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Abstract

Integration of orthogonal data could provide new opportunities to pinpoint the under-

lying molecular mechanisms of hematologic disorders. Using a novel gene network

approach, we integrated DNA methylation data from The Cancer Genome Atlas

(n = 194 cases) with the corresponding gene expression profile. Our integrated gene

network analysis classifiedAMLpatients into low-, intermediate-, and high-risk groups.

The identified high-risk group had significantly shorter overall survival compared to

the low-risk group (p-value ≤10
−11

). Specifically, our approach identified a particu-

lar subgroup of nine high-risk AML cases that died within 2 years after diagnosis.

These high-risk cases otherwise would be incorrectly classified as intermediate-risk

solely based on cytogenetics, mutation profiles, and common molecular character-

istics of AML. We confirmed the prognostic value of our integrative gene network

approach using two independent datasets, as well as through comparison with Euro-

pean LeukemiaNet and LSC17 criteria. Our approach could be useful in the prognos-

tication of a subset of borderline AML cases. These cases would not be classified into

appropriate risk groups by other approaches that use gene expression, but not DNA

methylation data. Our findings highlight the significance of epigenomic data, and they

indicate integrating DNAmethylation data with gene coexpression networks can have

a synergistic effect.

1 INTRODUCTION

Acute myeloid leukemia (AML), which is the most common acute

leukemia among adults [1], has several subtypes that have various

prognoses [2] depending on age, cytogenetic abnormalities [3], specific

mutations [4], and other unknown risk factors (Note S1). Timely diag-
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nostics of AML is critical for determining the best approach to clinical

management [5].

We previously showed that coexpression gene network analysis is

useful to identify subtle but consistent signatures of AML that oth-

erwise would be difficult to pinpoint using conventional differential

expression analysis [6]. In the current study, we tested the hypothesis
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that integrating DNAmethylation data into the model can be useful in

detecting prognostic signatures, because more robust modules would

be identified (Figure 1) [7,8]. To the best of our knowledge, this is the

first studyon systematic integratingofDNAmethylationand transcrip-

tome data in a single gene network. Using this approach, we developed

a prognostic test based ondata fromTheCancerGenomeAtlas (TCGA)

consortium [9] (n= 194 cases), andwe validated our findings using two

independent AML cohorts.

2 METHODS

2.1 Description of training and validation
datasets

We used TCGA data to train our model (i.e., build our gene network

and select the prognostic modules). We downloaded gene expression

(n = 179) and DNA methylation (n = 194) data from the TCGA AML

publication web page [9]. To validate our findings, we used two inde-

pendent datasets: (1) the German Acute Myeloid Leukemia Coopera-

tive Group (AMLCG) 1999 Cohort (n = 562, microarray) [10–13] and

(2) the Beat AML RNA-Seq dataset (n= 405) [14].

The AMLCG cohort: We downloaded the gene expression profiles

of 562 AML samples from Gene Expression Omnibus (series number

GSE37642) [15]. We obtained the corresponding clinical data, includ-

ing overall survival, life status, and risk category basedon theEuropean

LeukemiaNet (ELN-2010) [16] from the authors.

The Beat cohort: We obtained the reads per kilobase of transcript

per million mapped [17] (RPKM) values (i.e., the gene expression pro-

file) and the survival data of the Beat AML cohort from the supplemen-

tary tables of the corresponding publication [14]. We transformed the

RPKM values using natural logarithm [18]. In our survival analysis, we

included only those 405 cases whose reported time from diagnosis to

death is non-zero.

Highlights

1. IncorporatingDNAmethylation into gene network analy-

ses results in more robust and informative genemodules.

2. Using an integrative gene network approach, we identify

high-risk AML cases that otherwisewould be classified as

intermediate-risk.

2.2 Preprocessing data

Our approach can benefit from all DNAmethylation data in construct-

ing the network even if gene expression data are missing for some of

the corresponding cases.We excluded genes and loci (i.e., DNAmethy-

lation probes) that did not pass the quality control criteria, showed too

little variation, or had too weak correlation with overall patient sur-

vival. We used only the 24,649 loci that showed an absolute Pearson

correlation of 0.2 or higherwith overall survival. These loci correspond

to 9377 genes, and the majority of these genes (95%) were associated

with four loci atmost (Figure S1).We then computed the effectiveDNA

methylation level for each gene (Note S2).

2.3 Gene network analysis

After data preprocessing, 12,535 geneswere determined to have some

relevance with overall survival based on either expression, or DNA

methylation levels. To identify groups of genes that are associatedwith

each other (i.e., gene modules), we built a network in which each node

corresponds to one of these 12,535 genes (Figure 1).We computed the

similarity between each gene pair based on both expression and DNA

methylation levels. Specifically, for each gene pair, we computed (1) the

F IGURE 1 Schematic view of themethodology. The inputs include (a) a gene expression profile and (b) a DNAmethylation profile. (c)We
build an integrative network that models the association between individual gene pairs based on both expression andmethylation data using
Equation 1 (Supplementary Note 3). (d) For eachmodule, we compute an eigengene as a weighted average of the expression of all genes in that
module. (e)Weuse the eigengenes as robust biological signatures (biomarkers) to perform survival analysis. (f) The results are validated using
independent cohorts of AML
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Pearson correlation between their expression levels and (2) the Pear-

son correlation between their DNA methylation levels. We combined

the resulting correlationvalues toderive the similarity (i.e., association)

between each pair of genes (Note S3).

In our integrative gene network, each node represents a gene, and

the edge between two genes (i.e., their connection) is weighted based

on their similarity. We identified groups of similar genes (i.e., modules)

using a hierarchical clustering approach [19] (Note S4). For each gene

module, we then computed an eigengene based on a principal compo-

nent analysis [6,20] (Note S5) and used these eigengenes to delineate

themodules that are associatedwith overall survival of AML (Note S6).

2.4 Comparison with other prognostication
approaches

Gerstung et al approach provides continuous risk estimates [21]. To

systematically compare this approach with our prognostic test, we

discretized Gerstung et al risk estimates (i.e., we considered the first

quartile low-risk, the second and third quartiles intermediate-risk, and

the fourth quartile high-risk). We also compared our approach with

European LeukemiaNet genetic risk stratification and the LSC17 score,

which is based on a leukemic stem cell (LSC) signature [22] (Note S7).

2.5 Data availability

All data analyzed during this study are included in the Supplementary

Information files, which can be used to reproduce our results.

3 RESULTS

3.1 Integrative network analysis

Using our novel integrated network analysis (Figure 1, Methods), we

identified 78modules (clusters) of genes (Figure S4). The genes in each

module arehighly associatedwitheachotherwith respect to theirDNA

methylation and gene expression patterns (Table S1). For each mod-

ule, we computed an eigengene, which is a weighted average of the

expression levels of the genes in that module (Note S5 and Table S2).

Module 56 had the eigengene that showed the strongest correlation

with overall survival (Pearson correlation r=0.3), whileModule 51 had

themost anticorrelated eigengene (r= 0.4). In this correlation analysis,

eachmodule was considered individually. To determinewhether a sub-

set of modules together would be more useful for the prognostication

of AML, we performed a survival analysis using Cox regression.

3.2 Survival analysis

Among the participants in the TCGA cohort, the prevailing cytogenetic

criteria classified 31 cases as low-risk, 92 as intermediate-risk, and 31

as high-risk cases (Figure 2a) [9]. To determinewhether our integrative

gene network analysis can improve prognostication, we used the 78

inferred eigengenes as covariates (i.e., potential prognostic features)

in a penalized Cox regression analysis [23,24]. We found that the most

associated subset of threemoduleswith overall survival includedMod-

ules 46, 51, and 55 (Note S6). Some biological pathways are overrepre-

sented in these threemodules [26].

Module 46 has 19 genes (Table S1) with a significant overlap with

the following pathways: (1) the immune system based on Reactome

[27], (2) the signaling events mediated by class II histone deacetylases

(HDAC) based on Pathway Interaction Database [28], and (3) the sig-

naling by nerve growth factor [29] based on Reactome (hypergeomet-

ric test p-values = 0.001). The overlaps between these pathways and

Module 46 include the following genes previously reported relevant to

AML: CAMK4 [30,31], IL6ST [32], SOCS2 [33,34], TUBB2A [35–37], and

BCL2L11 [38]. While the expression of these genes anticorrelates with

survival time, theoverlaps also includeDUSP3 [39,40],which correlates

with survival time.

Module 51 has 15 genes with a significant overlap with the post-

translational protein modification (p-values = 0.001) and metabolism

of proteins (p-values = 0.005) pathways. The overlaps include PLAUR

(CD87) [41–44] with positive, and PMM1 with negative, correlations

with survival time, respectively.

Module 55has 14 geneswith a significant overlapwith the following

Reactome pathways: (1) apoptosis [45], (2) membrane trafficking [46],

and (3) cellular responses to stress [47] (p-values = 0.01). The over-

laps include YWHAH [48],GPX1 [49], and UBC. The expression of these

genes was negatively correlated with survival time.

To evaluate the significance of these selected modules in predict-

ing overall survival, we fitted an accelerated failure time model to the

selected eigengenes [50,51]. Based on this model, we predicted the

expected survival time of each patient and then classified them into

low-, intermediate-, and high-risk groups (Table S3). There was a sig-

nificant difference between the survival times of the low-and high-

risk groups that we identified (p-value ≤ 10−11, Figure 2c). When we

stratified the patients into two age groups, the difference between the

identified low- and high-risk groups was still significant in the group

of patients who were diagnosed with AML after age 60 (n = 74, p-

value ≤ 0.004), and also in the rest of relatively younger patients

(n = 92, p-value ≤ 10−6, Figure S5). As expected, we identified more

high-risk (n= 19) and fewer low-risk (n= 5) patients in the older group

compared to the relatively younger group (n = 7 and n = 22, respec-

tively). There were 15 males and 11 females in the high-risk group,

whichdidnot indicate a significant differencebetween the twogenders

(hypergeometric test p-value≥ 0.2).

3.3 Enhancement of current prognostication
approaches

Because it is challenging to decide on the best treatment for the

intermediate-risk group, we investigated whether combining our

analysis with other classification approaches for AML would lead to
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F IGURE 2 The Kaplan-Meier [25] (KM) curves for all cases in the TCGA-AML dataset. The log-rank p-values indicate that differences
between the low-risk group (green) and the high-risk group (red) are statistically significant. Compared to cytogenetics criteria (a), the approach
developed by Gerstung et al (b) led to a lower p-value (i.e., 10−5 < 10−3). Our gene network analysis, which includes gene expression and
epigenome data but not mutation data, resulted in a p-value of 10−11 (c). In particular, all 26 cases that we identified as high-risk (i.e., 17% of the
entire cohort) died within 2 years after diagnosis. Validation on two independent cohorts confirmed that the prognostic value of our analysis is not
specific to the TCGA-AML dataset, which we used to train ourmodel

F IGURE 3 Restratification of purportedly intermediate-risk AML cases in the TCGA dataset. There are 92 cytogenetically intermediate-risk
cases (the blue KM curve in Figure 2a). Using our integrative gene network approach, we further classified these 92 cases into 11 low-, 66
intermediate-, and 13 high-risk cases (a). The approach by Gerstung et al would classify 81 cases as intermediate-risk, with survival probabilities
higher than the first quartile but lower than the fourth quartile (the blue KM curve in Figure 2b). After excluding two APL cases, we further
classified the remaining 79 non-APL cases into nine low-risk, 59 intermediate-risk, and 11 high-risk cases (b). In each plot, the p-value corresponds
to log-rank tests with a null hypothesis that the predicted high-risk cases have the same expected survival time as other cases in that plot

narrowing down the prognostication of purportedly intermediate-risk

patients. Acute promyelocytic leukemia (APL) is a subtype of AMLwith

a distinct cytogenetic signature, which allows clinicians to quickly and

accurately diagnose it using fluorescent in situ hybridization and poly-

merase chain reaction [52]. Therefore,weexcluded the21APLpatients

in theTCGAdatasets in the following assessment. The groupof 79non-

APL patients that Gerstung et al classified as intermediate-risk (i.e., the

second and third quartiles based on the predicted survival probability)

included a mix of actual high- and low-risk cases. In this group, 47

cases (60%) died of AML, while 14 cases (18%) were relatively low-risk

cases. These 14 low-risk cases were followed for at least 2 years after

diagnosis, and they were found to be alive at the last time of contact.

It is thus critical to further assess the clinical risk for this subset of

cases.

We investigated the utility of our approach in the prognostication

of the 79 non-APL cases that would be classified as intermediate-risk

by Gerstung et al (Figure 3b). Our approach identified a subset of

11 high-risk cases (14%) who survived significantly shorter than other

cases in this group (p-value ≤ 10−5). All of these 11 cases died of AML

within 2 years after diagnosis, although the majority of them (i.e., six

cases, 55%) had a normal karyotype, two cases had the del(7q) abnor-

mality, and one case had the t(9;11)(p22;q23) translocation. Two cases
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F IGURE 4 The KM curves for the AMLCG 1999 cohort. Cases that we identified as low- (green) and high-risk (red) have significantly different
survival times (a). While 228 cases had an intermediate-I or intermediate-II ELN risk score, our approach determined that 10 of these cases were
high-risk, all of whom died within 2 years after diagnosis (b)

had complex cytogenetics with three or more distinct abnormalities

(Table S3).

3.4 Validation using independent datasets

To show that the prognostication performance of the three identified

modules is not specific to the TCGA dataset, we validated our findings

using the German AMLCG 1999 and Beat cohorts.

The German AMLCG 1999 cohort. We identified 107 (19%) low-

, 415 (75%) intermediate-, and 31 (6%) high-risk cases in the AMLCG

cohort (Table S3). There was a significant difference between the

survival time of the low- and high-risk groups that we identified (p-

value ≤ 10−5, Figure 4a). More interestingly, all 10 cases with an inter-

mediate ELN risk score that we identified as high-risk died within 2

years after diagnosis. This suggests that our approach can identify

a subgroup of truly high-risk cases that would not be considered as

such using the current clinical criteria. To further quantify and sup-

port this assertion, we compared this group of 10 cases with the

other 218 patients in the AMLCG 1999 cohort with an intermediate-

I or intermediate-II ELN-2010 risk score. After adjustment for mul-

tiple hypothesis testing, there was no significant association among

the variables included in the ELN-2017 genetic risk classifier [53],

nor other common clinical variables including white blood cell counts,

hemoglobin, platelets, lactate dehydrogenase, and Eastern Coopera-

tive Oncology Group score [54] (p-value≥ 0.05).

The Beat cohort. Of the 405 cases with survival data in the BEAT

cohort, 156 (39%) were not classified as favorable or adverse by

ELN2017. Using the eigengenes that were identified based on TCGA

data, we classified these 156 cases into 62 (40%) low-, 86 (55%)

intermediate-, and eight (5%) high-risk cases (Table S3). Interestingly,

none of the eight cases that we identified as high-risk were known to

be alive long after diagnosis. That is, five cases died within 1 year after

diagnosis, while the other three cases left the study within 16 months

(i.e., 458, 302, and 16 days, respectively) after diagnosis. A hypergeo-

metric test showed that if five cases were randomly selected from the

pool of 156 cases, it would have been unlikely that all of selected cases

die within 1 year after diagnosis (p-value≤ 0.002).

3.5 The significance of DNA methylation in gene
network analysis

To assess the significance of epigenomics in our study, we repeated

our analysis using gene expression but without DNAmethylation data.

Without using DNA methylation data, our analysis identified fewer

modules, which were generally larger. Specifically, we identified 36

modules, and their sizes had a mean, median, and standard deviation

of 339, 38, and 917, respectively. The p-value for separation between

the low- and high-risk cases was less significant (10−6 in Figure 5a vs.

10−11 in Figure 2c). We also compared the performance of prognosti-

cation for the subset of 92 cytogenetically intermediate-risk cases. The

performancedecreasedwhenepigenomic datawere excluded from the

analysis. Specifically, the p-value of 10−2 in Figure 5b, which is equiva-

lent to a chi-square statistic of 28, is less significant than the p-value

of 10−7 in Figure 3a, which is equivalent to a chi-square statistic of

7. In particular, without DNA methylation data, we could identify only

eight high-risk cases, three of which were cytogenetically classified as

intermediate-risk. Collectively, the above results indicate that integrat-

ing DNA methylation data into the network is essential for identifying

genemodules that are relevant to prognosis.

4 DISCUSSION

Almost half of AML cases cannot be confidently classified into low- or

high-risk groups using current prognostic criteria. Transcriptome and

epigenome data have been used to prognosticate AML (Note S1). Our
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F IGURE 5 Network analysis without epigenomic data. WhenDNAmethylation data were not used in constructing the gene network, the
ability to predict survival decreases in the entire TCGA dataset (p-value= 10−6 vs. 10−11 in Figure 2c) (a), and in the subset of 92 cytogenetically
intermediate-risk cases (10−2 vs. 10−7 in Figure 3a) (b)

study showed that integrating these data in a single model can have a

synergistic effect and improve prognostication (Figure 5). While both

gene expression and DNA methylation data from TCGA cohort were

used to identify genemodules, we used only gene expression data from

two independent cohorts to validate our findings becauseDNAmethy-

lation data were not available in the later (Note S5). Interestingly, our

approach is useful in prognostication of AML in the validation cohorts,

although DNA methylation data were not available for these cases.

Outperforming LSC17 score, whichwas developed based on transcrip-

tome data, suggests that integration of epigenome data in the train-

ing phase results in more informative gene modules. This supremacy is

expected becauseDNAmethylation provides uswith additional robust

biological information to train themodel.

Validation using the AMLCG and Beat AML cohorts showed that

the prognostication performance of the three identified modules is

not specific to the TCGA dataset. That is, for all studied cohorts, our

approach allows for the identification of a particular group of high-risk

cases that otherwise would be inaccurately considered intermediate-

risk based on the current prognostic factors. In particular, when our

risk assessment is compared to the approach presented by Ng et al,

which is based on LSC [22], our assessment reveals that these high-

risk cases are almost evenly distributed between the low-and high-risk

groups based on their LSC17 score. This suggests that the modules we

identified represent a signature that is distinct from the LSC17 score

(Note S7).

Clinical utility. When combined with other integrative schemes,

our approach can further improve risk assessment especially to iden-

tify some of the high-risk cases that otherwise would be classified

as intermediate-risk. For instance, if a case is categorized in the gray

intermediate-risk group by other approaches but our assessment sug-

gests that case is high-risk, then theactual risk for the case ismost likely

high. Specifically, when combinedwith theGerstung et al approach, we

could identify 11 (6%) more high-risk cases in the TCGA dataset (Fig-

ure 3b). When combined with ELN-2010, we could identify 10 (2%)

more high-risk cases in the AMLCG dataset (Figure 4b). Interestingly,

these cases exhibited a poor prognosis, with a survival rate of less than

2 years. Our results show that using DNAmethylation data in building

the gene network has synergistic benefits. In follow-up studies, inte-

grating other multiomics data into the network could perhaps improve

prognostication further.

In conclusion, using an integrative network approach to group thou-

sands of genes into modules, we showed that incorporating DNA

methylation into gene network analyses results in more robust and

informative gene modules because each resulting module is a group of

coexpressed and co-methylated genes. Some of these modules define

survival signatures,which canbecombined todevelopaprognostic test

(Figure 2c).
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