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Abstract

In-air anthropogenic sound has the potential to affect grey seal (Halichoerus grypus) behaviour and interfere with acoustic
communication. In this study, a new method was used to deliver acoustic signals to grey seals as part of an in-air hearing
assessment. Using in-ear headphones with adapted ear inserts allowed for the measurement of auditory brainstem
responses (ABR) on sedated grey seals exposed to 5-cycle (2-1-2) tone pips. Thresholds were measured at 10 frequencies
between 1–20 kHz. Measurements were made using subcutaneous electrodes on wild seals from the Baltic and North Seas.
Thresholds were determined by both visual and statistical approaches (single point F-test) and good agreement was
obtained between the results using both methods. The mean auditory thresholds were #40 dB re 20 mPa peak equivalent
sound pressure level (peSPL) between 4–20 kHz and showed similar patterns to in-air behavioural hearing tests of other
phocid seals between 3 and 20 kHz. Below 3 kHz, a steep reduction in hearing sensitivity was observed, which differed from
the rate of decline in sensitivity obtained in behavioural studies on other phocids. Differences in the rate of decline may
reflect influence of the ear inserts on the ability to reliably transmit lower frequencies or interference from the structure of
the distal end of the ear canal.
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Introduction

Grey seals (Halichoerus grypus) are a phocid seal species with an

increasing population in the North Sea on Heligoland and in the

Wadden Sea of Lower Saxony and Schleswig-Holstein [1,2,3]. In

the Baltic Sea, increasing observations of grey seals have been

recorded along the coast of Mecklenburg-Western Pomerania

since the 1980’s [4]. However, the status of the grey seal according

to the latest national report for the habitats directive (reporting

period 2000–2006) was ‘unfavourable/inadequate’ for the Atlantic

biogeographic region (German North Sea) and ‘unfavourable/

poor’ for the continental biogeographic region (German Baltic

Sea; [5], for full EU report see [6]).

Grey seals inhabit areas subjected to substantial anthropogenic

influence [7]. Due to their amphibious nature, they are confronted

with human activities both above and below the water surface.

Interactions with human activity are anticipated to increase as

plans to build large numbers of offshore wind turbines (OWTs) in

the North and Baltic Seas have been established in Germany and

neighbouring countries [8]. In Germany, 25 GW of capacity are

planned to be installed by 2030 [9] resulting in the construction of

5,000 turbines, or approximately 63 wind farms of 80 turbines

each. As a result, concern about the effect of acoustic emissions on

grey seals during construction and operation of OWTs has

increased, as it has for many species of marine mammals

[10,11,12,13].

Grey seals use acoustic signals for communication purposes both

in air and under the water. In air, they rarely produce

communication signals [14], but underwater they exhibit complex

vocal repertoires [15]. Seals may not be vitally dependent on their

auditory system to survive as adults [16], but sound production

and reception are critical for mother-pup affiliation and for mating

displays [17,18]. Seals can vocalize across a wide frequency range,

although with few exceptions most calls are low frequency in

nature [19,20]. Sounds produced by grey seals are typically less

than 3 kHz, although click type sounds have been recorded with

harmonic content as high as 15–30 kHz [15,21,22].

The construction of OWTs or their operation can possibly

induce stress, mask communication signals, or temporarily or

permanently impact hearing in grey seals. The effects vary

depending on the source level and frequency content of the signal,
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its duty cycle, the distance of the source to the animal, and the

animal’s frequency range of hearing and hearing sensitivity

[23,24,25]. Consequently, important considerations for the

construction and operation of wind farms near grey seal habitats

are the source level and frequency content of construction and

operational sounds, the hearing range and sensitivity of grey seals,

and the potential impact of these sounds on the seals.

Nearly 40 years ago, a single investigation on the hearing ability

of grey seals was conducted with in-air and underwater sounds

[26]. The study indicated that the most sensitive frequency for the

grey seal in air was around 4 kHz, which is within the range of

reported best sensitivities for other phocid seals in air [27,23].

Three data points from a former study [28] suggested that grey

seals have better hearing abilities in air than reported by Ridgway

and Joyce [26]. However, continued tests on the grey seals were

not successful as the grey seals closed their ear canals in the

presence of acoustic test signals by manipulating an external

auditory sphincter, i.e. regular headphones or loudspeakers were

unsuccessfully used.

The study described here aimed to gain further knowledge on

the hearing sensitivity of grey seals by employing earphone inserts.

The procedure prevents the seals from manipulating the external

auditory sphincter and therefore interfering with sound reception.

The study demonstrates that ear inserts can be used to study the

hearing of sedated seals and may be a feasible approach to

addressing issues of manipulation of the external ear canal by

phocid seals.

Methods

Ethics Statement
Auditory threshold measurements on grey seals at the Seal

Centre Friedrichskoog (Germany) were conducted under a permit

held by the German Ministry of Energy, Agriculture, the

Environment and Rural Areas Schleswig-Holstein (permit num-

ber: 42-4/09; address: Abteilung V 2, Referat 24 - Tierschutz -

Mercatorstraße 5, 24106 Kiel). Studies conducted at Hel Marine

Station (Poland) were performed under permission from the

General Director for Environmental Protection (GDOŚ/DOP-

Pozgiz-4200-23/2139/10/ls; address: ul. Wawelska 52/54, 00-922

Warszawa ). All experiments were performed in accordance with

institutional and national laws and ethical principles.

Figure 1. Setups, configuration and calibrations. A. Calibration setup for headphones and ear insert combinations; B. Results of calibrations in
terms of transmit voltage response (TVR) over the tested frequency range; C. Configuration of the measurement system for ABRs collected from grey
seals wearing the headphones and inserts. For more details on electrode placement, see Houser et al. [41] for an example on northern elephant seals
(Mirounga angustirostris); D. Third-octave levels of background noise during the different data acquisitions (1st acquisition: FR01; 2nd acquisition:
FR02; 3rd acquisition: all HL animals).
doi:10.1371/journal.pone.0090824.g001
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Subjects
Grey seals were examined at the Seal Centre Friedrichskoog

e.V., Germany (two individuals), and Hel Marine Station,

University of Gdansk, Poland (four individuals). Five of the

animals were males and one was a female. The seals ranged from

twelve to sixteen weeks of age and ranged from 33.3–59.0 kg.

Grey seals tested at the Seal Centre Friedrichskoog e.V. were

initially found along the German coast of Schleswig-Holstein and

Heligoland and taken into rehabilitation either because of

abandonment/loss of mother or because of their poor health

status. Animals held at the Hel Marine Station were born at the

station and released after the weaning period. These grey seals

were sedated to fit telemetry devices before release and the

sedation was extended for auditory brainstem response (ABR)

measurements.

Sedation
The health of each seal was evaluated by an experienced

veterinarian prior to measuring auditory thresholds and audiom-

etry was performed only on those animals deemed to be in good

health. Animals were sedated with an intramuscular injection of

midazolam (0.2 mg/kg; 15 mg/3 ml, HEXAL, Germany) and

ketamine (1.5 mg/kg; 100 mg/ml, Albrecht, Germany) or tileta-

mine/zolazepam (1.5–2 mg/kg; 100 mg/ml, VIRBAC, Ger-

many). Sedation was augmented when the animals showed

irregular short latency evoked potentials or signs of awareness.

The time given to the hearing measurements did not exceed 90

minutes in duration per individual.

Stimulus Presentation and ABR Measurements
Stimulus presentation and ABR measurements were conducted

with the Evoked Response Study Tool (EVREST; [29,30]).

Sounds were presented with an earphone insert to prevent the

animal from closing the ear canal. The earphones (type SE-72,

Monacor, Germany), with the inserts used to hold the ear canal

opened in place, were calibrated using a frequency generator (type

33220A, Agilent, USA), an artificial ear (type 4157, Brüel & Kjær,

Denmark) connected to a calibrated microphone (type 2669, Brüel

& Kjær), and a conditioning amplifier (type NEXUS 2690, Brüel

& Kjær), shown in Figure 1A. The results of calibration in terms of

transmit voltage response (TVR) over the tested frequency range is

shown in Figure 1B. The outer diameter of the custom-made

tubular ear insert was 5 mm and the inner diameter was 3.8 mm.

The length of the ear insert was standardized to 22 mm to prevent

any damage to the ear drum and was chosen based on

Figure 2. Evoked potentials and analysis. A. ABR measurement data of subject FR02. The evoked potentials at 16 kHz are shown for different
stimulus peSPLs. Wave V is indicated between the vertical lines, which defines the analysis window used for estimating the hearing threshold via the
Fsp-test; B. Results of the Fsp-test (bar plot, estimated variance of the ABR and the background noise as critical value for the test) and visual
determination of the hearing threshold are indicated to the right of the panel. The waveform is classified as to whether the ABR is detected (o) or
undetected (x) for Fsp and visual verification, respectively.
doi:10.1371/journal.pone.0090824.g002
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Figure 3. Spectra of the stimulus tone pips. Spectra of the generated (2-1-2) tone pip stimuli for the desired centre frequencies measured with
the artificial ear. The peak frequencies showed a shift to frequencies lower than the desired peak frequencies for tone pips with centre frequencies $
5.6 kHz. Signal distortion worsened and the bandwidth became more asymmetric relative to the centre frequency as the centre frequency of the tone
pip increased.
doi:10.1371/journal.pone.0090824.g003

Figure 4. Results for in-air ABR thresholds on grey seals. In-air ABR thresholds derived by an Fsp-test for six grey seals exposed to acoustic
stimuli via earphone inserts (symbols without lines) and the mean of these results (black line, black filled circles). The horizontal black lines indicate
the bandwidth relative to the centre frequency of each test stimulus. The results are provided in comparison to results from a study using cortical
evoked potentials in air ([26]; grey filled triangles, grey lines) and a study using ABRs with calibrated headphones on a wild grey seal ([28]; open
circles, black line).
doi:10.1371/journal.pone.0090824.g004
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measurements of the outer ear canal taken during necropsies of

deceased grey seals.

Test signals consisted of 5-cycle tone pips (2-1-2) ranging from

1 kHz to 20 kHz in octave or half-octave steps (10 frequencies in

total). Signals were generated using a Toughbook computer

(Panasonic) in combination with a USB data acquisition board (NI

USB 6251, National Instruments, USA). Signals were band-pass

filtered (100 Hz –250 kHz, 24 dB/octave; Krohn-Hite, USA)

before transmission to the earphone (Figure 1C). Tone pips were

generated with a 1 MHz sampling rate at 16-bit resolution and

presented at a rate of 58.8/s with a linear rise and fall over the first

and last two cycles of the tone pip, respectively. Signals were

attenuated via custom-designed attenuators. Each stimulus was

calibrated by calculating its peak equivalent sound pressure level

(peSPL).

Brainstem responses were recorded using sub-dermal needle

electrodes (NE-224S, Nihon Kohden, Japan) placed at three

positions along the dorsal midline of the grey seals (Figure 1C).

Based on previous comparative measurements that indicated the

placement for obtaining the best response, the active (+) electrode

was placed at the vertex of the head, the inverting electrode (2)

between the scapulae, and the ground electrode was inserted at the

neck [31]. The ABRs were amplified and filtered (0.3–3 kHz) with

a bio-potential amplifier (IP511, Grass Technologies, USA),

digitized at 50 kHz via the NI USB 6251, and synchronously

averaged. For each stimulus presentation, a total of 1024 epochs

were collected. Background noise was measured using a sound

level meter (type XL 2, NTi audio, Switzerland) at the time of the

ABR measurements.

Data Analysis
The ABR waveforms were characterized according to the

nomenclature of Jewett and Williston [32]. Attenuation in the

amplitude of wave V of the evoked response was used to determine

the threshold for a given stimulus frequency (Figure 2A).

Waveforms were visually evaluated according to decreasing

stimulus amplitude. A detected ABR was defined as a waveform

showing a clearly visible wave V, while those without an obvious

wave V were considered as undetected. Thresholds were defined

as the midpoint between the stimulus level corresponding to the

last waveform detected and the highest stimulus level where no

waveform was detected (Figure 2A).

An alternative, statistical approach to determining the threshold

was conducted for comparison purposes. This approach is the

single point F-test (Fsp) described by Finneran [29] and by

Elberling and Don [33] for the quality estimation of averaged

auditory brainstem responses. The method calculates the ratio

between the estimated variance of the auditory brainstem response

(ABR) and the estimated variance of the background noise (results

in Figure 2B). The degrees of freedom (v1, v2) required for

determining the critical value of the statistical test correspond to

the degrees of freedom in the numerator and denominator of the

statistic. Whereas the degrees of freedom in the denominator are

equal to the total number of accepted sweeps, it is difficult to

evaluate the degrees of freedom for the numerator from the actual

Figure 5. Behavioural thresholds of different seal species and the ABR thresholds of this study. In-air behavioural hearing thresholds
from the northern elephant seal (Mirounga angustirostris; [36]) and harbour seal (Phoca vitulina; [36,42,27]) compared to the in-air thresholds obtained
from ABR measurements on grey seals (Halichoerus grypus) in this study. The horizontal black lines indicate the bandwidth relative to the centre
frequency of each test stimulus.
doi:10.1371/journal.pone.0090824.g005
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test recordings [33]. Therefore, for the tests conducted here, it was

assumed that the degrees of freedom in the numerator were equal

to the samples in the analysis window. Using this approach, the

resulting threshold for a stimulus frequency was defined as the

midpoint between the lowest stimulus level at which the ABR was

detected and the highest stimulus level at which it was not

detected.

Results

Background Noise
Hearing tests were performed on three occasions and noise

levels, calculated across 1/3 octave bands, were recorded at the

time of the tests. Background noise levels during the hearing tests

were generally low (Figure 1D). However, during the second set of

hearing tests (subject FR02) levels were elevated by ,10 dB across

the range of frequencies measured.

Impact of the in-ear Headphones with Inserts
Spectral analysis of signals transmitted to the ear of the seal via

the inserts demonstrated a distortion in the signal that became

progressively worse with increasing centre frequency (Figure 3).

Specifically, for tone pips with centre frequencies $5.6 kHz, the

peak frequency within the spectra began to shift to frequencies

lower than the desired centre frequency. As the distortion of the

signal increased, the bandwidth of the signal also increased.

Following the procedures of Wolski et al. [27], we calculated the

23 dB stimulus bandwidth relative to the amplitude at the centre

frequency of the signal (Figure 3). With increasing frequency, the

bandwidth relative to the centre frequency became more

asymmetric (horizontal black lines in Figure 4 and horizontal

error bars in Figure 5).

ABR Measurements
Figure 2A shows a typical attenuation series of ABR waveforms.

The responses depicted in Figure 2A are from a tone pip with a

centre frequency of 16 kHz and a maximum peSPL of 80 dB re

20 mPa. Wave V is clearly visible for amplitudes above 45 dB and

the amplitude of wave V decreases into the background noise with

decreasing sound pressure level. Hearing thresholds determined

from the ABR attenuation series using the Fsp are shown for the

grey seals in Figure 4. Seals were most sensitive within the

frequency range of 4–11.2 kHz where thresholds were below

40 dB peSPL. For 5.6 and 8 kHz, thresholds approached or fell

below 20 dB peSPL. For most of the frequencies, the thresholds

were comparable among seals, showing a range in sensitivity of

13 dB for all animals. Exceptions occurred at 1, 2 and 20 kHz,

where differences in hearing thresholds varied from 25 to 35 dB.

Hearing sensitivity declined rapidly below 3 kHz at a rate of

,40 dB/octave.

A comparison of the hearing thresholds estimated by visual

inspection and by utilizing the Fsp is shown in Figure 6. Results of

the Fsp-test and the visual estimation of signal presence were in

good agreement until threshold was reached; while the Fsp-test

Figure 6. Comparison of the methods used for threshold detection. Comparison of ABR thresholds derived with an Fsp-test and a visual
analysis of the ABR waveform. The results show generally good agreement suggesting that the accuracy and variability in the visual and Fsp methods
are comparable.
doi:10.1371/journal.pone.0090824.g006
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shows that a waveform was detected at 37 dB SPL, the

stereotypical wave V is not clearly visible within the waveform.

Average differences between the thresholds were lower than 4 dB

for most frequencies; exceptions occurred at 1.4 kHz, where the

mean threshold determined visually was 5 dB lower than that

determined with the Fsp, and for 2.8 kHz, where it was 7 dB

lower.

Discussion

Information on hearing abilities of pinnipeds is limited or

unavailable for most species. Within the phocid seals, aerial

audiograms have been measured for the harp seal (Pagophilus

groenlandica, [34]), harbour seal (Phoca vitulina, [35,27,36], elephant

seal (Mirounga angustirostris, [23]) and grey seal (Halichoerus grypus,

[26]). Except for the work by Ridgway and Joyce [26] and Wolski

et al. [27], phocid seal threshold audiometry has been primarily

conducted through behavioural methods. Behavioural methods

are the standard for audiometry and ABR methods do not provide

a direct assessment of the absolute threshold; rather, they provide

an estimate of the threshold based on measureable neural signals

produced by the auditory brainstem in response to audible sounds.

Indeed, it is common for ABR threshold estimates to underesti-

mate hearing sensitivity, particularly at the low and high ends of

the audible range (e.g. see [37,38]). In this study, we relied upon

ABR methods in combination with earphone inserts to test the

hearing capabilities of grey seals. The ABR methods were chosen

to permit more rapid testing of hearing in a number of animals.

The earphone inserts were used in an effort to overcome reports

that phocid seals have the ability to manipulate a sphincter

associated with the external auditory meatus, which inhibits

reception of airborne sounds.

Ridgway and Joyce [26] reported the best sensitivity of grey

seals to be ,47 dB SPL at 4 kHz. Although there is difficulty in

interpreting this finding because the method of calculating the

stimulus is not sufficiently reported by Ridgway and Joyce [26],

our results suggest that grey seal auditory thresholds estimated

from tone pip ABRs are well below 30 dB SPL from 4 to 11.2 kHz

and potentially below 40 dB SPL up to 20 kHz. In addition to

some uncertainty in the received stimulus level reported by

Ridgway and Joyce [26], a number of methodological consider-

ations must also be considered when comparing the two studies.

First, Ridgway and Joyce measured cortical evoked responses with

relatively long duration stimuli (100 ms). In contrast, the evoked

responses monitored in this study originated in the brain stem. As

such, they are less affected by the attentive state of the animal and

are more robust to physiological perturbation. The tone pip

duration was also shorter in this study with a maximum duration

of 5 ms. The shorter duration tone pip has a greater bandwidth

(see Figure 3) and produces a robust ABR with a potentially lower

threshold of detection. Likewise, it cannot be ruled out that the

seals used by Ridgway and Joyce [26] affected their acoustic

exposure by either their movement or the manipulation of the

sphincter surrounding the external ear. Indeed, Ridgway and

Joyce [26] report that seal movement relative to their sound

projector was problematic. Although the use of earphone inserts

has its own challenges, the combined use of earphone inserts and

chemical immobilization of the seals should have reduced

physiological noise and helped to stabilize the acoustic field

during testing.

Within the range of frequencies tested, our results have some

similarities to in-air hearing tests of other phocid seals above

3 kHz (Figure 5). Below 3 kHz there is a steep reduction in

hearing sensitivity, with a higher offset compared to results of

psychoacoustic studies. The reduction in sensitivity at frequencies

below 3 kHz relative to prior behavioural studies is not

unexpected given fundamental differences in the two methodol-

ogies applied. Similar differences were noted by Wolski et al. [27]

in their comparison of ABR and behavioural hearing thresholds

below 8 kHz in the harbour seal. However, a direct comparison

cannot be made to that study as Wolski et al. [27] measured

thresholds as a function of the stimulus energy, not the sound

pressure level (as was done here). To determine how representative

the ABR data collected here are to behavioural hearing thresholds

in grey seals, a comparison similar to that performed by Wolski

et al. [27] should be performed with the grey seal.

Although the results of Wolski et al. [27] are the most relevant

data to compare to the current study, it should be noted that lower

hearing thresholds have been obtained for the harbour seal when

tested in an anechoic chamber [39]. Results obtained from studies

conducted in an anechoic chamber, which mitigates potential

masking due to ambient noise, have shown that thresholds can be

overestimated if audiometry is performed in an environment

where the potential for masking is not controlled. Most of the

studies to which the results of this study were compared (Figure 5)

were done in outdoor environments and were probably affected by

some degree of masking. Nevertheless, although testing in outdoor

environments can impede the ability to determine absolute

thresholds, the masking conditions are more likely to represent

conditions that the seals face in their natural environment.

The use of earphone inserts has advantages over the use of

direct field stimulation. In untrained animals in which ABRs are

measured, the use of earphone inserts can mitigate the closing of

the sphincter of the external acoustic meatus. Earphone inserts

may also provide better attenuation of background noise than

headphones. For example, the seal that was tested in the presence

of the highest background noise levels (Figure 1D) demonstrated a

hearing sensitivity comparable to other grey seals tested in

environments with less background noise. The comparable results

may be due to the ear inserts attenuating background noise levels;

however, a precise evaluation of how well the earphone inserts

attenuate background noise remains to be completed.

The earphone inserts are not without problems. The loss of

signal fidelity in projected tone pips at higher frequencies is a

concern. The loss of signal fidelity at the higher frequency stimuli

is due to the interaction of impulsive nature of the tone pip, the

dimensions of the ear insert, and the transfer function of the in-ear

headphones. Further calibrations with inserts of differing lengths

showed that varying the insert length also varied the fidelity of the

signal. Conversely, projection of tonal signals through the inserts,

including sinusoidal amplitude modulated tones, had high signal

fidelity. Thus, the inserts may be better suited for obtaining

auditory steady state responses (ASSR) with amplitude modulated

tones; however, this comes at a cost as the use of more tonal signals

will reduce the amplitude of the evoked response. Furthermore,

although calibration of the earphone insert was made with an

artificial ear calibrator, it is acknowledged that this may not

adequately represent the ear canal of the seal. Future efforts should

develop methods of calibrating the earphone inserts in place, as

has been done in other pinniped ABR studies with headphones

[40].
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