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The recent advent of high-performance consumer virtual reality (VR) systems has opened new possibilities for immersive visualisation
of numerous types of data. Medical imaging has long made use of advanced visualisation techniques, and VR offers exciting new
opportunities for data exploration. The author presents a new framework for interacting with neuroimaging data, including MRI volumes,
neuroanatomical surface models, diffusion tensors, and streamline tractography, as well as text-based annotations. The system was
developed for the HTC Vive using C++, OpenGL, and the OpenVR software development kit. The author developed custom GLSL
shaders for each type of data to provide high-performance real-time rendering suitable for use in a VR environment. These are integrated
with an interface that enables the user to manipulate the scene through the Vive controllers and perform operations such as volume
slicing, fibre track selection, and structural queries. The software can read data generated by existing automated brain MRI analysis
packages, enabling the rapid development of subject-specific visualisations of multimodal data or annotated atlases. The system can also
support multiple simultaneous users, placing them in the same virtual space to interact with each other while visualising the same datasets,
opening new possibilities for teaching and for collaborative exploration of neuroimaging data.
1. Introduction: In the past few years, a number of high-perform-
ance consumer virtual reality (VR) systems have been released,
stimulating great interest in the development of immersive visualisa-
tion for numerous types of data. Medical imaging has a long history
of using advanced visualisation techniques and is a natural applica-
tion for these new tools. Examples of early work in medical
imaging VR for data analysis include the exploration of VR in the
interpretation of diffusion tensor imaging (DTI) data [1]. Such
early efforts to develop VR for biomedical visualisation typically
required highly specialised hardware, such as CAVE-style projection
systems [2]. More recently, the release of widely-available, commer-
cial head-mounted systems for VR, such as the Oculus Rift and the
HTC Vive, has resulted in the development of several neuroimaging
VR packages that make use of these systems. Some recent examples
include Precision VR (Surgical Theater, LLC, Mayfield Village, OH,
USA), a commercial product targeted at surgical planning; Neuro
Imaging in VR (NIVR) [3], a Unity-based system that makes use
of pre-processed and pre-rendered data to produce a visual experience
to explore MRI; and the Virtual Brain Segmenter (VBS) [4], a
Unity-based system for making corrections to brain segmentation
data in VR. The HTC Vive has been integrated with the
existing medical image processing framework MeVisLab, also
making use of the OpenVR software development kit (SDK) [5].
Kitware, Inc. (Clifton Park, NY, USA) has also added support for
OpenVR to the Visualisation Toolkit (VTK) [6] and recently devel-
oped an extension for 3D Slicer that uses these OpenVR modules to
interact with a scene in that software package [7].
In this Letter, we present an HTC Vive-based VR framework

that we have developed for interacting with brain imaging data,
including 3D image volumes, surface models, diffusion tensors,
and streamline tractography. Our VR system is also capable of sup-
porting multiple simultaneous users, enabling a shared experience
and opening new possibilities for data exploration and teaching
with brain imaging and other biomedical imaging data. The
system was developed using open libraries and can support a
variety of file types. We created this framework with the primary
goal of providing a VR environment for exploring data processed
by our BrainSuite software package (http://brainsuite.org) [8],
which we have been developing and supporting for the past two
decades. BrainSuite is a collection of tools for analysing and
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visualising structural and diffusion MRI data, with the ability to
perform various tasks including automatically extracting cortical
surface models [8], registering and labelling surface and volume
data based on a labelled reference brain MRI [9], and processing
diffusion MRI data [10, 11]. The BrainSuite graphical user interface
provides an array of visualisation capabilities that enable users to
interact with volume and surface data, display diffusion tensors
or orientation distribution functions (ODFs), delineate regions of
interest (ROIs) in an image volume, or delineate sulci on surface
models of the brain. These tools have been used for a variety of
applications, including group analysis studies (e.g. [12, 13]) and
constructing brain atlases (e.g. [14, 15]).

For this work, we focused our efforts on bringing BrainSuite’s
core visualisation capabilities into the VR framework with the
goal of providing utility for a few key applications. The most
direct use of this work is the visualisation of the results of image
processing workflows, including the segmentation of anatomical
structures in MRI data or extracted surfaces or the analysis of stat-
istical results in group studies. These new VR tools also offer an
opportunity to gain a better understanding of how algorithms
perform, which may help us to improve components of our MRI
processing software. Another application where we anticipate
major benefits from VR is the analysis of tractography data.
Software packages such as TrackVis [16], 3D Slicer [17], and
BrainSuite provide tools for extracting bundles of streamlines
from whole-brain tractography though the placements of ROIs.
These bundles can then be used for subsequent analyses of white
matter pathways or to visually understand the connectivity of the
brain. Placing these ROIs using a traditional 3D desktop display
can be difficult, as can interpreting the paths of streamlines, even
when provided in an anatomical context. VR provides new
opportunities for interacting with tractography data in virtual
space, which may be more intuitive to users; we developed new
capabilities for such interactivity in our framework (see Section
2.2.6). A third application we have for this framework is to
produce interactive brain atlases, in which users can explore an
annotated dataset with the ability to perform spatial queries that
return detailed information about structures at a given location.
These capabilities provide new opportunities for teaching, particu-
larly when paired with the ability to support multiple users in the
183
This is an open access article published by the IET under the

Creative Commons Attribution-NonCommercial-NoDerivs
License (http://creativecommons.org/licenses/by-nc-nd/3.0/)

mailto:
mailto:
mailto:
mailto:
http://brainsuite.org
http://brainsuite.org
http://brainsuite.org
http://brainsuite.org


Fig. 1 ROI labelling. Vive screenshot of a mid-cortical surface model auto-
matically extracted and labelled using a reference atlas. ROI labels are
automatically positioned and reorient towards the viewer as the viewer’s
head position changes

Fig. 2 Structure query. In Structure Query mode, the user can position the
controller within a structure and pull its trigger to select a structural ROI.
The software highlights that region by shading the other structures in grey.
Labelled ROIs can also be associated with descriptive text, which is shown
to the user in the form of a virtual tablet. Shown is the pars triangular is,
with descriptive text extracted from Wikipedia. The image appears distorted
due to corrections applied for display in the Vive system
same virtual space. In a general sense, the goal of our work is to
provide mechanisms for improved understanding of the 3D relation-
ships between neuroanatomical structures and related data, and to
provide these capabilities in an environment in which multiple
users, operating either in the same physical space or remotely,
can interact with the same data as well as each other. We describe
here our technical progress towards building such a framework.

2. Methods: We developed our neuroimaging VR system
for the HTC Vive hardware using Microsoft Visual Studio
2015, C++, OpenGL, and the OpenVR SDK (https://github.
com/ValveSoftware/openvr) developed by Valve Corporation
(Bellevue, WA, USA). Though game development platforms such
as Unity are often used to build new VR platforms, we opted to
use OpenVR because it provides a C++ API that was easy to inte-
grate with our existing codebase. The SDK also includes example
code for a basic VR application, which we used as a starting
point for our own software. In addition, the OpenVR SDK is
licensed under a BSD license, enabling its free use in our platform.
Though we have focused our development to date on the HTC Vive
headset, the OpenVR API generalises the interface for interacting
with a variety of VR displays and controllers, which enables
developers to target multiple brands of headsets without having to
write specialised code for each device. In principle, this will
enable our software to be readily ported to other popular VR plat-
forms, such as the Oculus Rift, without major development
efforts. Our system also makes use of the Simple DirectMedia
Layer (SDL) library (https://www.libsdl.org/), as well as a related
package for rendering True Type fonts (SDL_ttf).

We based our design largely on our past experience creating
BrainSuite, and we made use of C++ libraries that we developed
previously for it. This enabled us to readily use our existing
readers for widely used neuroimaging file formats, such as NIfTI,
as well as some of our own proprietary formats for specialised
types of data. This also provided us with functionality for perform-
ing various data operations, including filtering streamlines with sets
of ROIs. In principle, we could have used VTK as the basis for our
VR framework, as it has many powerful features for rendering the
types of data that we support in our visualisation system, as well as
support for OpenVR. However, this likely would have required
considerable effort to integrate with our existing BrainSuite libraries
and data structures. Using our own libraries, in combination with
resources provided by the OpenVR SDK, enabled us to rapidly
develop an initial VR application for visualising cortical surface
models generated by BrainSuite, which we then expanded to
include a wider range of data types. In addition, writing customised
GLSL shaders allows us to perform very efficient GPU-based
operations for changing aspects of the data display, such as high-
lighting ROIs in a surface model (see Section 2.2.3).

2.1. Rendering engine: We focused our development efforts on
creating new rendering components for the primary data types that
we typically visualise in BrainSuite. These included surface models
represented as triangle meshes; streamline tractography data, repre-
sented by sets of vectors of points; image volumes, represented as
3D matrices of scalar or RGB voxels; and diffusion tensor volumes,
represented sets of eigenvectors and eigenvalues at each voxel loca-
tion. While our desktop-based BrainSuite software supports these
types of rendering, it was developed for a broader range of platforms
supporting older versions of OpenGL. To achieve high performance
on our new VR system, we produced a new set of code using vertex
and fragment shaders developed using GLSL 4.10.

2.1.1 Surface models: Surface models are used routinely in neuro-
imaging to represent the boundaries of the cerebral cortex or other
neuroanatomical structures, such as the basal ganglia or hippo-
campus. A number of packages exist that can automatically
process a 3D T1-weighted MRI to generate cortical surface
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models and label them according to an anatomical structure
(e.g. [9, 18, 19]). The typical data structure for these surfaces con-
sists of vertices and triangle indices, which can be readily stored on
the GPU for fast rendering. We also may have additional data
associated with each vertex, including an integer value denoting
the anatomical ID of the structure to which the vertex belongs
and an RGB colour associated with that vertex, which can indicate
anatomical structure, cortical thickness measurements, or statistical
parameters. Vertex colour and anatomical identifier data are also
stored on the GPU. The default representation of the surface is
then a coloured mesh (see Fig. 1), but we can also use the anatom-
ical ID to isolate ROIs, as shown in Fig. 2. We implemented three
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Fig. 4 Diffusion tensor display. Two users, observed by a third, interact
with a large scale diffusion tensor display
different modes of surface display: solid, wireframe mesh (edges
only), and point mode (vertices only).

2.1.2 Structural labels: We implemented a system for attaching text
labels to structures in the brain (see Fig. 1). Each label is rendered to
a texture using the SDL_ttf library and displayed with a line that
connects the text to a point in the image space. Given a labelled
brain surface, these labels can be calculated automatically based
on the centroid of the vertices that share that label, or they can be
specified manually. The labels are positioned at a fixed radius
from the centre of the brain and rotate automatically so that they
face the viewer’s display.

2.1.3 Slice-based volume rendering: We implemented slice-based
volume rendering to display volumetric imaging data [20]. To
achieve high performance, volumetric data are stored on the GPU
in a 3D texture buffer. A series of planes facing the user are then
intersected with the volume, textured with the data, and rendered
with translucency to achieve a volumetric display (see Fig. 3).
Our system can render greyscale and colour RGB NIfTI volumes.

2.1.4 Diffusion tensor display: Diffusion magnetic resonance
imaging measures the diffusion properties of water in the brain or
other tissues and is widely used to characterise the structure of
white matter [22]. DTI captures the properties of water diffusion
at each voxel using a rank-2 tensor, which provides information
about the rate of diffusion in each direction and can be used to
infer the fibre tract orientation [23]. Diffusion tensors are frequently
represented visually using ellipsoidal glyphs, with the axes deter-
mined by the eigenvectors and eigenvalues of the tensor (see
Fig. 4). The glyphs may be coloured according to the direction of
the major eigenvector, with (x, y, z) components converted to
(r, g, b) values after taking their absolute values. A related option
is to colour the glyph based on the fractional anisotropy (FA)
measure, or a combination of direction and FA. We implemented
ellipsoidal glyphs on our system using a shader-based approach.
A single vertex array object is used to store a tessellated sphere
on the GPU. At each voxel being displayed, we deform this instance
based on the eigenvectors and eigenvalues. In our present
Fig. 3 Volume rendering of a bottlenose Dolphin brain. Shown is a slice-
based volume rendering of a bottlenose dolphin brain, retrieved from the
brain catalogue [21]. The user can slice the volume at any angle by depres-
sing the trigger on the controller and reorienting the controller to select a
cutting plane, which updates in real time
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implementation, we transmit the eigenvectors and eigenvalues for
each voxel being displayed every frame and perform the tensor de-
formation in the shader. Though this requires 12 32-bit floating-
point values per voxel, we are still able to achieve acceptable
frame rates when rendering full tensor slices (see Fig. 4). In add-
ition, we store multiple instances of the sphere at different levels
of detail, which can be selected during run-time. The colour of
the glyph is computed in the shader and can be set to: (i) the first
eigenvector after taking an element-wise absolute value; (ii) the
FA, computed by the shader from the eigenvalues; or (iii) the
product of FA and direction (colour FA).

2.1.5 Streamline tractography: Diffusion tractography is a process
that is frequently applied to diffusion tensors or ODFs to generate
models of the white matter connectivity within the brain. A
variety of diffusion tractography approaches exist, including deter-
ministic (e.g. [24]) and probabilistic (e.g. [25]) methods. In our
current software, we developed support for deterministic streamline
tractography, where tracks are represented by sets of points that
define contiguous line segments. Such tracks can be generated by
a number of freely available software packages, including
BrainSuite, TrackVis/Diffusion Toolkit [16], DSIStudio [26], and
Dipy [27]. We assign a colour to each vertex, based on the direction
of the adjacent line segments. The vertices and colours of all tracks
in a tractography dataset are stored in a single vertex array object,
and we can either render it in its entirety or only render subsets
of tracks using OpenGL array drawing operations. An example of
a tractography subset rendering is shown in Fig. 5.

2.2. User interface: We developed a set of user interface
components for interacting with the types of neuroimaging data
described in the previous section. A collection of imaging data,
consisting of a combination of surfaces, volumes, streamline
tracks, tensor volumes, and text descriptions, can be specified in a
plain text file and loaded into our software system. Scenes, which
comprise subsets of the data and the visualisation and interface
settings used to view them, can be specified to provide presets
displays. Lists of scenes can also be specified, which then allows
the user to cycle through different aspects of the data, e.g.
185
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Fig. 5 Track selection mode. A user has selected spherical several ROIs to
isolate a bundle of streamlines. Also visible is a second user in the system
viewing different systems of the brain or different types of data for
the same subject.

2.2.1 Display modes: We defined four preset display modes that
present the data at different scales. The first viewing mode presents
an intermediately sized brain, which is scaled to occupy approxi-
mately half of the space available in each dimension in the ‘play
area’, i.e. the usable space defined for the Vive setup. The second
mode scales to fill this space, while the third mode presents the
data such that it surrounds the user at a scale of approximately
300:1. In each of these modes, users can walk around or inside
the brain to view different aspects of the data. The fourth view pre-
sents the data in hand-held mode, at near real-world scale and
attached to the position of the hand controller. In this mode, the
user can easily reposition the brain by moving the controller, with
the view updating in real time.

2.2.2 Controllers: The HTC Vive uses two hand-held controllers,
and each controller provides several inputs that are available from
within the OpenVR SDK. These include a large circular touch
pad, a small button at the top of the controller, a button on the
side of the controller, and a trigger on the underside of the cont-
roller. While these provide a number of options for interaction,
they are limited compared to the combination of a keyboard and
a mouse. We thus bind context-specific actions to these inputs
based on the available data and the current viewing state. Each con-
troller presents the user with different actions, which are shown
visually on the controller through the use of a text overlay.

The top button on the first controller will cycle through the four
different display modes described above, while the top button on
the second controller will cycle through different preset data
scenes. Pressing the right and left sides of either touch pad will
rotate the displayed data around its vertical axis. Pressing up or
down on the touch pad of the first controller will enlarge or
shrink the data, while these controls on the second controller will
translate the data up or down vertically. The side button cycles
through different possible behaviours for the trigger, which can
be used to perform a structure query, apply a cutting plane, select
tensor slices, and select streamline tracks. We describe each of
these actions in detail below.

2.2.3 Structure Query mode: If a label index volume has been
loaded into the system, it can be used to identify neuroanatomical
structures at any point in the volumetric image space. In Structure
Query mode, the user can select a region by depressing the
trigger on the Vive controller. The system reads the structure
label at that coordinate if available, presents the user with the
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name of the structure, and isolates the structure in the displayed
surface (see Fig. 2). The system can also be encoded with additional
reference text describing the structure, which is presented to the
user in the form of a virtual tablet view (also shown in Fig. 2).

2.2.4 Cutting Plane mode: In Cutting Plane mode, the system will
apply a cutting plane to the volume data (see Fig. 3). The cutting
plane is defined by the position and orientation of the controller,
enabling the user to reslice the data in real time by moving or rota-
ting the controller while depressing the trigger. The cutting plane
can also be configured to apply to the surface models.

2.2.5 Tensor Slice mode: Tensors are displayed using three orthog-
onal cardinal planes of data defined by a single coordinate. The user
can reposition this coordinate by pressing the trigger and moving
the controller; the tensor display tracks this and updates in real time.

2.2.6 Track Selection mode: Users can select subsets of tracks
within the virtual environment (see Fig. 5). To do this, the user
moves the controller through the virtual space while holding the
trigger. A spherical ROI is displayed while the trigger is depressed
and used to filter the tractography set; only tracks intersecting this
spherical ROI are displayed. Filtering is performed on the CPU
side, and the system updates the displayed streamlines in real
time as the user moves the controller. When the user releases the
trigger, this pending ROI is stored and the user can place additional
ROIs to isolate particular groups of tracks.

2.3. Multi-user interaction: A major feature of our new VR
framework is that it can support multiple simultaneous users
operating in the same virtual space. We implemented this using a
client–server model, where one user operates as the server and
has control over the system display. The VR environment for
each user is driven by an individual networked computer
connected to the user’s headset. The client user can either be in
the same physical location as the server, using the same Vive
setup or in a separate physical location using an individual Vive
setup. Each client computer has access to a copy of the data to be
displayed, which can be either on a local drive or a shared
network drive. The server listens for clients on a TCP/IP port and
then establishes a network connection with each client. Once a
client is connected, the server will routinely transmit a small data
object that contains viewing state information, which each client
uses to update its display. This object includes data necessary to
synchronise the view, such as rotation, scale, volume position,
and cutting plane. These objects are transmitted every frame on
high-speed network connections, but this rate can be reduced for
slower connections. Each client transmits pose information for
its headsets and controllers to the server, which broadcasts these
to the other clients for display. Models of the headsets and
controllers for the other users in the system are rendered in each
individual client view (see Figs. 4 and 5). This enables users to
interact directly with each other and also helps to avoid
real-world collisions between users operating in a shared physical
space.

Additional data are transmitted when specific actions are taken by
the server. During Structure Query mode, the structure query result
is shown attached to each client’s individual controller, enabling
each user to read the result individually. Similarly, when the
server selects the hand-held mode, the imaging data are rendered
attached to the client’s controller so that each user can manually re-
orient the data. During Track Selection, the server will also transmit
the positions and sizes of the spherical filter ROIs, which each client
then uses to filter the tractography. This enables all clients to view
the track selection process in real-time as the server selects subsets
of tracks (see Fig. 5). When the server cycles through different data
modes, these states are also transmitted to the clients so that their
views are synchronised with the server.
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3. Results: We implemented our VR brain imaging system
as described above and created datasets for use with it. We
conducted a performance evaluation using a desktop computer
(Intel i7-8700k, 64 GB RAM, NVidia GeForce GTX 1080Ti
graphics card) and two datasets that included structural
T1-weighted MRI and diffusion MRI data. The first was retrieved
from the Beijing Normal University, State Key Laboratory of
Cognitive Neuroscience and Learning Enhanced Sample, part
of the 1000 Functional Connectomes Project (http://fcon_1000.
projects.nitrc.org/indi/retro/BeijingEnhanced.html). The second
was a higher resolution dataset retrieved from the Human
Connectome Project [28]. We processed each dataset using
BrainSuite’s automated neuroimage analysis tools to generate a
set of coregistered T1 and DTI volumes, a labelled anatomical
index volume, cortical and subcortical surface models, and
deterministic streamline tractography. We computed frame rates
for each datatype by setting a fixed viewpoint, rotating the
displayed data by one degree about the vertical axis during each
frame, measuring the time required to display 3600 frames, and
dividing the number of frames by that result. While using a fixed
viewpoint enables us to perform a consistent evaluation, we do
note that rendering performance is dependent on the viewpoint.
A more thorough evaluation might consider multiple positions;
however, this study does provide some insights into system
limitations. Surface benchmarks were computed using cerebral
cortical surface models. Volume rendering was performed using a
colour FA image for the Beijing data, and a greyscale MRI image
for the HCP data; up to 512 slices used for the rendering,
depending on the viewing angle. Tensor glyphs were rendered for
each voxel labelled as the brain for three orthogonal slices
centred in the image volume. Fibre track benchmarks were
computed using whole-brain tractography. Data sizes and average
frame rates are detailed in Table 1. Our software achieved
suitable frame rates for surface models for both datasets, while
the frame rate for volume rendering decreased to approximately
two-thirds the desired 90 frames per second. Glyph rendering for
tensors was one of the slower operations, particularly for the
HCP data. One possible improvement for this would be to store
the tensor eigenvalues and eigenvectors in GPU memory rather
than transmitting them each frame. Streamline data for both
datasets rendered at suitable frame rates, but we note that under
other conditions, we have at times observed lag during track
filtering operations and with denser tractography datasets. This
could potentially be addressed by downsampling the streamline
data.
Though we have used our system on a variety of data, including

non-brain data, we demonstrate its functionality on the single-
subject multi-modality dataset from the Beijing Normal
University. In addition to the T1-MRI and DTI volumes, labelled
anatomical volume, and labelled cortical surface models, we also
produced a set of anatomical descriptions for the atlas labels,
which were extracted from the Wikipedia entries for the labelled
Table 1 Rendering performance

Beijing dataset HCP dataset

voxel dimensions 128 × 256× 256 260× 311× 260
voxel resolution, mm3 1.33 × 1.0 × 1.0 0.7 × 0.7 × 0.7
number of surface triangles 425,848 1,080,156
number of tensor glyphs 35,371 82,011
number of fibre tracks 31,770 49,862
number of fibre track line segments 8,158,976 14,882,770
surface rendering (frames/s) 89.524 89.524
volume rendering (frames/s) 60.095 60.763
glyph rendering (frames/s) 29.841 15.587
fibre track rendering (frames/s) 89.524 89.524
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structural ROIs. Figs. 1, 2, 4 and 5 show example views from
this specific dataset. We note that though most of these images
each emphasise only a single mode of data, any of the data can
be presented simultaneously in our framework. For example,
Fig. 5 shows a subset of tracks displayed inside a cortical surface
model that was rendered in point mode, which can provide an ana-
tomical reference during track selection. The use of this collection
of data in our VR system represents a multi-modal interactive brain
atlas that users can explore, reslice, dissect, and query to learn more
about neuroanatomy. Importantly, this dataset was created with
freely-available automated software that could be readily applied
to other MRI data to produce new, subject-specific atlases that
can be brought into our software to explore their individual neuro-
anatomical details.

We have thus far used the software in two different classroom
settings to present MRI-based neuroanatomy to undergraduate
and graduate students at UCLA. In both of these cases, we made
use of the multiuser mode and were able to support four simultan-
eous users with the software. Though we have not yet performed a
formal user evaluation of the software, we describe some of our
qualitative observations here. Even though the users saw only the
renderings of the headsets and controllers of the others in the
system, the real-time tracking of the user positions produced
natural human movements, which enhanced the ability of the
users to interact with each other. In other uses of the software,
users experienced with diffusion tractography reported that it was
much easier to understand the paths the tracks followed and relate
them to anatomical structures using our software as compared to
conventional desktop frameworks.

4. Discussion: In this work, we have presented a new multi-user
framework for visualising brain imaging data in VR. The frame-
work supports data from structural and diffusion MRI, providing
visualisation of surface models, image volumes, diffusion tensors,
and streamline tractography. A key aspect of our system is that
it can support multiple simultaneous users in a virtual space,
which opens new opportunities for education and collaboration.
A second novel feature of our software is the ability to perform
an interactive ROI-based selection of streamline data, which
provides a new mechanism for performing virtual dissection of
diffusion tractography. Though still in a relatively early stage
of development, our VR framework already provides the tools
necessary to create explorable atlases with annotated anatomical
references. The system is highly flexible and can import data that
have been preprocessed with freely available neuroimaging tools,
enabling the rapid development of customised visualisation experi-
ences of new data. Importantly, these data need not be specific
to neuroimaging, as our system can also support visualisation of
data from other anatomical structures, such as cardiac MRI. We
are also exploring potential clinical applications, including surgical
planning for deep brain stimulation.

An important aspect of this work that remains to be done is a set of
formal evaluations of the framework’s utility. One of the most prom-
ising applications of our VR software is its use in isolating bundles of
diffusion streamlines representing specific tracts. We plan to conduct
an evaluation to compare how human raters perform, in terms of
speed, accuracy, and inter-rater reliability, when completing this
task. Specifically, we will compare the use of our system versus exist-
ing interactive desktop programs that provide this functionality, in-
cluding BrainSuite and TrackVis. Second, we are interested in
evaluating our VR platform as a tool for education. We anticipate
that our system will lead to improved understanding of the spatial
relationships of neuroanatomical structures, as well as the connectiv-
ity between them, which we expect will enhance trainees’ abilities to
identify these in neuroimaging data. We also anticipate that providing
reference information in the VR system will enhance the learning ex-
perience, with particular application to learning functional neuroanat-
omy. We plan to evaluate students to compare training in these
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conditions versus more traditional methods, which may include text-
books, laboratory work, computer-based training, or lectures. Third,
we plan to conduct user studies to evaluate the usability of the
system, in particular, to evaluate how we may make the system con-
figurable for individual users, including improvements in accessibil-
ity. An important aspect of these evaluations will be to determine
perceptual limitations in using our system and identify potential sol-
utions for them. Some of the aspects that we intend to study include
how well users can judge distances and scale when interpreting
spatial relationships within the brain, what frame rates are required
for users to have a useful experience in our system, whether users
experience motion sickness while using the system, and what types
of interaction and feedback provide users with the best experience.

There are several additional directions that we plan to explore as
we work towards a public release of the system. We are currently
working with instructors at UCLA to develop VR modules for
neuroanatomy courses to provide students with new learning
experiences. We plan to integrate additional types of data into our
system to support visualisation of functional MRI results, analysis
of group-level statistics, and simulation of electric fields for neuro-
modulation. We are currently working to extend the visualisation
capabilities by employing more advanced rendering techniques.
We also plan to explore the use of new mechanisms for interacting
with the system and data. We are particularly interested in incorp-
orating sound, including audio streaming to enable communication
with remote users, audio cues to indicate available or taken actions,
and speech recognition for issuing commands to the VR system,
including dictating annotations that would be attached to the data.
We are also interested in the use of hand tracking and gesture
recognition as another mode of control for the system. With the
initial framework we have developed, we expect that we will be
able to develop many of these new capabilities rapidly to provide
a broader range of applications for our software.
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