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Allogeneic bone marrow transplantation (BMT) is an effective therapy for several malignant  
and non-malignant disorders. The precise control of allogeneic T  cells is critical for 
successful outcomes after BMT. The mechanisms governing desirable (graft-versus- 
leukemia) versus undesirable (graft-versus-host disease) allogeneic responses remain 
incompletely understood. Non-coding RNAs (ncRNA) are controllers of gene expression 
that fine-tune cellular responses. Multiple microRNAs (miRNAs), a type of ncRNA, have 
recently been shown to influence allogeneic T  cell responses in both murine models 
and clinically. Here, we review the role of various miRNAs that regulate T cell responses, 
either positively or negatively, to allo-stimulation and highlight their potential relevance 
as biomarkers and as therapeutic targets for improving outcomes after allogeneic BMT.
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inTRODUCTiOn

Donor-derived allogeneic T cells are the main effectors of both the curative graft-versus-leukemia/
tumor (GVL) effect and the morbid and often mortal acute graft-versus-host disease (GVHD)  
following allo-bone marrow transplantation (BMT) (1). GVL and GVHD are alloimmune processes 
that are closely linked mechanistically and clinically, and the separation of the two remains the holy 
grail of allogeneic BMT (2–6).

Allogeneic T cells target  allo-antigens on tumor cells and the main GVHD target organs (7).  
The process is initiated by host tissue damage secondary to cytoreductive conditioning regimens  
(1, 7, 8). Tissue damage from conditioning regimens promotes the release of inflammatory cytokines 
that activates antigen-presenting cells, which stimulate donor T cells with allo-antigens causing their 
expansion (1, 7, 8). In addition to expansion, alloreactive T cells differentiate into multiple helper 
T cell (CD4+) and effector T cell (CD8+) subtypes, all of which are involved in allogeneic T cell 
responses with Th1 and Th17 cells thought to promote GVHD, whereas Th2 and Treg cells limit 
GVHD (1, 7, 8). Following activation and differentiation, alloreactive T cells migrate to their target 
GVHD organs and/or tumor and cause damage/destruction via cell-mediated (e.g., via perforin/
granzyme) or inflammatory cytokine (IFN-γ, TNF-α, and IL-1)-mediated processes (1, 7, 8). They 
also release cytokines and chemokines that promote the recruitment of mononuclear cells that aid  
in the final effector process. The cell-mediated allogeneic effector responses can be mediated by 
either the CD8+ cytotoxic T cells (CTLs) and/or aided by CD4+ T cells (1, 7, 8).
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Non-coding RNAs (ncRNAs) lack protein-coding potential 
and are classified as small [<200 nucleotides (nt)] or long (>200 nt)  
ncRNAs. As evidence of their biologic and evolutionary impor-
tance, non-coding RNAs form the bulk of the transcribed mam-
malian genome, and organismal complexity better correlates with 
the fraction of the genome transcribed into ncRNA versus that 
transcribed into protein-coding genes (CDSs) (9, 10). There are 
many different types of small non-coding RNA, but microRNAs 
(miRNAs) are the most studied subtype contributing to gene 
regulation (11, 12). miRNAs are single-stranded and typically 
19–22 nt in their mature form (11–13). Their nuclear precursors 
(pri-microRNAs) are transcribed via RNApol-II and processed 
by DROSHA to pre-microRNAs which are exported to the 
cytoplasm where they are cleaved by the endonuclease DICER 
to form mature miRNAs (11–13). Mature miRNAs associate 
with Argonaute family proteins to form RNA-induced silencing  
complexes that are then guided to specific mRNAs via base-
pairing with its miRNA. One miRNA may target multiple genes, 
many miRNAs may target one gene, and the gene specificity 
of any given miRNA may vary depending on the cell type and 
context (12, 14–16). In T  cells, miRNAs play important roles in 
T cell development, differentiation, activation, proliferation, sur-
vival, effector/regulatory functions, and immune reconstitution 
following allo-BMT; furthermore, multiple studies have shown  
crucial roles for miRNAs in the pathogenesis of hematologic 
malignancies and autoimmune disorders (17, 18). Consistent 
with their extensive role in T  cell biology, ncRNAs, mainly 
miRNAs, have recently been shown to influence allogeneic T cell 
function and modulate aGVHD. In this review, we describe the  
emerging role of miRNAs on allogeneic T cell biology and dis-
cuss how many of these may prove to be useful biomarkers and 
therapeutic targets for aGVHD. In addition, we also describe the 
plausible role for another regulatory ncRNA, long non-coding 
RNAs (lncRNAs), in allogeneic T cells.

DiFFeRenTiAL eXPReSSiOn OF 
microRnAs in T CeLLS FOLLOwinG 
ALLO-ACTivATiOn

The first analysis of miRNA differential expression in allogeneic 
T cells was carried out by Sun et al. (19), utilizing a novel global 
approach to identify differentially expressed miRNAs by co-
immunoprecipitating Argonaut-bound miRNA and mRNA. The 
expression of these Argonaut-bound RNAs was then determined 
using microarrays (AGO-CLIP-CHIP). By comparing syngeneic, 
CD3/CD28-stimulated, and allogeneic ex vivo T cells from mixed 
lymphocyte reactions (MLRs), the authors identified a network of 
miRNAs that were dysregulated in the allogeneic samples relative 
to controls, including miR-142 which was subsequently con-
firmed via detailed studies reviewed below. The authors focused 
on miRNAs that were downregulated in the allogeneic T  cells 
and showed that a group of mRNAs predicted to be targeted by  
these miRNAs also had a decreased enrichment following AGO-
CLIP-CHIP. They confirmed these results utilizing in vivo murine 
models and further showed that the expression of several of the 
miRNAs predicted to target mRNAs was decreased as well.

Among these putative miRNA targets, the top two mRNAs 
regulated were the wings apart like homolog (Wapal) and synap-
tojanin 1 (Synj1). The study identified these as potentially novel 
proteins that regulate T cell biology. Wapal is a cohesin release 
factor that helps regulate chromatin architecture and is also 
required for sister chromatid resolution during mitotic prophase 
(20–22). The knockdown of Wapal caused T cells to proliferate 
slower only in response to an allogeneic stimulus. This intriguing 
finding suggests that Wapal may only play a minor role in T cell 
mitosis in response to a strong nonspecific stimulus, yet still be 
critical for regulating chromatin architecture and thereby gene 
expression in the context of alloimmunity. Synj1 is a known neu-
ronal phosphatidylinositol phosphatase and a positive regulator 
of receptor-mediated endocytosis (20, 23–28). Its role in T cells, 
let alone allogeneic T cells, is unknown, but its role in neuronal 
synapse biology suggests that it may affect T cell vesicular traf-
ficking, perhaps within the immunological synapse (29). When  
the expression of both Wapal and Synj1 was decreased via shR-
NAs, allogeneic T cells proliferated less and produced less inflam-
matory cytokines (IL-6, IL-17, and IFN-γ). Importantly, the effect 
on cytokine production was not global as IL-2 expression was 
preserved. Concurrent knockdown of Synj1 and Wapal in donor 
allogeneic T cells ameliorated recipient GVHD in mouse models. 
Nevertheless, the exact role and mechanism of Wapal and Synj1 
in allo-T cell biology will need to be confirmed in T cell-specific 
genetic knockout models and in humans.

The differential expression of miRNAs in allogeneic T  cells 
was also demonstrated by Jalapothu et  al., utilizing an MHC-
mismatched rat aGVHD model and the nanostring hybridiza-
tion platform (16). Specifically, peripheral blood and intestinal 
T cells increased the expression of miR-99a, miR-223, miR-326, 
and miR345-5p. Importantly, the authors demonstrate a tissue-
specific difference in miRNA expression and show that miR-146a 
and miR-155 increase in the skin following allo-BMT, which 
is similar to that discussed for T cells below. The differences in 
miRNA differential expression in allo-T  cells between the Sun 
and Jalapothu studies likely reflect differences in technique, cellu-
lar source, and model systems.

eXPeRiMenTAL DATA DeMOnSTRATinG 
THe ROLe FOR SPeCiFiC miRnAs in 
GvHD AnD GvL

Recent studies have illuminated a role for several specific miR-
NAs in the regulation of T cell alloimmunity. They are shown in 
Figure 1 and Table 1.

MicroRnA-155 (miR-155)
MicroRNA-155 is required for normal B and T  cell function 
and known to enhance Th1 development and TNFα production 
(30–35). Ranganathan et  al. extended miR-155’s functions to 
include the regulation of allogeneic T  cells and promotion of 
GVHD (36). miR-155 expression was increased in both CD4- 
and CD8-positive cells following murine allo-BMT, and GVHD 
was ameliorated in multiple KO and antagomir-treated models 
and was exacerbated in over-expression models. Although the 
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FiGURe 1 | Summary of microRNA (miRNA)-mediated modulation of allogeneic T cell function. CD4+ and CD8+ T cells are depicted undergoing proliferation, 
survival, differentiation, tissue trafficking, and effector functions [graft-versus-leukemia/tumor (GVL) and graft-versus-host disease (GVHD)] following an allogeneic 
stimulus. miRNA expression in T cells is depicted as increased (5) or decreased (5) following allo-stimulation. The effect of individual miRNAs on the above aspects 
of allogeneic T cell biology is depicted as enhancing (5) or inhibitory (5). If an miRNA is not listed under a given allo-T cell function, its effect on this function was 
negligible or not tested. *Indicates that human data support this conclusion.

TAbLe 1 | Influence of microRNA (miRNAs) on allogeneic T cells.

miR-142 miR-17-92 miR-155 miR-146a miR-181a/b

Change in expression following allo-stimulation ↓(54) ↑(45)a ↑(36, 40, 42–44)a ↑(43, 56, 60)a ↓(45, 61, 64)a

Effect on proliferation ↑(54) ↑(51) N/A ↓(56) ↓(61)
Effect on survival ↑(54) ↑(51) N/A ↓(56) ↓(61)
Effect on cytotoxic T cell activation ↑(54) N/A ↑(36) ↓(56) N/A
Effect on Th1 differentiation ↑(54) ↑(51) ↑(40) N/A ↓(45)a

Effect on Th17 differentiation ↑(54) ↑(51) ↑(40) N/A ↓(45)a

Effect on Th2 differentiation N/A ↓(51) ↓(40) N/A ↑(45)a

Effect on Treg differentiation N/A ↓(51) ↓(40) N/A ↑(45)a

Effect on tissue trafficking N/A ↑(51) N/A N/A N/A
Effect on graft-versus-leukemia/tumor N/A Preserved (51) Preserved (36) Preserved (56) Preserveda (45)
Effect on graft-versus-host disease ↑(54) ↑(51)a ↑(36, 40)a ↓(56, 59)a ↓(61)a

Potential biomarker N/A Yesa (45) Yesa (43–45) Yesa (43, 45) Yesa (45, 64)

N/A indicates a negligible effect or that it was not specifically tested.
aIndicates that human data support this conclusion.
References are in parentheses.
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miR-155 KO had a reduced TNF expression, the authors showed 
no effect on alloreactive or homeostatic proliferation of T cells. 
miR-155 deficiency reduced the expression of chemokine recep-
tors (CXCR4, CCR5, S1P1) required for leukocyte trafficking to 
GVHD target tissues. The authors also showed that IL-12RB1 
and downstream components STAT4 and IFN-γ were reduced 
in miR-155-deficient allo-T  cells. However, the specific and 
critical targets of miR-155 that are responsible for the effects on 
alloreactive T  cells remain incompletely defined. Interestingly, 
antagomirs to miR-155 may also have beneficial antitumor 
effects (37–39).

Zhang et al. recently proposed that endothelial microparticles 
(EMPs) contribute to the increased miR-155 expression in allo-
T  cells (40). Purified EMPs from TNFα-stimulated endothelia 
cells were shown to transfer miR-155 to T  cells. Interestingly, 
these EMPs enhanced in vivo GVHD, which was abrogated by 
EMPs generated from miR-155 antagomir-treated endothelial 
cells. However, the EMPs were added exogenously, which may 
not be relevant relative to the miR-155 produced within T cells.  
In addition to T cells, miR-155 deficiency in recipient dendritic 
cells was shown to ameliorate GVHD (reviewed elsewhere in 
this collection) making it a particularly attractive target for anti-
GVHD therapeutics (41). Furthermore, elevated miR-155 levels 
were reported in lymphocytes from small and large intestine 
biopsies (n =  7) of GVHD patients relative to control biopsies 
(n = 3); miR-155 expression was increased following a bidirec-
tional mismatched human MLR, and miR-155 showed promise 
as a peripheral blood GVHD biomarker (36, 42–45). Due to 
these encouraging data, a larger prospective clinic trial to assess if  
miR-155 expression can predict GVHD onset and severity is 
ongoing (NCT01521039).

MicroRnA-17-92 Cluster
The microRNA-17-92 cluster encodes miR-17, 18a, 19a, 20a, 19b-1,  
and 92 and is known to be involved in tumorigenesis, B  cell 
development/homeostasis, T cell differentiation, T cell survival, 
and T cell function (46–50). Its role in allo-BMT was explored, 
utilizing a T  cell-specific KO model (51), which showed a 
reduced GVHD. The KO allo-T cells showed defects in prolif-
eration, IFN-γ production, apoptosis, CXCR3 and α4β7 integrin 
expression, and allo-T cell recovery from the GI tract of hosts, 
all of which were consistently more pronounced in the CD4+ 
relative to the CD8+ compartment. By contrast, allogeneic CD8+ 
CTLs largely retained their cytolytic activity and retained suf-
ficient GVL activity in these models. Antagomirs of either miR-
17 or miR-19 protected the mice from GVHD with the miR-19 
antagomir being slightly more efficacious. The seemingly minor 
effect of miR-17-92 on the allogeneic CD8+ compartment was 
somewhat unexpected given a previous report demonstrating 
miR-17-92’s role in the cytolytic activity and proliferation of 
CD8+ cells (48). Importantly, members of the miR-17-92 cluster 
were upregulated in plasma and CD4+ T cells from patients with 
aGVHD relative to those without (45). Further studies will need 
to be performed to identify the specific and critical targets of 
miR-17-92 responsible for the differential regulation of alloge-
neic CD4+ and CD8+ T cells as well as confirming these findings 
in human T cells.

MicroRnA-142
MicroRNA-142 is expressed in hematopoietic cells, regulates 
leukocyte biology, and was one of the most decreased allogeneic 
T  cell miRNAs following AGO-CHIP-CLIP discussed above 
(19, 52, 53). This prompted Sun et al. to examine its function in 
allogeneic T cells (54). The deletion of miR-142 in donor T cells 
protected mice from GVHD. MicroRNA-142-deficient allogeneic 
T  cells were defective in proliferation, apoptosis, and produc-
tion of inflammatory cytokines (IFN-γ and IL-17a). Unlike the 
microRNA-17-92 cluster, miR-142 deficiency appeared to effect 
the activation and proliferation of CD4- and CD8-positive cells 
equally. An antagomir to miR-142 protected mice from GVHD. 
However, it is unclear if the miR-142 antagomir would pre-
serve GVL. To identify targets of miR-142, Sun et al. performed 
a microarray analysis on WT and KO T  cells. Gene ontology 
analysis indicated that cell cycle-related functions were highly 
dysregulated in miR-142 KO T cells. Gene set function network 
prediction of upregulated genes in KO T cells showed that DNA 
replication functional genes were over-represented. Consistent 
with an increased expression of genes regulating cell cycle prog-
ression, miR-142 KO T cells demonstrated defective cell cycling 
characterized by S and G2/M phase arrest. The authors focused 
on the atypical E2F transcription factors, E2F7 and E2F8, which  
regulate the cell cycle and DNA replication (55) and are predicted 
targets of miR-142. These cell cycle defects were corrected by 
CRISPRi-mediated repression of E2F7/8. Furthermore, the 
GVHD-protective effect of miR-142-deficient donor T cells was  
abolished by CRISPRi-mediated repression of E2F7/8 in these 
cells, suggesting that E2F7/8 are novel targets for T cell alloim-
mune responses. Finally, the role of miR-142 in allo-T  cells 
would be strengthened by human studies and verification by an 
independent group.

MicroRnA-146a
MicroRNA-146a, in contrast to those miRs reviewed above, inhi-
bits GVHD (56). MicroRNA-146a controls innate, adaptive, and 
autoimmunity (57). It targets TRAF6, which is required for the 
efficient activation of NFκB (58). Stickel et al. showed that miR-
146a is induced in allo-T cells, and miR-146a−/− T cells enhanced 
GVHD. The miR-146a−/− T  cells demonstrated enhanced pro-
liferation, viability, and production of inflammatory cytokines 
(IL-6 and IFN-γ). MicroRNA-146a deficiency did not affect T cell 
differentiation, but enhanced TNFα production in allogeneic 
T cells. Consistent with this, TNFα blockade mitigated GVHD  
in miR-146a−/− T cells. Transfection of donor T cells with a miR-
146a mimic prior to transplantation ameliorated GVHD, as did 
intraperitoneal delivery of a miR-146a mimic starting 2 days post 
BMT. The anti-GVHD effect of miR-146a in mice was confirmed 
by an independent group (59). MicroRNA-146a also influences 
GVHD via its function in recipient dendritic cells (reviewed 
elsewhere in this collection) (60). Furthermore, the human SNP 
rs2910164, which inhibits miR-146a expression, showed a trend 
toward severe aGVHD risk, a finding confirmed in another 
publication (60). These clinical data will need to be validated in 
independent, larger cohorts; however, in support of miR-146a 
being relevant in human alloimmunity, the amount in peripheral 
blood may prove to be a useful GVHD biomarker (43, 45).
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MicroRnA-181a/b
The miR-181 family encompasses six miRNAs encoded by three 
paralogs (61). MicroRNA-181 inhibits negative regulators of 
T cell receptor signaling (62, 63). Two groups demonstrated that 
miR-181a in allogeneic T  cells ameliorates GVHD (45, 61). Its 
expression is decreased in both plasma and CD4+ lymphocytes 
from patients with aGVHD, which correlated with the risk of 
aGVHD in a small cohort of patients and was confirmed as a 
potentially useful serum GVHD biomarker by an independent 
group (64). Human T  cells transduced with a lentiviral vector 
overexpressing miR-181a revealed that miR-181a targets IFN-γ, 
inhibits Th1 and Th17 differentiation, enhances Th2 and Treg 
differentiation, inhibits proliferation, and enhances apoptosis. 
Despite murine and human miR-181a sequences being identical, 
when lentivirus overexpressing human miR-181a was injected 
into mice, there was no effect on IFN-γ expression in CD4+ T cells. 
Bioinformatics analysis revealed that the 3'UTR of murine IFN-γ 
was better matched for the seed sequence of miR-181b, which 
targets murine IFN-γ. Like miR-181a in humans, miR-181b levels 
were altered in the plasma of mice after the onset of GVHD, and 
allo-T cells transduced with a lentivirus overexpressing miR-181b 
reduced GVHD. In another study, transduced T cells overexpress-
ing miR-181a and miR-181a/b-1−/− donor T cells confirmed that 
T cell miR-181a regulates GVHD. Of note, both the study’s donor 
T cells were stimulated ex vivo to enhance transduction prior to 
BMT, which may have influenced outcomes. Regardlessly, further 
experiments will be required to definitively establish the mecha-
nism and critical targets by which miR-181a/b in allo-T  cells 
ameliorates GVHD.

MicroRnAs AS GvHD biOMARKeRS

MicroRNAs are increasingly being explored as noninvasive  
biomarkers in multiple diseases, including GVHD. Xiao et  al. 
reported a panel of four plasma-derived miRNAs (miR-423, 
miR-199a-3p, miR-93, and miR-377) as a potential biomarker 
for the diagnosis, prognosis, and prediction of acute GVHD  
(65). The panel was based on the analysis of a small cohort of 
patients with GVHD relative to non-GVHD patients 6  weeks  
after BMT. MicroRNA expression was measured using RT-PCR-
based microarrays and confirmed in a larger cohort. Of note, 
miR-155 and miR-30a were discarded from the final panel. 
When applied in a blinded fashion, this panel displayed 92% 
sensitivity for acute GVHD. Importantly, the prognostic and 
diagnostic utilities of these data were confirmed by Crossland 
et al. utilizing serum-derived miRNA from independent cohorts 
(66). Interestingly, Crossland et  al. further demonstrate that 
extracellular vesicle-derived miR-423, miR-199, and miR-93 
were lower in aGVHD patients at day + 14 relative to those who 
did not develop GVHD, which is the inverse expression pattern 
of these miRNAs in the serum (66). Another study utilized 
RT-PCR arrays to assess microRNA expression prospectively in  
24 lymphoma patients undergoing matched unrelated donor 
HSCT (67). MicroRNA-194 and miR-518f were upregulated prior  
to and in acute GVHD samples. A recent study utilized a 
nanostring platform to charac terize miRNAs in the serum of a  
diverse cohort of patients undergoing allo-BMT (68). At diagnosis  

of acute GVHD, miR-146a, miR-30b-5p, miR-374-5p, and miR- 
181a were downregulated and miR-20a and miR-15a were upre-
gulated. Finally, several targeted studies demonstrated that 
miR-155, miR-146a, miR-146b, miR-153-3p, miR-181, miR-150,  
miR-17, miR-92a/b, and miR-586 may also serve as useful aGVHD  
biomarkers (43–45, 64, 69, 70).

Overall, these studies demonstrate great heterogeneity in the 
miRNAs identified as potential GVHD biomarkers. Several fac-
tors likely contributed to this heterogeneity including differences 
in patient populations, time points analyzed, type of body fluid 
analyzed, sample preparation, type of miRNA-profiling platform, 
spectrum of miRNAs profiled, and RNA normalization strate-
gies (68). Regardlessly, these biomarker studies and the high-
throughput studies conducted on murine allo-T  cells detailed 
above highlight the numerous as yet uncharacterized miRNAs 
associated with alloimmunity.

LOnG nOn-CODinG RnAs

Long non-coding RNAs are transcripts that regulate gene expres-
sion (10, 71). Like miRNAs, lncRNAs are transcribed in a manner 
analogous to mRNA except they are devoid of functional open 
reading frames (10). Unlike miRNAs, they are not processed by 
DICER/DROSHA pathways. They regulate gene expression in 
multiple ways, reviewed elsewhere (10).

The role lncRNAs play in allogeneic T  cell responses is 
unknown. However, several observations suggest that this is plau-
sible including (1) the expression of lncRNAs is specific for 
T cell subsets and differentiation (71–74) and (2) lncRNAs 
regulate other T cell functions known to be critical for alloim-
munity including cytokine expression and migration (71–76). 
Nonetheless, it is unknown if lncRNAs influence allogeneic 
T cells. Like miRNAs, lncRNAs from body fluids and tissues are 
emerging as biomarkers, particularly for cancer diagnosis and 
prognosis (77). In addition, they may prove to be biomarkers  
and therapeutic targets for autoimmune disorders, inflammatory 
disorders (78, 79), and solid organ allograft rejection (80). Hence, 
it will be exciting to learn how lncRNAs influence allogeneic 
T cells and if they will be useful biomarkers or therapeutic targets 
for GVHD.

COnCLUSiOn

Non-coding RNAs, particularly miRNAs, are emerging as impor-
tant regulators of allogeneic T cells and may prove to be highly 
sensitive and specific biomarkers for GVHD. MicroRNAs enhance 
or inhibit GVHD via effects on multiple aspects of T cell biology, 
which is summarized in Figure 1 and Table 1. Several of these 
miRNAs demonstrate similar effects on allo-T cell biology, but 
the specific mRNA targets that are critical for regulating T cells 
remain to be explored for many of these miRNAs. Given the 
potential for multiple and different targets in distinct cell subsets, 
the effects of the miRNAs may be distinct in various T cell sub-
sets. Nonetheless, the biological relevance of miRNA-mediated 
regulation is clear based on their unambiguous impact on GVHD 
with gain and loss of function experimental studies. Emerging 
data point to them serving as potentially useful biomarkers,  
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although they will need to be validated in larger, prospective and 
better-controlled cohorts with standardized assays. While the 
biological mechanisms largely remain to be determined, these 
studies indicate that miRNAs may be useful targets for anti-
GVHD oligonucleotide-based therapeutics. Although specula-
tive, many of these oligonucleotides may even possess direct 
antitumor activity (e.g., antagomirs to miR-142, miR-155, and 
miR-17-92). These potential oligonucleotide therapeutics will 
need further investigation and rigorous study in formal clinical 
trials, including a heightened awareness of potential off-target 
effects and on-target toxicities such as immunosuppression. It is 
tempting to speculate that due to a greater tissue and disease-
specific expression, lncRNA targeting may be more effective if 
they can be shown to regulate GVHD. Finally, a tailored cocktail  
of oligonucleotide medicines may demonstrate synergistic efficacy 
while mitigating side effects. In summary, ncRNAs are impor-
tant regulators of allogeneic T cells, may be highly sensitive and  

specific biomarkers for GVHD, and might be useful targets for 
anti-GVHD medicines.
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