationship between latent variables.
The measurement equation is expressed as follows:

X = ΛXξ+ δ

Y = ΛYη+ ε
(4)

In the above formula, X and Y represent the vector composed of exogenous index and endogenous
index, respectively, ξ and η represent the vector composed of exogenous latent variable and endogenous
latent variable, respectively, ΛX and ΛY are corresponding parameters to be estimated, δ and ε are
disturbance terms. The structural equation is expressed as follows:

η = Bη+ Γξ+ ζ (5)

In the above formula, B represents the relationship between endogenous latent variables. Γ
indicates the influence of exogenous latent variable on endogenous latent variable, ζ is error term.
In Equation (4) and Equation (5), PLS is used to estimate the measurement sample, and the convergence
coefficient is obtained by many iterations. The covariance-based technique includes constraints on
the size of the data sample. A small-sized sample usually causes biased estimation and identification
issues. Therefore, the PLS-SEM model proposes “soft” distributional assumptions regarding the data
distributions, the data size and the measurement scale. In addition, because the PLS-SEM model is
based on OLS regressions, it generally shows a good estimation performance statistical power [45].

The verification of the structural model is mainly composed of internal consistency, reliability
verification and convergent validity verification. Composite reliability is used to evaluate internal
consistency. When composite reliability falls between 0 and 1, the higher the value, the more reliable it
is (better if the value is bigger than 0.7). The convergent validity is evaluated through measuring the
factor loading and average variance extracted. The interaction between latent variables and measured
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variables is represented by factor loading, and 0.7 is set as the cut-off value. AVE (average variance
extracted) denotes the degree to which latent variables could explain variation, and the estimated
value of it is higher than 0.5.

The demonstration of the structural model involves two aspects, which are path coefficient
and the significance testing of the coefficient. In the first part, the path coefficient represents the
variation of the external latent variables caused by the unit change of the internal latent variables.
The estimated value of the coefficient reflects the degree to which external latent variables and internal
latent variables correlate with each other. The second part is the significant test of the path coefficient,
which examines whether external latent variables would significantly influence internal latent variables.
The significance of each t was evaluated by calculating the general value.

Requirement is the laxest among the PLS-SEM criteria on model assumption, which also includes
calculation scope, sample number and residual distribution [46]. This modeling method can select all
protected features from the observed data [22]. Using a PLS-SEM model, this study tests the effect of
critical factors on China’s eco-efficiency.

PLS-SEM’s improvements are summarized as follows. First, when using the PLS method to
estimate the SEM model, there is no restriction on variable distribution requirements, while CB-SEM
(Covariance-Based SEM) model requires variables to obey normal distribution [47]. Secondly, when
the sample size is very small, PLS-SEM estimates have good consistency, while CB-SEM cannot obtain
robust results [27]. Third, if the model lacks a reliable theoretical basis and if the direction of the
relationship between variables cannot be determined, CB-SEM should not be used as a method of
choice. In contrast, PLS-SEM can examine structures and relationships in complex structural models.
Since the main purpose of theoretical development is to find relationships, the direction and advantages
of relationships and observable measures, PLS-SEM model is more suitable for this study.

2.3. Data Sources

On the basis of the established eco-efficiency evaluation system, 30 provincial administrative
regions and municipalities in China from 1996 to 2015 are selected as the decision-making units.
Thus, data of input and output are collected. The data set comes from each province’s statistical
yearbook of the corresponding year. Following the practice of Wang and Feng [19] and making
appropriate expansion, this paper selects input-output indicators as shown in Table 1. When the DEA
method calculates efficiency, it first obtains the weight coefficient of each output and input index
according to the data itself, so as to calculate the weighted output and weighted input, and define
their ratio as the efficiency value. Therefore, the unit of the indicator does not affect the setting of the
weight, and the efficiency value determined by the weighted input and the weighted output is also a
de-unitized value.

Table 1. Input-output index in different subsystems.

Subsystem Input-Output Index

Production process Number of labor force (Ten thousand people) (Input)

Fixed asset investment (Billion Yuan) (Input)

Energy consumption (Ten thousand tons standard coal) (Input)

The Land used (Square kilometers) (Input)

Water (Ten thousand tons) (Input)

GDP (Billion Yuan) (Output)

Two-stage connection volume Wastewater discharge (Ten thousand tons)

Exhaust emissions (tons)

SO2 emissions (tons)

Treatment process Investment in pollution control (Ten thousand Yuan) (Input)

Solid Waste utilization Rate (%) (Output)

Wastewater Treatment Compliance Rate (%) (Output)

Greening rate in built-up area (%) (Output)

Source: Authors compiled.
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3. Result and Discussion

This study analyses the eco-efficiency of 30 provincial-level administrative regions in mainland
China (except Tibet) and horizontally compares each province’s eco-efficiency. The next section presents
and discusses the empirical results.

3.1. Analysis of Regional Eco-Efficiency of Different Provincial Administrative Regions in China

In the process of numerical estimation, this study established a super-efficiency DEA model and
calculated the eco-efficiency of 30 provincial administrative regions in China from 1996 to 2015 by using
MaxDEA software. Table 2 is the calculation result, and the yearly change in the regional eco-efficiency
of the different regions is displayed in Figure 2.
Int. J. Environ. Res. Public Health 2020, 17, x FOR PEER REVIEW 11 of 30 

Int. J. Environ. Res. Public Health 2020, 17, x; doi: www.mdpi.com/journal/ijerph 

 
Figure 2. The comprehensive provincial eco-efficiency of China. (Source: Authors compiled). 

Figure 2 clearly demonstrates that the overall provincial eco-efficiency of China displays 
different changing trends in various stages. However, the eco-efficiency of most of the provincial 
administrative regions in China is not in the efficient range on the whole. As shown in Figure 2, 
changes in the eco-efficiency of the 30 Chinese provinces can be categorized into four patterns, 
namely, rising, fluctuating rising, fluctuating falling and fluctuating. Specifically, the eco-efficiency 
of Beijing steadily increased from 1996 to 2015. Then, eco-efficiency of Hainan, Tianjin and 
Shanghai showed drastic fluctuation. In addition, the fluctuation of the eco-efficiency of Qinghai, 
Fujian, Jiangxi and Hunan decreased, while that of Guangdong displayed an opposite trend. 
Therefore, fluctuations in eco-efficiency only occurred in a few provinces, and the comprehensive 
eco-efficiency of most cities fell between 0 and 0.5. Moreover, the volatility was minor, which shows 
that the eco-efficiency of most Chinese regions was in the inefficient range. China’s economy 
growth has been traditionally driven by the secondary industry which contributed a substantial 
weight to regional GDP. Secondary industry in China mainly consists of energy- and 
pollution-intensive enterprises. Therefore, the ecological performance of most provinces is at a low 
level [48]. Thus, China should promote a balanced development between economic growth and 
ecological environment protection. 

From a spatial perspective, the eco-efficiency of different regions in China remained drastically 
different, which indicates a considerable gap between the regions of economic development and the 
effects of environmental protection effects. Figure 3 shows that from 1996 to 2015, the average 
eco-efficiency of the 30 different regions in China fell into four sections: 0.03–0.15, 0.16–0.19, 
0.20–0.35 and 0.36–1.25. The average comprehensive eco-efficiency of Tibet remained missing. Thus, 
the specific categorizations are as follows. (1) The average eco-efficiency of Hainan, Guangdong, 
Fujian, Beijing, Tianjin, Qinghai and Shanghai fell between 0.36–1.25, which are considerably high. 
Among them, the eco-efficiency of Beijing continued to rise within the time span of this study. It 
also showed a linear increase from 2002 to 2003. (2) The average eco-efficiency of Yunnan, Guizhou, 
Chongqing, Hunan, Jiangxi, Ningxia, Gansu and Jilin were between 0.20–0.35 and were yet to be 
improved. (3) In Guangxi, Zhejiang, Anhui, Hubei, Xinjiang, Inner Mongolia and Heilongjiang, the 
average eco-efficiency lay within the scope of 0.16–0.19. (4). The eco-efficiency of Hebei, Shandong 
and Henan was in the lowest group. Hebei which is adjacent to Beijing and Tianjin has taken over a 
substantial number of heavy-polluting enterprises reallocated from the two regions. The less 
developed areas plan to transform their advantages of resource endowment into economic growth. 
However, this resource-driving development pattern adds the pressure on the ecological 
environment [49]. The average eco-efficiency of Shandong was low because of its economy’s 

Figure 2. The comprehensive provincial eco-efficiency of China. (Source: Authors compiled).

Figure 2 clearly demonstrates that the overall provincial eco-efficiency of China displays different
changing trends in various stages. However, the eco-efficiency of most of the provincial administrative
regions in China is not in the efficient range on the whole. As shown in Figure 2, changes in the
eco-efficiency of the 30 Chinese provinces can be categorized into four patterns, namely, rising,
fluctuating rising, fluctuating falling and fluctuating. Specifically, the eco-efficiency of Beijing
steadily increased from 1996 to 2015. Then, eco-efficiency of Hainan, Tianjin and Shanghai showed
drastic fluctuation. In addition, the fluctuation of the eco-efficiency of Qinghai, Fujian, Jiangxi and
Hunan decreased, while that of Guangdong displayed an opposite trend. Therefore, fluctuations in
eco-efficiency only occurred in a few provinces, and the comprehensive eco-efficiency of most cities
fell between 0 and 0.5. Moreover, the volatility was minor, which shows that the eco-efficiency of
most Chinese regions was in the inefficient range. China’s economy growth has been traditionally
driven by the secondary industry which contributed a substantial weight to regional GDP. Secondary
industry in China mainly consists of energy- and pollution-intensive enterprises. Therefore, the
ecological performance of most provinces is at a low level [48]. Thus, China should promote a balanced
development between economic growth and ecological environment protection.
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Table 2. China’s provincial comprehensive eco-efficiency.

Province 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

Anhui 0.15 0.20 0.19 0.23 0.23 0.18 0.10 0.12 0.24 0.20 0.21 0.23 0.14 0.19 0.17 0.14 0.14 0.12 0.09 0.07

Beijing 0.17 0.19 0.26 0.28 0.25 0.38 0.36 1.10 1.13 1.14 1.14 1.16 1.18 1.16 1.17 1.17 1.18 1.18 1.19 1.20

Fujian 1.05 1.07 0.38 1.05 1.03 1.01 1.00 1.00 0.24 0.19 0.21 0.25 0.21 0.30 0.25 0.22 0.28 0.30 0.19 0.16

Gansu 0.10 0.13 0.10 0.12 0.08 0.12 0.07 0.12 0.31 0.26 0.22 0.27 0.25 0.29 0.27 0.47 0.30 0.23 0.18 0.19

Guangdong 0.10 0.16 0.16 0.09 0.11 0.10 0.09 0.09 0.16 0.24 0.49 1.05 0.23 0.24 0.12 0.24 1.05 1.02 1.01 1.02

Guangxi 0.17 0.28 0.21 0.20 0.14 0.21 0.20 0.20 0.29 0.22 0.23 0.25 0.16 0.19 0.17 0.16 0.20 0.16 0.11 0.09

Guizhou 0.20 0.21 0.11 0.17 0.15 0.16 0.09 0.12 0.32 0.33 0.29 0.39 0.34 0.50 0.48 0.30 0.35 0.18 0.11 0.11

Hainan 1.17 1.13 1.15 1.36 1.05 1.91 1.92 1.29 1.32 1.30 1.29 1.31 1.54 1.27 0.78 0.76 0.78 1.40 1.40 0.77

Hebei 0.10 0.11 0.08 0.10 0.07 0.07 0.05 0.07 0.11 0.09 0.09 0.11 0.09 0.12 0.09 0.04 0.06 0.12 0.12 0.12

Henan 0.07 0.10 0.09 0.15 0.12 0.12 0.08 0.10 0.20 0.13 0.12 0.16 0.15 0.20 0.23 0.26 0.25 0.17 0.12 0.11

Heilongjiang 0.10 0.13 0.10 0.18 0.15 0.10 0.13 0.19 0.23 0.35 0.23 0.28 0.16 0.20 0.19 0.21 0.23 0.14 0.15 0.15

Hubei 0.13 0.18 0.12 0.16 0.11 0.09 0.07 0.09 0.21 0.17 0.17 0.28 0.18 0.17 0.20 0.15 0.15 0.16 0.10 0.10

Hunan 0.16 1.00 0.20 1.00 1.00 0.12 0.09 0.14 0.33 0.24 0.20 0.27 0.18 0.17 0.27 0.28 0.21 0.16 0.11 0.07

Jilin 0.10 0.17 0.15 0.20 0.11 0.13 0.10 0.17 0.24 0.23 0.22 0.29 0.22 0.29 0.21 0.33 0.37 0.35 0.29 0.23

Jiangsu 0.12 0.14 0.11 0.11 0.16 0.08 0.07 0.07 0.10 0.14 0.09 0.18 0.13 0.17 0.21 0.14 0.20 0.16 0.07 0.07

Jiangxi 1.03 0.46 0.42 1.02 0.17 0.31 0.10 0.27 0.21 0.18 0.21 0.28 0.28 0.27 0.17 0.20 0.16 0.18 0.13 0.12

Liaoning 0.07 0.62 0.10 0.12 0.06 0.08 0.08 0.08 0.10 0.09 0.08 0.12 0.09 0.11 0.13 0.07 0.08 0.11 0.10 0.08

Inner
Mongolia 0.15 0.20 0.11 0.21 0.09 0.14 0.08 0.12 0.14 0.11 0.09 0.16 0.11 0.14 0.12 0.10 0.10 1.00 0.13 0.09

Ningxia 0.38 0.56 0.48 0.26 0.24 0.17 0.17 0.22 0.27 0.33 0.28 0.32 0.32 0.42 0.42 0.43 0.54 0.44 0.40 0.29

Qinghai 1.44 1.46 1.28 1.03 1.31 0.32 0.27 0.48 0.43 0.48 0.50 0.50 0.34 0.82 0.52 0.68 0.75 0.48 0.45 0.33

Shandong 0.13 0.12 0.14 0.18 0.12 0.11 0.05 0.06 0.09 0.07 0.07 0.08 0.07 0.09 0.08 0.08 0.10 0.10 0.08 0.07

Shanxi 0.13 0.15 0.07 0.11 0.06 0.10 0.08 0.11 0.20 0.18 0.15 0.16 0.14 0.16 0.15 0.10 0.12 0.14 0.12 0.10

Shaanxi 0.17 0.22 0.11 0.11 0.07 0.11 0.08 0.09 0.17 0.17 0.21 0.23 0.18 0.20 0.16 0.32 0.29 0.23 0.15 0.14

Shanghai 0.13 0.16 0.16 0.16 0.15 1.14 1.12 1.14 1.15 0.23 0.29 0.24 0.25 0.32 1.27 1.26 1.07 0.54 1.06 1.06

Sichuan 0.09 0.12 0.08 0.11 0.07 0.08 0.05 0.09 0.12 0.12 0.14 0.15 0.15 0.20 0.27 0.20 0.19 0.12 0.08 0.09

Tianjin 0.27 0.37 1.09 0.30 0.49 0.45 0.30 0.29 0.44 0.33 1.08 0.45 0.42 0.47 0.43 0.42 0.46 0.65 0.39 0.45

Xinjiang 0.21 0.30 0.15 0.25 0.18 0.11 0.11 0.14 0.18 0.21 0.27 0.30 0.22 0.21 0.22 0.24 0.18 0.15 0.11 0.11

Yunnan 0.25 0.30 0.32 0.25 0.10 0.11 0.08 0.11 0.28 0.21 0.24 0.37 0.25 0.24 0.21 0.24 0.24 0.13 0.12 0.11

Zhejiang 0.26 0.24 0.22 0.13 0.14 0.14 0.17 0.09 0.12 0.12 0.12 0.14 0.09 0.16 0.12 0.21 0.20 0.26 0.13 0.11

Chongqing 0.42 0.23 0.34 0.20 0.18 0.14 0.25 0.21 0.22 0.19 0.28 0.25 0.25 0.19 0.21 0.36 0.38 0.27 0.27

Source: Authors compiled.

From a spatial perspective, the eco-efficiency of different regions in China remained drastically
different, which indicates a considerable gap between the regions of economic development and
the effects of environmental protection effects. Figure 3 shows that from 1996 to 2015, the average
eco-efficiency of the 30 different regions in China fell into four sections: 0.03–0.15, 0.16–0.19, 0.20–0.35
and 0.36–1.25. The average comprehensive eco-efficiency of Tibet remained missing. Thus, the
specific categorizations are as follows. (1) The average eco-efficiency of Hainan, Guangdong, Fujian,
Beijing, Tianjin, Qinghai and Shanghai fell between 0.36–1.25, which are considerably high. Among
them, the eco-efficiency of Beijing continued to rise within the time span of this study. It also
showed a linear increase from 2002 to 2003. (2) The average eco-efficiency of Yunnan, Guizhou,
Chongqing, Hunan, Jiangxi, Ningxia, Gansu and Jilin were between 0.20–0.35 and were yet to be
improved. (3) In Guangxi, Zhejiang, Anhui, Hubei, Xinjiang, Inner Mongolia and Heilongjiang,
the average eco-efficiency lay within the scope of 0.16–0.19. (4). The eco-efficiency of Hebei,
Shandong and Henan was in the lowest group. Hebei which is adjacent to Beijing and Tianjin has
taken over a substantial number of heavy-polluting enterprises reallocated from the two regions.
The less developed areas plan to transform their advantages of resource endowment into economic
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growth. However, this resource-driving development pattern adds the pressure on the ecological
environment [49]. The average eco-efficiency of Shandong was low because of its economy’s
over-reliance on the coal industry and heavy chemical industry. Moreover, the capacity of its
economic development was not compatible with the environmental conditions. In Henan province,
several input consumptions and emissions rank among the top in China, including capital input,
energy consumption, the amounts of carbon emission and SO2 emission, which undermined the
improvements of eco-efficiency.
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3.2. Eco-Efficiency Analysis of China’s Regional Production Process

Appendix A Table A1 illustrates the production efficiency of each province in 1996–2015.
The annual changes are depicted in Figure 4. In addition, the average production efficiencies of
each province are shown in Figure 5.
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From a chronological perspective (Figure 4), different regions in China exhibited diverse changes
in various periods between 1996 and 2015. These changes are characterized by gradual decrease,
slow increase, drastic fluctuation or steadiness. In general, the environmental production efficiency of
most regions in China was comparatively low. To be specific, from 1996 to 2015, the production efficiency
of Guangdong and Zhejiang slowly increased. Meanwhile, the efficiency of Beijing, Guangxi, Guizhou,
Heilongjiang and Huanan demonstrated a gradual decline. In addition, the production efficiency of
Shanghai drastically fluctuated, and the environmental efficiency of other provincial administrative
regions remained generally steady. China’s eco-efficiency has not improved simultaneously with
the economic growth. In the future, China should focus not only on areas such as Beijing, Guangxi,
Guizhou, Heilongjiang and Hunan, where environmental production efficiency has declined, but also
on the reasons for the decline. Moreover, we should explore the experiences of areas with rising
environmental productivity in Guangdong and Zhejiang, formulate corresponding policies and
promote them throughout the country.

From a spatial perspective, the average production efficiency of 30 regions (municipalities) in China
fell under four sections from 1996 to 2015: 0.10–0.71, 0.72–0.84, 0.85–0.98 and 0.99–1.52. An apparent
gradual increase was observed from the western areas to the southeast coastal areas. However, some
regions in central China, such as Heilongjiang, Jilin and some portions in the eastern part, such as
Beijing and Hainan, possessed relatively low average production efficiency at 0.10–0.71. By comparison,
some developed eastern provincial administrative regions, such as Jiangsu, Zhejiang and Tianjin,
advanced their production technology and had better industrial structure. They were also endowed
with a particularly beneficial political or economic status. Thus, these provincial administrative
regions performed well in terms of production efficiency. Provincial administrative regions with low
production efficiency were divided into two types. One type referred to underdeveloped regions of
western China, such as some industrial-outdated regions like Guizhou, Yunnan and Xinjiang. The level
of industrial development in these regions is low, and the capacity of industrial driving characteristics
is limited, resulting in low production efficiency [50]. The other category was represented by Hebei
and other special areas. Given their unique geographical location, substantial resources needed to be
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provided for the two municipalities of Beijing and Tianjin. Thus, the efficiency of these regions was
lower than that of the others.

3.3. Analysis of the Efficiency of China’s Provincial Environmental Treatment

Appendix A Table A2 displays the efficiency of the environmental treatment stage of different
provincial administrative regions from 1996 to 2015. The estimation results are shown in Figures 6–8.
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From a chronological perspective (see Figure 6), the environmental treatment efficiency in most
provinces was low from 1996 to 2015. In addition, the amplitudes were minor. Between 1996 and 2015,
the environmental treatment efficiency of Qinghai dramatically increased in 2008, thus placing the city at
the highest ranking that year. However, the environmental treatment efficiency of Qinghai continuously
decreased in the following years. In 2002, the efficiency of Hainan peaked and held the top spot.
Overall, the environmental treatment efficiency of most regions was low. Meanwhile, the efficiency
steadily increased in regions with prominent fluctuations, including Beijing. The efficiency of Hainan
and Qing Hai, which had drastic fluctuations, first rose and then declined.

From a spatial perspective, the environmental treatment efficiency of 30 provincial-level regions
in China increased from the north to the south between 1996 and 2015. However, the environmental
treatment of Beijing, Tianjin and Qinghai ranked among the top areas. Beijing and Tianjin represented
highly urbanized areas, while Qinghai represented less economically developed areas whose economy
depended on tourism. Particularly, in order to promote ecological protection, Beijing and Tianjin have
accelerated the upgrading and restructuring of energy consumption and industrial structure, improved
energy utilization efficiency and reduced the proportion of traditional fossil-based energy such as coal
and oil [48]. Economic development was bound to sacrifice the ecosystem to some extent. Nevertheless,
strong economic capacity could solve ecological problems in the process of development, and the
ecological recompense mechanism was mature. Although the environmental efficiency of Jiangsu and
Zhejiang was relatively low, its economic efficiency was at a high level. Therefore, the eco-efficiency
of the regions remained at the forefront of the country. In contrast, the environmental treatment
efficiency of Heilongjiang, Jilin and Liaoning was considerably low because of the limitations brought
by technology and industrial structure. Most of the time, environmental treatment was lower than 0.01.

In Figure 8, the two-dimensional graph of China’s provincial eco-efficiency distribution compares
the production efficiency with the environmental treatment efficiency during the two stages of economic
activities. Some important findings were derived. (1) Beijing, Qinghai and Hainan belonged to the
upper-left quadrant, which was characterized by a high level of environmental treatment efficiency
with a low level of production efficiency. (2) Fujian and Tianjin were both located in the upper-right
quadrant, which indicated that the values of production efficiency and the values of environmental
treatment of both provincial administrative regions were higher than the average. (3) The production
efficiency and environmental treatment were low in provincial administrative regions with economies
that were lagging behind, including Gansu, Guizhou, Ningxia, Hebei, Jilin, Sichuan, Xinjiang, Yunnan,
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Hubei, Shanxi and Heilongjiang. Moreover, these provincial administrative regions all fell within
the lower-left quadrant. (4) As for economically well-developed regions, such as Shanghai, Zhejiang,
Jiangsu, Hunan, Guangdong, Guangxi, Chongqing, Jiangxi, Liaoning, Shandong, Henan and Shanxi,
the efficiency of the production stage evidently outweighed the average efficiency. In addition, that of
the environmental treatment stage was prominently lower than the average value. The comprehensive
efficiency of these provincial administrative regions ranked at the top in the country, proving that
economic development could indeed facilitate environmental improvement.

4. Analysis of the Driving Factors of China’s Eco-Efficiency

4.1. Selection of Indexes

According to the DPSIR model, five factors, including driving forces, pressure, state, impact and
response are used in the analysis of the driving factors of eco-efficiency. With reference to existing
research, Table 3 lists the relevant influential variables of first-class and second-class eco-efficiency.

Table 3. Descriptions on eco-efficiency influential variables.

Aspects Variables Attrs Reference

Driving forces

Per capita gross domestic
product + [1,5]

Population growth rate
(gr_popu) + [1,5]

Urbanization rate (D3)
(urbaniza) + [6,7]

Construction land
growth rate + [10,11]

Urban employment rate
(D5) (employ) + [8]

Annual per capita net
income of farmers + [51]

Pressure

Population density
(den_popu) + [52]

Total energy
consumption
(cosum_enr)

+ [53]

Energy consumption per
unit of GDP + [1]

Per capita energy
consumption + [54,55]

Proportion of coal
consumption to total
energy consumption

+ [56,57]

Consumption of fossil
fuel in total energy

consumption
+ [9]

Total consumption of
fossil energy + [4]

Carbon emission per
energy consumption

(carb_pener)
+ [8]
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Table 3. Cont.

Aspects Variables Attrs Reference

State

Total population (popu) + [1,58]

Urban population
(popu_urba) + [59]

Total resident population + [60]

Proportion of floating
population to total

population
+ [61]

Average family size + [62]

Total patents (patent) - [63]

GDP per energy
consumption (gdp_enr) - [64]

Impact

Proportion of industrial
sector output in GDP + [65]

Proportion of output
value of secondary

industry in GDP
+ [66]

Proportion of the tertiary
industry output in GDP

(tertira)
- [63,66]

Growth rate of
proportion of industrial

value added in GDP
+ [67]

Growth rate of
proportion of

agricultural value added
in GDP

+ [67,68]

Response

Proportion of
environmental

protection investment in
GDP (envrinvera)

- [69]

Green space ration - [12]

Harmless treatment rate
of municipal solid waste - [70]

Comprehensive
utilization rate of

industrial solid waste
- [71]

Centralized treatment
rate of urban sewage - [72]

Standard discharge rate
of industrial wastewater

(tap water)
- [73]

Source: Authors compiled. Note: + indicates the gain indicator, that is, a greater value denotes better gain; -
indicates the expense indicator, that is, a higher value represents worse performance.

This section investigates the driving factors of the eco-efficiency of two different stages,
namely, the production and environmental treatment stages.

4.2. The Construction of the Estimation Model

Correlation analysis and partial correlation analysis were originally intended to eliminate indicators
that are not significantly related to the relevant variables. The first model of structural equations
is constructed with an index on the left. After obtaining the external load factors of the main and
secondary indexes, the sub-index (include the index less than 0) is excluded from the DPSIR model,
which is consistent with the PLS-SEM. The next step is to evaluate the validity of distinguishing validity.
The AVE square root should be greater than the coefficient of the correlation between its exponent and
other indexes. In this way, the selected main indicator can be regarded as a different indicator with
good effectiveness. The relevant data are shown in Tables 4–6.
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Table 4. External load factor.

Stage Measurable Variables
First-Class Variables

Driving forces Impact Pressure Response State

Production efficiency

Total consumption of fossil energy 0.981

Total energy consumption 0.987

Proportion of environmental protection
investment in GDP 0.048

GDP per energy consumption 0.626

Growth rate of proportion of agricultural value
added in GDP −0.855

Growth rate of proportion of industrial value
added in GDP 0.894

Population growth rate −0.669

Harmless treatment rate of municipal solid waste 0.6

Annual per capita net income of farmers 0.928

Total patents 0.678

Per capita gross domestic product 0.942

Total population 0.834

Proportion of floating population to total
population 0.098

Total resident population 0.843

Urban population 0.916

Centralized treatment rate of urban sewage 0.803

Comprehensive utilization rate of industrial solid
waste 0.806

Treatment efficiency

Carbon emission per energy consumption 0.904

Proportion of coal consumption to total energy
consumption 0.877

Total consumption of fossil energy 0.743

Consumption of fossil fuel in total energy
consumption 0.888

Total energy consumption 0.519

Urban employment rate 0.965

Energy consumption per unit of GDP 0.188

GDP per energy consumption −0.373
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Table 4. Cont.

Stage Measurable Variables
First-Class Variables

Driving forces Impact Pressure Response State

Growth rate of proportion of industrial value
added in GDP 1

Green Space Ration 0.808

Annual per capita net income of farmers 0.386

Urban population 0.652

Standard discharge rate of industrial wastewater 0.656

Total efficiency

Carbon emission per energy consumption 0.992

Proportion of coal consumption to total energy
consumption 0.978

Consumption of fossil fuel in total energy
consumption 0.986

Urban employment rate 0.664

GDP per energy consumption 1

Growth rate of proportion of industrial value
added in GDP 0.984

Population growth rate −0.016

Annual per capita net income of farmers 0.788

Proportion of industrial sector output in GDP 0.986

Per capita gross domestic product 0.775

Standard discharge rate of industrial wastewater 1

Source: Authors compiled.
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Table 5. Discriminant validity of the DPSIR model.

Stage DPSIR
Factors

Driving
Forces Impact Pressure Response State

Production
efficiency

Driving
forces 0.989

Impact 0.138 1

Pressure 0.468 0.518 0.984

Response 0.756 0.304 0.581 0.769

State 0.421 0.338 0.7 0.668 0.795

Treatment
efficiency

DPSIR
factors

Driving
forces Impact Pressure Response State

Driving
forces 1

Impact −0.185 1

Pressure −0.098 0.43 0.799

Response 0.024 0.181 0.066 0.736

State 0.052 0.387 0.234 0.351 1

Total
efficiency

DPSIR
factors

Driving
forces Impact Pressure Response State

Driving
forces 0.779

Impact −0.023 0.985

Pressure −0.198 0.262 0.985

Response −0.003 0.102 −0.129 1

State 0.746 −0.041 −0.361 0.142 1

Source: Authors compiled.
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Table 6. Structural path estimates for the DPSIR model.

Stage DPSIR
Factors

Cronbach’s
Alpha rho_A Convergence

Reliability

The Average
Variance
Extracted

(AVE)

Influence
Coefficient

Production
efficiency

Driving
forces 0.978 0.98 0.989 0.979 0.058

Impact 1 1 1 1 0.247

Pressure 0.967 0.988 0.984 0.968 −0.166

Response 0.666 0.708 0.811 0.591 0.215

State 0.847 0.871 0.893 0.632 0.123

Treatment
efficiency

Driving
forces 1 1 1 1 0.177

Impact 1 1 1 1 −0.431

Pressure 0.849 0.865 0.896 0.639 −0.104

Response 0.158 0.164 0.701 0.542 0.293

State 1 1 1 1 −0.164

Total
efficiency

Driving
forces 0.668 0.636 0.819 0.607 0.239

Impact 0.97 0.974 0.985 0.971 −0.483

Pressure 0.985 1.02 0.99 0.971 −0.145

Response 1 1 1 1 0.125

State 1 1 1 1 0.009

Source: Authors compiled.

Table 4 illustrates the ultimate outcomes of the indexes, which influence the eco-efficiency of
various stages. At the same time, the estimated structural pathways of various stages in the DPSIR
model are calculated and examined with the PLS method. To determine the reliability and validity
the DPSIR model, the convergence reliability (CR) needs to be higher than the minimal requirement
of −0.7. Moreover, the AVE must surpass 0.5 and be larger than the relevant coefficient of primary
indexes simultaneously. As shown in Table 4, the CR and AVE meet the minimal requirement, which
means that the model is reliable and valid.

4.3. Analysis of the Driving Factors of the Production Stage

Figure 9 shows the empirical findings of the impact (the influence coefficient is 0.247), response
(the influence coefficient is 0.215), state (the influence coefficient is 0.123) and pressure (the influence
coefficient is −0.166). All four factors exert significant impacts on the eco-efficiency of the production
stage. The specific explanations are as follows.
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(1) The influence coefficient between impact and production efficiency is 0.247, which indicates
that the factor of impact has prominent positive influence on the environmental production
efficiency. Its influence is the largest among the indexes, which is represented by the fact that a
high proportion of industrial value added in the GDP entails increased environmental production
efficiency. On the one hand, the expansion of the industrial value-added proportion of GDP
demonstrates the enhanced capability of industrial production. On the other hand, it indicates
progressing industrial technology innovation. Improvement in industrial technology innovation
also decreases the overall energy consumption and pollution brought by industrial products.
To some extent, it demonstrates the improvement of the environmental production efficiency.

(2) The response system influences the production efficiency to a certain degree. The influence
coefficient is 0.215, which means that a collective sewage treatment by an industrial solid waste
treatment plant and its comprehensive utilization increases the production efficiency as the
province puts more effort into the decontamination of urban refuse. Li and Liu [74] found
that technological innovation is the principal force for promoting green and inclusive all-factor
productivity. They believe that enhancing the production efficiency should be the key to numerous
challenges, such as sustaining development, eradicating poverty, saving natural resources and
protecting the environment.

(3) The pathway coefficient of state and production efficiency is 0.123, thus reflecting a positive
influence on the production efficiency exerted by the value of the state. However, this influence is
the most trivial. The production efficiency would improve correspondingly with the increase
of the per capita GDP’s consumption of energy due to the number of patents being passed,
the urban population, the total number of permanent population and the total population. In fact,
the population, which includes the urban population and the permanent population, is a factor
closely related to the environment. The increase of these parameters leads to substantial labor
force provision. In addition, the labor force could significantly enhance the production efficiency.
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The growing number of patents indicates higher innovative ability, which also improves the
production efficiency.

(4) Pressure is the only index that shows an evident negative influence on the production eco-efficiency.
The pathway coefficient is −0.166, which indicates that enlarging the overall consumption of
energy and fossil fuels brings about low production eco-efficiency. Therefore, a larger consumption
of energy and fossil fuel lowers the energy-utilizing efficiency in China. Fossil fuels not only elicit
tremendous pollution but also characterize China’s industrial structure, where the secondary
industry remains the largest. This circumstance hinders the country’s adjustment of the industrial
structure and the enhancement of the innovative ability. All these factors contribute to low
production eco-efficiency.

4.4. Analysis of the Driving Factors of the Treatment Stage

Figure 10 demonstrates that driving forces (the influence coefficient is 0.177), response (the influence
coefficient is 0.293), impact (the influence coefficient is −0.431), pressure (the influence coefficient is
−0.104) and state (the influence coefficient is −0.164) all have a significant impacts on the eco-efficiency
of the management stage. To be specific:
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(1) The pathway coefficient of the driving factors and the environmental treatment efficiency is
0.177. This value shows that a higher urban employment rate increases the environmental
treatment efficiency correspondingly. Thus, the population and the environment are always
closely connected. When urbanization continues to expand, the labor force also increases. As a
result, the urban employment rate and the city’s development rise. This cycle is beneficial to the
city. With the increase in the employment rate and the development of the city, the labor force in
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the area where environmental management is implemented also steadily increases along with
the improved population quality and efficiency in environmental treatment. Therefore, regions
with poor human resources bases need to increase investment in human resources development
and introduce and cultivate high-tech talents, in order to promote the development of high-tech
industries [48].

(2) The response system exerts a relatively large impact on the environmental treatment efficiency,
which is represented by an influence coefficient of 0.293. This value indicates a higher afforestation
rate. In addition, the control rate of industrial sewage discharge stimulates the environmental
management rate. Afforestation is one of the crucial methods of environmental management.
Generally, the high afforestation rate of a city entails better environmental treatment efficiency.
Currently, water pollution is one major difficulty faced by urban environmental treatment, as
the pollution caused by industrial wastewater is rather severe. Thus, when the control rate of
industrial sewage discharge is higher, the city’s environmental treatment efficiency also increases.

(3) The influence coefficient of the influencing factors and the environmental treatment efficiency
is −0.431, which mainly reflects an inversion between the expanding industrial proportion in
the GDP value added and the environmental treatment efficiency. The most important index
is the industrial proportion in the GDP value added, which signifies that industrial pollution
exerts a considerable impact on the environmental treatment efficiency. Given that the ratio of
the secondary industry in China is still high, the improvement of the environmental treatment
efficiency is hindered, which indicates that the industrial structure of our country needs to
be adjusted.

(4) Moreover, the pressure system has an evident negative impact on environmental treatment
efficiency. The pathway coefficient between the two factors is −0.104, as shown by the result of
the model. Carbon emission and energy consumption is an important indicator of environmental
treatment efficiency. The major contributors are the consumption of fossil fuel. The high ratio
of fossil fuel and coal consumption lowers the environmental treatment efficiency. The overall
energy consumption, particularly the overall consumption of fossil fuel itself, greatly pollutes
the environment, which is at odds with environmental treatment. Thus, a greater overall energy
consumption and fossil fuel consumption increases the severity of the pollution. Moreover, the
increase in consumption decreases the environmental treatment efficiency.

(5) The pathway coefficient of the state and the environmental treatment efficiency is −0.164,
which means that state indeed influences environmental treatment efficiency negatively. With an
increasingly urban population, environmental treatment efficiency decreases. China is still a
developing country at its current stage. The concept of energy conservation and environmental
protection is insufficient, which will lead to the decline of ecological efficiency [75]. From the
perspective of the pathway coefficient, the influence remains comparatively low even though the
index of the urban population evidently negatively affects the environmental treatment efficiency.

4.5. Analysis of the Driving Factors of Overall Efficiency

Figure 11 demonstrate that driving forces (the influence coefficient is 0.239), response (the influence
coefficient is 0.125), impact (the influence coefficient is −0.483) and pressure (the influence coefficient is
−0.145) all remarkably affect the overall eco-efficiency. To be specific:
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(1) The pathway coefficient of the driving forces and the overall eco-efficiency is 0.239, which means
that the GDP per capita, the farmers’ net income per capita and the urban rate of employment share a
positive relationship with the overall eco-efficiency. Several factors influence regional eco-efficiency.
One of the widely acknowledged aspects is economic status. Moreover, the GDP per capita, the farmers’
net income per capita and the increase of the urban rate of employment can all enhance the overall
eco-efficiency. Economic development has advanced science and technology, thus facilitating the
improvement of the overall eco-efficiency.

(2) The response system also exerts a certain influence on the overall eco-efficiency. The influence
coefficient is 0.125, which means that the control rate of the industrial sewage treatment has not reached
the standard domestically. Moreover, the response system does not increase the overall eco-efficiency.
Technological strength is another important demonstration of a country or region’s comprehensive
strength. It is also key to economic development and environmental quality. Progress in pollution
control technology can cultivate a better environment, while the development of cleaning and
decontamination technology can enhance the utilizing and recycling rates of resources and reduce the
pollution discharge per unit. In addition, the technology externality and the effect of technology spillover
among enterprises in different regions can greatly improve the efficiency of clean technology research
and development (R&D), which promote the reduction of regional pollution [76]. Although the response
system influences the overall eco-efficiency to some extent, the influence coefficient is relatively minor
compared with other factors.

(3) The influence coefficient between the impact and the overall eco-efficiency is −0.483.
By comparison, the value of the impact has the strongest negative influence on the overall eco-efficiency.
The empirical results show that the industrial proportion in the GDP value added is negatively correlated
with eco-efficiency. With regard to the relationship with industrial structural changes and environmental
pollution, one consensus is that when a country’s economy turns from an agriculture-based economy to
an industrialized one, the environmental pollution is exacerbated. With accelerating industrialization,
more resources are exploited and used, and the environment deteriorates with the increasing waste
discharged. Given that waste discharge is mainly derived from industrial production, a higher ratio of
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industrial value added into the GDP entails a lower efficiency of resource consumption, environmental
pollution and overall environment.

(4) The pressure system also exerts a prominent negative impact towards the overall eco-efficiency.
The pathway coefficient between the two is−0.145, which means that this factor has the least effect on the
overall eco-efficiency. In addition, the carbon emission per energy consumption unit is directly related
to the environmental treatment efficiency. The major factors are the consumption of fossil fuel and coal.
A higher proportion of fossil fuel and coal consumption indicates lower overall eco-efficiency. In recent
years, we have actively promoted industrial transformation and upgrading. Moreover, the industrial
capacity of energy-driven enterprises and heavy pollutant emission enterprises has continuously
reduced. Instead, environmentally friendly industries, including the service industry, have taken over.
The optimization of the industrial structure enhances eco-efficiency, as confirmed by several experts.

5. Conclusions

Eco-efficiency is the marginal impact of the output added value on the environmentally improved
eco-efficiency. This study explores the overall production and environmental eco-efficiency of
30 provincial regions in China using the two-stage DEA model. This study finds that (1) the
eco-efficiency of most Chinese regions is low, and there are regional differences evident. 2) The factors
of pressure, state, impact and response exert significant effects on the eco-efficiency of the production
stage. Meanwhile, all DPSIR factors have strong impacts on the eco-efficiency of the treatment
stage. (3) By comparing the production efficiency with the environmental efficiency, we find that
the eco-efficiency of the production stage evidently outweighs the average efficiency in economically
well-developed regions.

Specifically, the main findings are elaborated as follows.

(1) The overall eco-efficiency of various provincial administrative regions manifests greatly different
trends from 1996 to 2015. In most regions, the eco-efficiency was below 1, indicating that they
were less efficient. From a spatial perspective, eco-efficiency varied greatly between 30 provincial
administrative regions due to different levels of economic development and environmental
protection. The average eco-efficiencies of 30 different regions in China fell into four sections:
0.03–0.15, 0.16–0.19, 0.20–0.35 and 0.36–1.25. The average eco-efficiencies of Hainan, Guangdong,
Fujian, Beijing, Tianjin, Qinghai and Shanghai were between 0.36 and 1.25, which are considerably
high. Meanwhile, the eco-efficiencies of Hebei, Shandong and Henan were in the lowest group.
In addition, the trend from the western areas to the southeast coastal areas gradually increased.
From a chronological perspective, the production of most regions in China was comparatively
low, without much fluctuation.

(2) The two-stage DEA model divides the eco-efficiency into production efficiency and treatment
efficiency. From a chronological perspective, different regions in China display diverse changes
in various periods between 1996 and 2015. In general, the environmental production efficiency of
most regions in China was comparatively low. The environmental treatment efficiency was also
low, and the amplitudes were minor. From a spatial perspective, the average production efficiency
of 30 regions (municipalities) in China fell into four sections: 0.10–0.71, 0.72–0.84, 0.85–0.98 and
0.99–1.52. An apparent trend of gradual increase was also observed from the western areas to
the southeast coastal areas. Moreover, the environmental treatment efficiency of 30 provincial
administrative regions in China increased from the north to the south.

(3) When comparing the production efficiency with the environmental treatment efficiency, some
important findings can be derived. Beijing, Qinghai and Hainan efficiency and the environmental
treatment of Fujian and Tianjin were higher than the average. These regions show low levels
of production efficiency and high levels of environmental treatment efficiency. The production
efficiency and environmental treatment were low in the group of provincial administrative regions
where economies were lagging behind the national average. For economically well-developed
regions, the efficiency of the production stage evidently outweighed the average efficiency.
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Meanwhile, that of the environmental treatment stage was prominently lower than the
average value.

(4) Impact, response, state and pressure have remarkable influences on the eco-efficiency of
the production stage, where the value of impact is the most influential among the indexes.
Aside from the pressure system, other indexes all exerted positive influences on production
efficiency. The driving forces, response, impact, pressure and state all significantly influenced the
eco-efficiency of the management stage, where the response index was more influential. Except for
driving forces and impact, other indexes negatively affected eco-efficiency. In terms of the overall
eco-efficiency, the driving forces, response, impact and pressure were all important influencing
factors, where impact exerted the most influence. The relationship between the driving forces and
the overall eco-efficiency was positive, and the same was true with the response. Meanwhile, the
influences of impact and pressure were negative.

According to the estimation results, this study reveals important findings. There are remarkable
differences in ecological efficiency among different provinces in China, and most of them are in
non-efficiency state, which indicates that China’s economic development in the past was at the expense
of ecological protection to varying degrees, and this traditional economic development mode will not
bring sustainable economic development. Ecological environment governance is an imperative with
positive externality. In order to promote the transition of China’s economy to high-quality development,
this paper puts forward the following policy recommendations:

Firstly, ex ante supervision and governance of ecological environment and legal deterrence are
vitally important. The central and local governments should reinforce the legislations of environmental
protection laws and regulations, and strengthened the punishment of environmental misconducts.
Secondly, supportive institutional arrangements are needed to ensure the consistent implement of
environmental protection policy. On the one hand, the government should encourage enterprises
to recycle pollutants and upgrade green production processes by means of financial assistance and
tax reduction. On the other hand, the government should strengthen the protection of intellectual
property rights, which is conducive to encouraging enterprises to invent and deploy innovative
or environmental friendly products. Thirdly, local governments should strengthen cross-boundary
cooperation. The production efficiency and environmental treatment efficiency of Fujian and Tianjin
are higher than the national average level. Local governments can learn from the experience of energy
consumption restructure and industrial adjustment of these two regions. In addition, the central
government should play a proactive role as a coordinator to promote balanced regional development
and environmental protection. Industrial upgrading experienced in China’s coastal developed
regions leads to the transfer of low-end industries to less developed regions and results in various
environmental problems. Therefore, the central government should explore the cooperative path of
environmental governance.

This study proposes several promising directions for future study to address the limitation of this
study. With the weak disposability of undesirable outputs, it is a challenging issue to appropriately
manage the potential trade-off between undesirable output abatement and desirable output production.
A decision-maker may have their specific preference on the substitution rate between them in
different circumstances, and changes in the substitution rate may largely affect the measurement
result. To address this issue, a sensitivity analysis of the substitution rate is important to adequately
control the trade-off. For example, the robustness of eco-efficiency estimation results is prone to
selections of substitution rate. Such an analysis could derive rich managerial implications to alleviate
the environmental impacts of socioeconomic activities.
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Appendix A

Table A1. China’s provincial environmental production efficiency.

Provinces 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

Anhui 0.75 1.00 0.13 1.00 1.00 1.00 0.74 0.76 0.78 0.68 0.75 0.84 0.71 0.75 0.78 0.82 0.82 1.01 0.80 0.79

Beijing 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.58 0.61 0.49 0.56 0.53 0.44 0.53 0.50 0.49 0.46 0.48 0.46 0.41

Fujian 0.93 0.78 1.00 0.70 0.90 0.98 0.97 1.19 0.89 0.90 0.88 1.01 0.89 0.96 1.10 0.97 0.95 1.18 0.96 0.98

Gansu 0.91 1.04 0.87 0.68 0.64 0.62 0.57 0.63 0.64 0.59 0.54 0.61 0.67 0.66 0.60 0.91 0.69 0.60 0.63 0.57

Guangdong 1.00 1.00 0.58 0.92 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.14 1.00 1.00 1.00 1.00 1.04 1.08 1.16 1.50

Guangxi 1.37 1.29 1.16 1.19 1.16 1.26 1.22 1.19 1.24 1.06 1.05 1.17 1.03 1.03 1.01 1.01 1.09 1.10 0.82 0.75

Guizhou 1.07 1.24 1.00 0.90 0.69 0.66 0.58 0.53 0.55 0.56 0.54 0.71 0.60 0.87 0.99 0.73 0.80 0.80 0.88 0.76

Hainan 0.62 0.44 1.06 0.72 0.50 1.05 1.23 0.64 0.55 0.45 0.38 0.39 0.57 0.36 0.62 0.59 0.58 0.73 0.71 0.63

Hebei 0.98 1.00 1.00 0.88 0.92 0.89 0.93 1.00 1.09 0.99 1.00 1.11 1.00 1.01 1.01 1.06 1.14 1.01 1.07 1.06

Henan 1.00 1.00 0.75 1.00 1.00 1.00 1.00 1.00 0.99 0.84 0.86 1.16 0.97 0.93 1.09 1.05 0.89 1.04 0.97 0.85

Heilongjiang 1.00 1.00 0.44 0.61 1.00 0.50 1.00 1.00 1.00 1.00 0.52 0.58 0.52 0.49 0.58 0.58 0.59 0.45 0.62 0.51

Hubei 0.91 0.77 0.89 0.89 0.86 0.74 0.72 0.77 0.81 0.70 0.71 1.06 0.75 0.73 0.85 0.88 0.81 0.86 0.76 0.73

Hunan 0.87 1.28 0.65 1.26 1.18 0.90 0.90 0.86 0.99 0.76 0.71 1.09 0.73 0.75 1.05 1.00 0.84 0.83 0.73 0.73

Jilin 0.63 0.63 0.84 0.67 0.62 0.60 0.56 0.59 0.61 0.61 0.60 0.68 0.62 0.72 0.66 0.81 0.67 0.80 0.72 0.72

Jiangsu 1.24 1.17 0.72 1.09 1.00 1.03 1.03 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.12 1.04 1.05

Jiangxi 1.68 1.00 1.00 1.36 1.00 1.00 0.74 1.08 0.80 0.70 0.79 1.00 0.97 0.87 0.82 0.91 0.94 1.24 0.89 0.90

Liaoning 1.00 1.24 1.00 1.00 1.00 1.00 1.00 1.00 0.90 0.96 0.90 0.90 0.93 0.82 0.80 0.91 0.89 0.85 0.98 1.04

Inner
Mongolia 1.04 1.14 0.90 1.03 0.68 0.67 0.67 0.64 0.60 0.51 0.54 0.61 0.64 0.65 0.75 0.69 0.67 2.04 0.98 0.90

Ningxia 0.98 0.93 1.00 0.72 0.76 0.65 0.61 0.60 0.61 0.71 0.72 0.82 0.83 0.84 0.97 0.89 0.93 0.90 0.92 0.86

Qinghai 1.47 0.62 0.20 0.55 1.40 0.43 0.41 0.46 0.47 0.61 0.69 0.73 0.76 0.82 0.82 0.70 0.76 0.75 0.81 0.73

Shandong 1.00 1.00 1.00 1.00 1.00 1.00 0.95 0.88 0.98 0.82 0.79 0.91 0.99 0.98 1.07 1.09 1.07 1.02 1.05 1.05

Shanxi 1.17 1.11 1.00 0.93 0.84 0.85 0.84 0.90 0.96 0.75 0.88 0.92 1.04 0.90 1.01 0.93 0.95 1.00 0.96 0.87

Shaanxi 0.99 1.01 0.95 0.71 0.78 0.70 0.72 0.77 0.84 0.75 0.76 0.84 0.90 0.87 0.89 0.96 0.93 0.86 0.77 0.77

Shanghai 1.00 1.00 1.00 1.00 1.00 1.84 1.94 1.93 2.18 1.00 1.00 1.00 1.00 1.00 2.58 2.58 2.16 1.00 2.19 1.97

Sichuan 1.14 0.90 0.91 0.75 0.87 0.80 0.81 0.99 0.79 0.71 0.73 0.96 0.78 0.82 1.08 1.00 0.66 0.77 0.71 0.61

Tianjin 0.92 1.02 0.87 0.67 1.00 1.00 1.00 1.00 1.00 1.00 1.89 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Xinjiang 0.68 0.64 0.59 0.68 0.41 0.40 0.41 0.40 0.44 0.41 0.52 0.59 0.52 0.51 0.54 0.58 0.54 0.63 0.63 0.56

Yunnan 1.00 1.00 1.00 1.00 0.68 0.63 0.62 0.69 0.81 0.59 0.64 0.98 0.67 0.62 0.62 0.81 0.79 0.69 0.78 0.72

Zhejiang 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.04 1.03 1.13 1.18 1.18 1.18 1.26 1.24 1.32 1.15 1.18

Chongqing 1.14 0.87 1.21 0.98 0.93 0.89 0.90 1.04 0.85 1.04 1.05 0.93 1.06 0.85 0.65 0.77 0.94 0.84 0.79
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Table A2. China’s provincial environmental treatment efficiency.

Provinces 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

Anhui 0.13 0.15 1.30 0.15 0.14 0.12 0.09 0.09 0.13 0.13 0.11 0.11 0.09 0.10 0.08 0.06 0.07 0.07 0.06 0.05

Beijing 0.14 0.15 0.23 0.25 0.18 0.34 0.36 2.10 2.06 2.62 2.31 2.48 3.07 2.50 2.69 2.70 2.95 2.82 3.00 3.38

Fujian 1.19 1.45 0.35 1.59 1.19 1.03 1.04 0.84 0.14 0.12 0.11 0.11 0.11 0.14 0.11 0.10 0.14 0.19 0.11 0.09

Gansu 0.07 0.08 0.08 0.11 0.08 0.11 0.08 0.10 0.18 0.18 0.15 0.16 0.15 0.18 0.17 0.33 0.18 0.22 0.16 0.15

Guangdong 0.06 0.11 0.20 0.06 0.07 0.07 0.06 0.06 0.09 0.15 0.36 0.97 0.13 0.14 0.09 0.13 1.06 0.96 0.88 0.69

Guangxi 0.07 0.13 0.12 0.10 0.07 0.09 0.09 0.08 0.11 0.09 0.09 0.09 0.07 0.08 0.07 0.06 0.07 0.08 0.07 0.06

Guizhou 0.11 0.11 0.07 0.10 0.10 0.12 0.09 0.11 0.19 0.23 0.18 0.20 0.21 0.30 0.29 0.14 0.21 0.10 0.06 0.06

Hainan 2.22 2.95 1.27 2.39 2.19 3.64 9.02 2.81 3.45 3.96 4.46 4.45 5.28 4.49 1.00 1.00 1.00 3.13 3.18 1.00

Hebei 0.05 0.07 0.05 0.06 0.04 0.04 0.03 0.04 0.04 0.05 0.04 0.04 0.04 0.05 0.04 0.02 0.02 0.06 0.06 0.05

Henan 0.05 0.07 0.09 0.09 0.07 0.07 0.05 0.06 0.09 0.06 0.06 0.06 0.06 0.09 0.09 0.11 0.13 0.08 0.06 0.05

Heilongjiang 0.07 0.08 0.19 0.19 0.10 0.14 0.11 0.13 0.14 0.23 0.21 0.19 0.12 0.15 0.11 0.12 0.14 0.18 0.12 0.12

Hubei 0.08 0.12 0.09 0.08 0.07 0.07 0.06 0.06 0.10 0.10 0.09 0.11 0.10 0.10 0.10 0.06 0.07 0.10 0.07 0.06

Hunan 0.11 0.78 0.19 0.79 0.85 0.09 0.06 0.08 0.15 0.13 0.11 0.11 0.10 0.09 0.11 0.12 0.11 0.10 0.07 0.05

Jilin 0.12 0.16 0.11 0.20 0.12 0.15 0.12 0.15 0.17 0.17 0.15 0.18 0.15 0.17 0.12 0.18 0.29 0.25 0.19 0.14

Jiangsu 0.05 0.08 0.14 0.06 0.09 0.05 0.04 0.05 0.06 0.09 0.05 0.11 0.08 0.10 0.12 0.07 0.11 0.09 0.04 0.04

Jiangxi 0.63 0.30 0.31 0.77 0.10 0.20 0.07 0.12 0.11 0.12 0.11 0.12 0.12 0.12 0.09 0.09 0.08 0.09 0.08 0.06

Liaoning 0.04 0.32 0.07 0.06 0.04 0.05 0.05 0.06 0.06 0.05 0.04 0.05 0.04 0.06 0.06 0.03 0.04 0.07 0.05 0.04

Inner
Mongolia 0.09 0.10 0.09 0.11 0.07 0.12 0.07 0.08 0.09 0.09 0.07 0.09 0.07 0.09 0.06 0.07 0.06 0.49 0.08 0.06

Ningxia 0.34 0.47 0.39 0.31 0.21 0.22 0.23 0.23 0.29 0.29 0.23 0.24 0.25 0.34 0.25 0.29 0.40 0.39 0.33 0.22

Qinghai 1.76 4.41 8.68 1.93 1.35 0.58 0.56 0.62 0.74 0.49 0.45 0.40 0.29 1.00 0.46 1.00 1.00 0.50 0.37 0.28

Shandong 0.10 0.09 0.11 0.12 0.07 0.08 0.04 0.05 0.05 0.05 0.04 0.04 0.04 0.04 0.04 0.03 0.04 0.06 0.04 0.04

Shanxi 0.07 0.08 0.05 0.06 0.04 0.07 0.06 0.07 0.10 0.10 0.07 0.07 0.07 0.08 0.07 0.04 0.05 0.08 0.06 0.06

Shaanxi 0.09 0.12 0.08 0.09 0.05 0.09 0.08 0.07 0.09 0.10 0.12 0.12 0.09 0.11 0.08 0.16 0.15 0.16 0.12 0.09

Shanghai 0.08 0.11 0.12 0.10 0.10 0.69 0.64 0.67 0.60 0.16 0.20 0.14 0.17 0.22 0.59 0.59 0.53 0.44 0.51 0.57

Sichuan 0.04 0.07 0.06 0.07 0.04 0.05 0.04 0.05 0.06 0.08 0.07 0.06 0.07 0.09 0.10 0.08 0.13 0.08 0.06 0.06

Tianjin 0.22 0.26 1.37 0.38 0.51 0.39 0.29 0.26 0.34 0.27 0.62 0.31 0.31 0.42 0.33 0.37 0.39 0.58 0.37 0.36

Xinjiang 0.21 0.31 0.21 0.22 0.19 0.18 0.17 0.17 0.16 0.20 0.18 0.17 0.15 0.16 0.13 0.15 0.13 0.13 0.10 0.10

Yunnan 0.19 0.20 0.27 0.17 0.09 0.11 0.09 0.09 0.14 0.14 0.14 0.15 0.14 0.14 0.12 0.10 0.11 0.09 0.06 0.06

Zhejiang 0.16 0.17 0.17 0.09 0.09 0.08 0.10 0.06 0.07 0.07 0.06 0.06 0.05 0.07 0.05 0.09 0.08 0.13 0.07 0.06

Chongqing 0.23 0.18 0.15 0.11 0.12 0.10 0.13 0.10 0.14 0.09 0.12 0.13 0.12 0.10 0.16 0.23 0.29 0.20 0.18
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