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Abstract

We have investigated the underlying mechanism by which direct cell–cell contact enhances the efficiency of cell-to-cell
transmission of retroviruses. Applying 4D imaging to a model retrovirus, the murine leukemia virus, we directly monitor and
quantify sequential assembly, release, and transmission events for individual viral particles as they happen in living cells. We
demonstrate that de novo assembly is highly polarized towards zones of cell–cell contact. Viruses assembled approximately
10-fold more frequently at zones of cell contact with no change in assembly kinetics. Gag proteins were drawn to adhesive
zones formed by viral Env glycoprotein and its cognate receptor to promote virus assembly at cell–cell contact. This process
was dependent on the cytoplasmic tail of viral Env. Env lacking the cytoplasmic tail while still allowing for contact formation,
failed to direct virus assembly towards contact sites. Our data describe a novel role for the viral Env glycoprotein in
establishing cell–cell adhesion and polarization of assembly prior to becoming a fusion protein to allow virus entry into
cells.
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Introduction

The ability of retroviruses to utilize and manipulate cell–cell

contact for the purpose of efficient transmission contributes to

the spread of infection and the progression to diseases such as

leukemia and AIDS. In vitro, cell-to-cell transmission of the

human immunodeficiency virus (HIV) is 100–10,000-fold more

efficient under conditions of direct cell–cell contact as

compared to cell-free virus [1–4]. The spread of the human

T cell leukemia virus 1 (HTLV-1) depends on contacts between

lymphocytes, and little cell-free infectivity is released into the

culture supernatant [5]. The enhancement of infectivity by

cell–cell contact has been suggested to reflect the proximal

coupling of virus assembly and entry machineries [6–9].

Indeed, morphological analyses have revealed HIV and

HTLV-1 antigens clustering at cell–cell contact zones between

antigen-presenting cells and T cells, as well as between infected

and uninfected T cells [6,10–13]. These cell–cell contacts are

specifically enriched in microtubules, actin, and adhesion

factors, and are designated as ‘‘virological’’ or ‘‘infectious’’

synapses due to their resemblance to the immunological

synapse [10–12]. In addition to broad synaptic contacts, thin

filopodial connections called cytonemes or nanotubes are

utilized by retroviruses for the purpose of cell–cell spread

[14–17]. Importantly, live-cell imaging has confirmed the direct

transfer of retroviruses from one cell to another via both, thin

filopodial connections and broad virological synapses [14,18].

Here, we have applied live four-dimensional (4D) imaging in

order to dissect the sequential stages of retroviral assembly, release,

and transmission in real time for the model retrovirus murine

leukemia virus (MLV). Our data reveal that after the establishment

of contacts between infected and uninfected cells, the majority of

virus particle assembly is initiated at sites of cell–cell contact. This

bias in the site of virus production did not reflect any changes in

particle assembly kinetics. Instead, contact-polarized assembly was

dependent on signaling from the cytoplasmic tail of viral Env. In

sum, we provide evidence that the initiation of retroviral assembly

is directed towards infectious cell–cell interfaces, and identify the

cytoplasmic tail of Env as a critical viral determinant for efficient

intercellular spread.

Results

Viral components and fully assembled virions are known to

accumulate at sites of contact between infected and uninfected

cells, but the underlying details of this polarization are not well

understood. According to one model, virus assembly is initiated at

random at the cell surface. Following completion of assembly, viral

particles would subsequently be recruited towards sites of cell–cell

contact [13,19] (Figure 1, Model I). Alternatively, virus assembly

may be polarized and specifically initiated at zones of cell–cell

contact. Following completion of assembly, viruses would spread

and infect neighboring cells [7] (Figure 1, Model II). In order to

distinguish between these models, we visualized and quantified de
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novo assembly of MLV in the absence and presence of cell–cell

contact.

Visualizing De Novo Assembly and Release of MLV in
Living Cells

We used spinning disc confocal microscopy to visualize

individual budding and cell-to-cell transmission events of

retroviruses in three-dimensional space over time (4D).

Compared to conventional confocal microscopes that contain

a single pinhole, the Yokogawa SCU10 scan head used in our

system contains about 20,000 microlenses that rotate at

1,800 rpm and allow the capture of confocal images at high

speed and with little photobleaching. This allows the fast

acquisition of Z-stacks of images over a long period of time,

thereby recording the spatial information (3D) over time (4D).

The 4D imaging allowed us to monitor the dynamics of virus

assembly and release, as well as to follow the cell-to-cell

transmission of viral particles. For these studies, we monitored

the assembly and spread of the model retrovirus MLV because it

allowed us to perform precise single-particle tracking (Figure 1)

[14]. We have also made attempts to apply single-particle

tracking to the transmission of HIV-1, but these have been

impeded by the greater tendency of HIV-1 particles to

aggregate at sites of cell–cell contact into big button or ring-

shaped clumps of Gag punctae (unpublished data) [17,18].

We first tested the ability of 4D imaging to detect de novo MLV

assembly in the absence of target cells. HEK293 cells were

transfected with plasmids encoding the viral components MLV

GagPol, Gag-YFP, Env, and genome [20]. A GagPol to Gag-YFP

ratio of 10:1 allowed the production of fully infectious fluorescently

labeled MLV viruses [20,21]. Six hours following transfection, we

identified cells that displayed a few YFP-positive punctae and

monitored them by spinning disc confocal microscopy (Figure 2A).

We detected the appearance of single fluorescent punctae that

gradually intensified and then abruptly disappeared or underwent

diffusive movement along the plasma membrane (Figure 2A,

Video S1). Fluorescent punctae were tracked from the time they

appeared, and their fluorescence intensity and XYZ coordinates

were measured over time. The analysis showed that the

fluorescence intensity of these punctae increased from background

level over time. Once maximum intensity was reached, the

punctae either abruptly dropped to background level or plateau

undergoing diffusive movement along the plasma membrane

(Video S1). For example, fluorescent punctae B and D presented

in Figure 2A disappeared shortly after reaching maximum

intensity, while punctae A and C remained associated with the

cell surface for approximately 30 min prior to their sudden

disappearance (Figure 2B). The observed increase in intensity

followed by either disappearance or diffusive movement along the

cell surface is consistent with the interpretation that these events

represent de novo assembly followed by release of viral particles.

We defined the assembly time as the amount of time that each

particle took to achieve maximum intensity from background

levels. For example, for the particles presented in Figure 2A, the

time of assembly varied from 8 to 30 min (Figure 2B). Interest-

ingly, analysis of the spatial information indicated that some

particles formed at the glass–plate interface, completed assembly,

and then migrated to the dorsal face of the cell prior to their

disappearance (shown for particle A in Figure 2C, Video S1).

Author Summary

Retroviruses such as the human immunodeficiency virus
are known to spread much more efficiently under
conditions of direct cell–cell contact as compared to cell-
free conditions. How cell–cell contact stimulates virus
spreading is poorly understood. In this study, we apply
four-dimensional imaging (3D space over time) of a model
retrovirus to directly monitor and quantify the events of
assembly, release, and transmission of individual viral
particles in real time in living cells. Our work reveals that
after contacts are established between virus-producing
cells and uninfected target cells, the majority of virus
particle assembly is initiated at sites of cell–cell contact.
The ability of the virus to direct assembly of its particles
towards sites of cell–cell contact is dependent on the
presence of the cytoplasmic tail of the viral envelope
glycoprotein. When this cytoplasmic tail was deleted, virus
assembly at cell–cell contacts was no longer enhanced.
This study contributes to an emerging model in which
several steps of the viral life cycle are efficiently
coordinated at sites of cell–cell contact, thereby promoting
the spreading of viral infection to neighboring cells.

Figure 1. Models of virus cell-to-cell transmission. Two models
have been proposed to explain the observed recruitment of
retroviruses to sites of cell–cell contact. In Model I, virus assembly
initiates randomly at the surface of virus-producing cell. Once assembly
is completed, virus particles are subsequently recruited to sites of cell–
cell contact, followed by the spreading of the infection to the target
cell. In Model II, virus assembly is initiated preferentially at cell–cell
contact sites, and nascent virus spreads to the target cells after the
assembly is completed.
doi:10.1371/journal.pbio.1000163.g001

Polarized Virus Assembly
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Figure 2. De novo assembly of murine leukemia virus in living cells. (A) Selective frames from Video S1 illustrate de novo appearance and
release of Gag-YFP–labeled MLV particles (red) in HEK293 cells. Four representative particles were labeled A–D. The last panel represents the single-
particle tracking analysis for these particles. The size bar corresponds to 10 mm. (B) Quantitative analysis of fluorescence intensity for particles A–D
shown in (A) over time. (C) XZ presentation of particle A from (A) over time. (D and E) Single-particle tracking for viral particles that are either released
shortly after reaching maximum intensity (D) or continued to stay associated with the plasma membrane prior to release (E). XY tracks for all particles
are given below the graphs.
doi:10.1371/journal.pbio.1000163.g002

Polarized Virus Assembly
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Combined, 25 of the 35 particles (,70%) monitored in these

experiments disappeared during the time of imaging. Of these,

60% vanished shortly after completion of assembly (Figure 2D).

The other 40% remained associated with the plasma membrane

for extended lengths of time, often undergoing rapid movements

prior to release (Figure 2E). Similar results were obtained for

COS-1 cells (Figure S1). In sum, the detection of fluorescent

punctae that grow in intensity before either abruptly disappearing

or undergoing diffusive movement along the plasma membrane is

consistent with the interpretation that 4D imaging can detect

individual retroviral budding events.

Contact-Dependent Transmission of MLV in Cocultures of
Virus-Producing Cells and Target Cells

In order to study MLV cell-to-cell transmission in cell culture,

we explored whether the virus spreads by a contact-dependent

mechanism or whether cell-free virus dominates viral transmission.

To distinguish between either modes, we cocultured infected and

uninfected cells in a viscous 1% methyl cellulose solution

previously demonstrated to slow the diffusion of large particles

such as viruses [22]. We applied a quantitative assay that is based

on an intron-regulated MLV luciferase reporter (inLuc), in which

the expression of luciferase is prevented in producer cells and

restricted to newly infected target cells (D. Mazurov, G.

Heidecker, P. A. Lloyd, D. Derse, unpublished data). Interestingly,

whereas 1% methyl-cellulose completely blocked infection with

cell-free virus, the spread of MLV infectivity in cocultures of virus-

producer cells and uninfected target cells was unaffected (Figure 3).

The resistance of viral spread to 1% methyl cellulose was

independent of the cell type used and was observed for

transmission between the producer HEK293 and COS-1 cells

and target cells such as rat XC, NIH3T3, and HEK293 cells

expressing the MLV receptor mCAT1. Thus, despite the ability of

MLV to be released into the medium (Figure 2), these results

suggested that the predominant mode of MLV spread was through

direct cell–cell transmission at physical interfaces (Figure 3).

Visualizing De Novo Virus Assembly and Cell-to-Cell
Transmission in Cocultures of Producer and Target Cells

We next applied these experimental conditions to monitor virus

assembly in the context of cell-to-cell transmission. In addition to

viral components, we cotransfected virus producer cells to express

dynamin2-CFP, a marker protein that accumulates at cell–cell

contacts [14]. Contact zones form specifically between Env and

receptor expressing cells [14]. They are characterized by dynamin-

containing endocytic areas where target cell membranes are

anchored in the infected cell (Figure S2) [14]. Although dynamin2,

expressed in the producer cell, has been implicated in the

infectivity of HIV [23], transiently expressed wild-type or

dominant-negative dynamin2-CFP did not affect the efficiency of

virus cell-to-cell transmission, but facilitated the easy identification

of cell–cell contacts (Figure S3). XC cells expressing a CFP-tagged

version of the MLV receptor mCAT1 (mCAT1-CFP) were used as

target cells [24]. XC cells were chosen because they exhibit a

spread and dynamic peripheral actin cytoskeleton that assists

visualization of distinct structural features at the cell–cell interface

[14]. Five hours posttransfection, we initiated coculture of

producer cells generating YFP-labeled MLV and target cells.

Following 1 h of coculture, the accumulation of dynamin2-CFP

and receptor-CFP molecules allowed us to clearly identify cell–cell

contacts between producer and target cells (green). Strikingly, we

observed a large number of MLV particles (red) emerging from the

Figure 3. MLV transmission is contact-dependent. Producer cells (HEK293, Cos-1 cells) expressing an intron-regulated MLV luciferase reporter
inLuc, MLV GagPol, and MLV Env were cocultured with target cells (XC, NIH 3T3, HEK293 cells stably expressing mCAT1) in the presence or absence of
1% methyl cellulose as indicated, and the resulting luciferase activity originating from expression in infected target cells was measured. The ability of
1% methyl cellulose to block infection of target cells by cell-free virus was tested to the right.
doi:10.1371/journal.pbio.1000163.g003

Polarized Virus Assembly

PLoS Biology | www.plosbiology.org 4 July 2009 | Volume 7 | Issue 7 | e1000163



region of cell–cell contact (green) (Figure 4A, Video S2). Spatial

analysis demonstrated that particles were formed at the edge of the

producer cell contacting the target cell and then moved up

towards the cell body of the target cell (shown for particle E in

Figure 4B, Video S2). Correlative fluorescence and scanning

microscopy confirmed that all observed fluorescent punctae

correlated to single 100–150-nm viral particles (Figure 5) [25].

Single-particle tracking was used to identify de novo virus

Figure 4. Assembly followed by transmission of MLV from virus-producing cells to target cells. (A) Selective frames from Video S2
monitoring the assembly of MLV particles (Gag-YFP, red) in HEK293 cells expressing dynamin2-CFP (green) followed by the transmission to target XC
cells expressing receptor mCAT1-CFP (green). Six representative particles were labeled A–F. The last panel represents single-particle tracking analysis
for these particles. The size bar corresponds to 10 mm. (B) Display of the YZ movement of particle E shown in (A). (C) Single-particle tracking analysis
of mCAT1/dynamin2-CFP (green), Gag-YFP (red), and particle motility (blue) from producer to target cell of particle E over time. (D) Analysis as in (C)
for particles A–F.
doi:10.1371/journal.pbio.1000163.g004

Polarized Virus Assembly
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assembly events in virus-producing cells. These particles were then

tracked over time, and their YFP (red) and CFP (green)

fluorescence intensity as well as XYZ coordinates were measured

(Figure 4C for particle E, and Figure 4D). The motility (blue) of

each fluorescent spot was determined using the distance traveled

between consecutive XYZ coordinates. Such an analysis revealed

that assembly of viral particles (red) was specifically initiated in

adhesive zones characterized by an accumulation of receptor and

dynamin (green) (Figure 4C for particle E, and Figure 4D).

Following completion of assembly, most particles were released

from producer cells to migrate towards the target cell body

(Figure 4C and 4D).

Retroviral Assembly Is Directed towards Sites of Cell–Cell
Contact

Being able to reliably detect de novo assembly events, we next

asked whether the assembly events occurred ‘‘in’’ or ‘‘out’’ of

cell–cell contact zones. Towards this end, we first identified all

de novo MLV assembly events in virus-producing cells (blue

crosses in Figures 6 and 7 and Video S3). Then, we defined

contact zones in the virus-producing cell as the region enriched

in dynamin2-CFP and receptor mCAT1-CFP. Because the

contact zones are dynamic over time, the surface area of the

contact zone (red line) as well as the noncontact zone (white line)

were measured for the 37 time points when de novo virus

assembly events were detected (Figure 6A, Table S1). This

analysis revealed 44 assembly events in the contact zone and

eight outside of the contact zone (Video S3). To calculate the

overall assembly frequency per surface unit (in square

micrometers), the number of assembly events observed in either

zone was divided by their average surface area in all the 37

frames with assembly events (Figure 6B, left panel, Table S1).

The ratio of the normalized assembly frequency occurring in or

out of the contact zone served as an indicator for the fold

enhancement of assembly at contact zone. For the cell–cell

contact shown in Figure 6, this analysis revealed a striking 54.5-

fold enhancement of MLV assembly in zones of cell–cell contact

(Figure 6B, left panel, Table S1). A simplified approach

whereby all frames of the time-lapse video were overlaid into

a single image to define a larger contact zone (Figure 6B, right

panel) still revealed a 14.7-fold enhancement (Figure 6B, Table

S1). Although the non–time-resolved analysis clearly underes-

timated the stimulation of assembly at sites of cell–cell contact,

it proved to be a rapid and reliable method that allowed the

quantification of a large set of time-lapse videos. We applied this

method to analyze additional contacts between HEK293 cell

and XC cell expressing mCAT1-CFP. The observed stimulation

of assembly at sites of cell–cell contact varied between 6- and

18-fold and averaged 11-fold for nine representative contacts

(Figure 7A–7I, Table S2, Videos S3, S4, and S5). A similar

enhancement of assembly was observed for cocultures of MLV

producing COS-1 cells and XC target cells (Figure 7L–7N,

Table S2, Video S8) as well as for coculture of MLV producing

HEK293 cells and HEK293 cells expressing mCAT1-CFP

(Figure 7K, Table S2, Video S7). This enhancement of assembly

at cell–cell contact was independent of expression of mCAT1-

CFP in target cells or dynamin2-CFP in producer cells (Figure 7J

and 7K, Table S2, Videos S6 and S7). Thus, 4D imaging of

MLV assembly in the absence and presence of cell–cell contact

revealed a striking enhancement of MLV assembly at sites of

cell–cell contact.

MLV Assembly Kinetics Are Similar in the Absence or
Presence of Cell–Cell Contact

To understand the nature of enhancement of virus assembly at

sites of cell–cell contact, we first tested the possibility that assembly

is accelerated by contact. Comparative analysis of MLV assembly

events in the presence or absence of cell–cell contact revealed that

the average MLV assembly time was similar, 14.6 and 15.6 min,

respectively (Figure 8A). The p-value of 0.3012 indicated that both

values did not significantly differ. The distribution of assembly

time for MLV assembly events in the presence or absence of cell–

cell contact was also similar, with the most frequently observed

assembly time ranged between 9 and 12 min (Figure 8B). Thus,

the process of virus assembly is not accelerated at sites of cell–cell

contact and proceeds within 14–15 min irrespective of the

location.

Assembly-Deficient MLV Gag Is Recruited to Sites of Cell–
Cell Contact

We next asked the question whether a local increase in Gag

concentration leads to the enhancement of assembly at sites of

cell–cell contact. To test this possibility, HEK293 cells were

transfected with an assembly-deficient MLV provirus lacking the

capsid domain (MLVDCA-GFP). This Gag mutant exists

intracellularly as a monomer and does not form virus particles.

Interestingly, MLVDCA-GFP was recruited to sites of cell–cell

contact (Figure 9). These results indicate that the local concen-

tration of monomeric Gag is increased at contact zones. These

data, taken together with our earlier observation that virus

Figure 5. Fluorescent punctae correlate to single viral particles.
COS-1 cells expressing MLV provirus and Gag-CFP (green) in contact
with XC-mCAT1-YFP (red) were imaged by time-lapse microscopy.
Following the detection of virus cell-to-cell transmission, the cells were
fixed and processed for scanning electron microscopy. An edged in grid
was used to re-identify region X in the FEI ESEM scanning electron
microscope. Two black bars were introduced for orientations in the
correlative images. Correlating fluorescence and SEM identifiable viral
particles are indicated by white arrows (left) and black arrows (right).
The size bar in the lower right corresponds to 1 mm.
doi:10.1371/journal.pbio.1000163.g005

Polarized Virus Assembly
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Figure 6. Quantification of MLV assembly events in and outside of the contact zone. (A) Six representative frames of a 157-frame video
when an initiation of de novo virus assembly (blue cross) was detected. See Video S3 and Table S1 for the full analysis. The accumulation of dynamin2
and receptor-CFP was then used to define the contact zone (red line) in each frame. Homogeneous dynamin2 expression and Gag-YFP in the
producer cell was used to mark the remaining plasma membrane surface outside the contact zone (white line). (B) Left panel. The analysis described
in (A) identified 44 assembly events in the contact zone and eight outside the contact zone. To calculate the overall assembly frequency per surface
unit (in square micrometers), the number of assembly events observed in either zone was divided by their average surface area. The resulting fold
enhancement of MLV assembly at sites of cell–cell contact over the remaining plasma membrane is presented at the top right (54.56). The underlying
image used to illustrate this time-resolved analysis represents time point 00:19:43 of Video S3. Right panel. An alternative and simplified approach to
define the fold enhancement was based on the accumulative merged image of all 157 frames of Video S3. Due to the dynamics of the contact zones,
this approach results the definition of a broader contact zone thereby reducing the fold enhancement observed at sites of cell-cell contact (14.76).
For detailed analysis see Table S1. Size bars correspond to 15 mm.
doi:10.1371/journal.pbio.1000163.g006

Polarized Virus Assembly
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Figure 7. MLV assembly is directed towards sites of cell–cell contact. (A–I) Analysis of nine representative time-lapse videos monitoring MLV
assembly in HEK293 cells in contact with XC target cells as described in Figure 6B. The individual panels represent the merged images of all frames of
each video. Single-particle tracking was applied to identify all de novo assembly events and to calculate assembly frequency within and outside the
cell–cell contact zone. The resulting fold enhancement of MLV assembly at sites of cell–cell contact over the remaining plasma membrane is
presented at the top right of each panel. For detailed analysis, see Table S2. For comparison, (A) depicts the analysis from Figure 6B. The
corresponding videos for (A, B, and C) are Videos S3, S4, and S5, respectively. (J) An analysis as in (A) was performed for cocultures between a MLV-
producing HEK293 cell that expresses dynamin2-CFP to label the cell–cell contact and a XC target cell expressing actin-binding Lifeact-CFP. The
corresponding video for panel (J) is Video S6. (K) An analysis as in (A) was performed for cocultures between a MLV-producing HEK293 cells and a
HEK293 cell expressing mCAT1-CFP. The corresponding video for panel (K) is Video S7. (L–N) An analysis as in (A) was performed for cocultures
between MLV-producing Cos-1 cells and XC target cells. The corresponding video for (N) is Video S8. Size bars correspond to 15 mm.
doi:10.1371/journal.pbio.1000163.g007

Polarized Virus Assembly
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assembly is specifically initiated in contact zones (Figures 4, 6, and 7),

suggest that nucleation of assembly, the rate-limiting step of many

polymerization reactions, is enhanced at sites of cell–cell contact.

Polarized Assembly of MLV towards Sites of Cell–Cell
Contact Requires an Intact Env Cytoplasmic Tail

Polarization in other biological systems is governed by adhesion

proteins that redirect protein sorting towards sites of cell–cell

contact to establish polarity [26]. Intriguingly, during virus cell-to-

cell transmission, the establishment of cell–cell contact is driven by

a high-affinity interaction between viral Env glycoprotein and

receptor mCAT1 [14]. Consequently, Env accumulates at sites of

cell–cell contact (Figure 10). Given that the cytoplasmic tail

domains of transmembrane adhesion proteins can contribute to

establishing cellular polarity, we deleted the cytoplasmic tail of Env

in order to determine whether it plays a role in the polarization of

assembly. MLV Env glycoproteins are single-pass transmembrane

proteins, and their cytoplasmic tails have been shown to regulate

Env fusogenicity [27–29]. Because C-tail deletion can lead to a

high degree of cell–cell fusion in infected cultures, we deleted the

histidine residue at position 8 of Env (Env DH8), known to

suppress Env fusogenicity without compromising receptor binding

Figure 8. Virus assembly is not accelerated by cell–cell contact. (A) The assembly time (minutes), defined as the time that it takes a particle to
reach maximum intensity from background levels, is displayed for 129 assembly events in zones of cell–cell contact (with contact) and for 92
assembly events in the absence of cell–cell contact (without contact). The average assembly times (t) are given above the graphs. (B) Histograph of
assembly time for particles assembled in the presence (with contact) and absence (without contact) of cell–cell contact.
doi:10.1371/journal.pbio.1000163.g008

Figure 9. Monomeric Gag is recruited to cell–cell contact. (A,B)
HEK293 cells transfected with full-length MLV provirus lacking capsid
domain (MLVDCA-GFP, green) were cocultured with XC target cells
expressing mCAT1-mCherry (red). MLVDCA-GFP is recruited to sites of
cell–cell contact with accumulation of receptor mCAT1-mCherry. Size
bars correspond to 17 mm.
doi:10.1371/journal.pbio.1000163.g009

Figure 10. Env localizes to sites where target cell membranes
are anchored in infected cells. (A-F) HEK293 cells expressing MLV
GagPol, genome, MLV Env-YFP (red), and dynamin2-CFP (green) were
cocultured with XC target cells expressing mCAT1-CFP (green). MLV
Env-YFP efficiently localized to sites of cell–cell contact in addition to
being incorporated into punctate virions. Size bars correspond to
15 mm.
doi:10.1371/journal.pbio.1000163.g010

Polarized Virus Assembly
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[30,31]. The formation of cell–cell contacts and polarization of

virus assembly to contact sites appeared unaltered for EnvDH8

(Figure 11A, Table S3, Video S9). In contrast, polarized assembly

was completely abolished for Env DH8 lacking the cytoplasmic tail

(Env DH8DCT) despite efficient formation of cell–cell contacts

that were indistinguishable from wild-type Env (Figure 11B, Table

S3, Video S10). Although we cannot exclude the possibility that

contact zone dynamics are altered, these data suggest a model

whereby direct or indirect signaling via the cytoplasmic tail of Env

directs Gag trafficking to sites of cell–cell contact.

Polarized Assembly during Repeated Rounds of MLV Cell-
to-Cell Transmission

Long-term imaging experiments of several hours allowed us to

monitor polarized assembly in the context of the formation and

dissociation of cell–cell contacts. In this case, when imaging was

initiated, we could readily observe completely assembled viral

particles randomly located at the plasma membrane of the producer

cells. However, in response to the establishment of cell–cell contact,

we observed that assembly was coordinated with cell-to-cell

transmission. We observed that cell-to-cell transmission proceeds

in four phases (Videos S11 and S12). A representative cell–cell

contact established between a virus-producing Cos-1 cell and the

receptor expressing target cell is presented in Figure 12A (Videos

S11 and S12). Both Dynamin2-CFP and mCAT1-CFP (green)

accumulated together at sites of contact during Phase I (Figure 12A).

In Phase II, de novo MLV assembly (Gag-YFP, red) was induced at

contact zones, and numerous bright particles were generated. The

assembly frequency at these sites of cell–cell contact was elevated as

compared to the occasionally observed assembly of few viral

particles outside of contact zones. During Phase III, viruses were

released and moved along filopodial bridges towards the target cell

(Figure 12A). Finally, in Phase IV, virus transmission was stopped by

the apparent down-regulation of receptor/dynamin complexes at

contacts, resulting in cell separation (Figure 12A).

Over the period of 8.5 h, we observed four consecutive ‘‘waves’’

of contact, polarized assembly, virus transmission, and cell

separation (Figure 12B, Videos S11 and S12). Quantitative analysis

of the CFP-labeled receptor/dynamin2 (green) and Gag-YFP

fluorescence (red) for each wave indicated that the establishment

of contact preceded virus assembly (Figure 12B, Video S12). The

average composite of these four transmission events allowed us to

generalize our observations (Figure 12C). It took approximately

30 min to establish cell–cell contact before the first virus assembled.

Assembly of individual viruses proceeded in approximately 10 min.

In the subsequent transmission phase, which lasted approximately

30 min, additional viruses assembled at the contact site and moved

towards target cells. Finally, transmission was terminated due to

contact down-regulation (Figure 12C). In this system, the

establishment and maintenance of cell–cell contact lasted approx-

imately 1 h, whereas assembly was relatively swift, proceeding in

approximately 10 min. Taken together, long-term imaging dem-

onstrated that virus assembly at the plasma membrane of infected

cells can be polarized in response to the establishment of cell–cell

contact, reinforcing the notion of a contact-induced switch from

random to polarized assembly.

Discussion

It has long been known that retroviral spreading is more

efficient when cells can physically interact with each other [1–4,8].

Applying 4D imaging and single-particle tracking, we have

demonstrated that the murine leukemia virus can redirect virus

assembly to sites of cell–cell contact for transmission to

neighboring cells. As such, our results support a model of

polarized assembly as the primary cause for the accumulation of

Figure 11. Polarized assembly depends on the presence of the cytoplasmic tail of Env. (A–D) An experiment as in Figure 7 was performed
with MLV Env lacking histidine 8 (Env DH8). The fold enhancement of MLV assembly at sites of contact is given at the top right of each panel. The
corresponding video for (D) is Video S9. (E–H) An experiment as in (A–D) was performed for mutant Env lacking the cytoplasmic tail (Env DH8DCT).
The corresponding video for (F) is Video S10. Size bars correspond to 15 mm.
doi:10.1371/journal.pbio.1000163.g011
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Figure 12. Polarized assembly in the context of four phases of cell-to-cell transmission. (A) COS-1 cells expressing dynamin2-CFP (green)
and producing fluorescently labeled MLV (Gag-YFP, red) were cocultured with XC cells expressing the MLV receptor mCAT1-CFP (green). Time-lapse
microscopy over the period of 8.5 h revealed four ‘‘waves’’ of cell-to-cell transmission (Videos S11 and S12). Each wave contained four phases, the
establishment of cell–cell contact, characterized by the accumulation of dynamin2-CFP and receptor mCAT1-CFP at sites of cell–cell contact (green
arrow), virus assembly out of cell–cell contact sites (red arrows), cell-to-cell transmission of viral particles (red arrow), and down-regulation of the
contact. The four phases presented here correspond to wave 3 in (B). (B) Graphical presentation and quantitative analysis of the four observed
transmission events. The upper panels present the four time points (h:min) of each ‘‘wave’’ when cell–cell contact was established prior to the
induction of virus assembly. The lower panels represent merged frames of the time period of Video S12 that describes the four virus assembly and
transmission events (frames 29–58, 82–118, 166–193, and 208–219 of Video S12). Finally, the quantitative analysis of these four transmission events
for the adhesion markers receptor/dynamin2 (green) and viral particles (red) is given below the images. (C) The average composite of the four
analyses shown in (B) illustrate the four phases of cell-to-cell transmission. Size bars correspond to 15 mm.
doi:10.1371/journal.pbio.1000163.g012
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viral particles at zones of cell–cell contact (Model II in Figure 1).

Our data contribute to the emerging picture that several steps of

the viral life cycle are efficiently coordinated at sites of cell–cell

contact. Future work will reveal to what extent our model applies

to other viruses and experimental conditions.

Our work is based on the ability of spinning disc confocal

microscopy to detect de novo assembly and monitor the subsequent

spatial movement of completely assembled particles. Applying a

cautious definition of contact zones, our visual approach revealed an

approximately 10-fold enhancement of virus assembly at sites of

cell–cell contact. In the absence of cell–cell contact, particle release

from producer cells into the culture supernatant was observed,

consistent with the production of cell-free virus. Yet, in the context

of coculture, MLV assembly was strongly directed towards sites of

cell–cell contact, followed by efficient transmission to target cells.

These data indicated that although assembly occurs randomly at

plasma membrane, assembly becomes polarized following the

establishment of cell–cell contact.

In an effort to understand the mechanism of the enhancement of

assembly at sites of cell–cell contact, we observed no acceleration of

assembly. On average, the assembly time observed for MLV in

HEK293 cells was approximately 15 min, slower in comparison to

the approximately 8 min observed for HIV in HeLa cells [32].

MLV assembly was even slower in COS-1 cells, averaging 20.2 min

for 79 events, suggesting that assembly time varies depending on the

cell type (Figure S1, unpublished data). Future experiments carried

out in the same cell type in parallel are required to address the

observed differences between HIV and MLV.

Although virus assembly per se was not accelerated at the sites

of cell–cell contact, Gag proteins that drive virus particle assembly

were recruited to cell–cell contacts. An elevation of Gag levels at

contact sites may increase the frequency of nucleation, thereby

enhancing virus assembly. The polarization of assembly required

the cytoplasmic tail of the viral Env glycoprotein. Evidence for a

communication between the cytoplasmic tail of retroviral Env and

Gag proteins has been reported [33–36]. Env expressed in

polarized cells such as MDCK cells and neurons can relocalize

Gag [37–39]. In this work, we demonstrate that the establishment

of cell–cell adhesion following Env/receptor interactions can

break symmetry and establish polarity in otherwise nonpolarized

fibroblasts. Future work is needed to understand whether the

communication between Env and Gag is direct or indirect.

Our results reinforce similarities between virological and biological

synapses in that the establishment of cell–cell adhesion is followed by

polarization and the directed delivery of ligands towards sites of cell–

cell contact [26]. Our data suggest that the MLV Env glycoprotein

functions analogously to a cellular adhesion protein that establishes

cell–cell contact and polarizes cells. Intriguingly, once MLV Env is

packaged into virions, during or soon after virus budding, the

cytoplasmic tail is cleaved off by the viral protease [40–42]. As such,

the viral protease transforms an adhesion protein into a highly

fusogenic fusion protein to mediate virus-to-cell fusion. This

mechanism represents yet another clever adaptation and utilization

of cellular principles by viruses to favor efficient viral spreading.

Materials and Methods

Reagents and Cell Lines
Plasmid encoding MLV GagPol, MLV LTR-LacZ, MLV Gag-

YFP, MLV Env-YFP, mCAT1-CFP, and dynamin2-CFP were

described previously [14,20]. Plasmids encoding mutant Friend

MLV EnvDH8 was a gift from J. Cunningham (Harvard Medical

School, Boston, MA). The cytoplasmic tail of Env DH8 was

truncated at the viral protease cleavage site by PCR-based

mutagenesis to generate MLV Env DH8DCT. This truncation

has also been designated R peptide minus mutant [28,42]. CA and

Pol coding regions were deleted, and the GFP coding region was

fused to C-terminal of NC Full-length Friend MLV genome to

generate a mutant provirus that expresses GFP-fused deltaCA Gag

as well as Env. HEK293, COS-1, and NIH 3T3 cells were

maintained in DMEM high glucose (Invitrogen) containing 10%

FBS plus Pen/Strep/Glutamine. Rat XC sarcoma cells were grown

in MEM (Invitrogen) with 10% FBS plus Pen/Strep/Glutamine.

XC cells stably expressing mCAT1-CFP and HEK293 cells stably

expressing mCAT1 were selected using G418 (Invitrogen) and twice

FACS-sorted for mCAT1 surface expression. Monoclonal mouse

anti-human dynamin antibody (BD Biosciences) was used to stain

endogenous dynamin in virus-producing cells.

Live-Cell Imaging
For live confocal imaging, virus-producing cells and target cells

were cocultured in MatTek glass-bottom plates that were pretreated

with 0.2 mg/ml fibronectin (Invitrogen) for 10 min at room

temperature. To generate HEK293 cells producing fluorescently

labeled MLV, cells were transfected in 24-well plates using 800 ng of

total DNA (244 ng of MLV Env or MLV Env mutant, 254 ng of

MLV GagPol, 26 ng of MLV Gag-YFP, 244 ng of MLV LTR-LacZ,

and 32 ng of dynamin2-CFP) and 2 ml of Lipofectamine 2000

(Invitrogen) per well. To generate COS-1 cells producing fluores-

cently labeled MLV, cells were transfected in six-well plates using

1,200 ng of total DNA (366 ng of MLV Env, 381 ng of MLV

GagPol, 39 ng of MLV Gag-YFP, 366 ng of MLV LTR-LacZ, and

48 ng of dynamin 2-CFP) and 3.6 ml of FuGene 6 reagent (Roche)

per well. At 4 h post HEK293 transfection and 22 h post Cos-1

transfection, virus-producing cells were replated in fibronectin-coated

MatTek plates. One hour later, XC cells expressing mCAT1-CFP

were added to start coculture; 1 h post initiation of coculture, live

imaging was performed using the 606 objective of a Volocity

spinning disc confocal microscope equipped with an environmental

chamber (LIVE CELL; Pathology Devices) and a Nikon Perfect

Focus. We took advantage of the Perfect Focus to simultaneously

image multiple cell–cell contacts over time. All time-lapse videos were

edited using Volocity, Openlab software (Improvision/PerkinElmer)

and ImageJ. Videos were saved for presentation in QuickTime

format using Sorensen 3 compression for videos. Single-particle

tracking of 986 particles, analyzed in this work, was performed using

the Quantitation software package from Volocity (Improvision/

PerkinElmer). Fluorescent punctae were identified and their YFP and

CFP fluorescence intensity as well as XYZ coordinates determined

over time. Additional analysis and data presentations were performed

following the export of datasets into Microsoft Excel.

Scanning Electron Microscopy
Correlative fluorescence and scanning electron microscopy was

essentially as previously described [24]. Briefly, cells were

cocultured on MatTek dishes carrying an etched grid for cell re-

identification (MatTek). Immediately after live imaging, cells were

fixed in 4% PFA, washed three times with PBS, and then returned

to the wide-field fluorescence microscope. Samples were subse-

quently processed for scanning electron microscopy. Cells were

fixed for 30 min with 2.5% glutaraldehyde/2% paraformaldehyde

in 100 mM cacodylate buffer (pH 7.4), rinsed three times with

100 mM cacodylate buffer, and dehydrated through a graded

ethanol series. After washing three times with hexamethyldisila-

zane (EMS), cells were dried for 5 min at 60uC and coated with

platinum. The grid was used to re-identify regions of interest and

the area analyzed using a FEI ESEM scanning electron

microscope (Philips).
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Intron-Regulated Luciferase-Based MLV Transmission
Assay

To measure MLV cell-to-cell transmission, we applied a

quantitative assay that is based on an intron-regulated MLV

luciferase reporter (inLuc), in which the expression of luciferase

is prevented in producer cells and restricted to newly infected

target cells (D. Mazurov, G. Heidecker, P. A. Lloyd, D. Derse,

unpublished data). To generate virus-producing cells, HEK293

producer cells were transfected with plasmids encoding the

MLV inLuc reporter, MLV Gag Pol, and MLV Env. HEK293

cells were transfected in 24-well plates using 800 ng of total

DNA (266 ng of MLV Env, 267 ng of MLV GagPol, and

267 ng of MLV LTR-inLuc) and 2 ml of Lipofectamine 2000

(Invitrogen) per well. COS-1 cells were transfected in six-well

plates using 1,200 ng of total DNA (MLV Env 400 ng, MLV

GagPol 400 ng, and MLV LTR-inLuc 400 ng) and 3.6 ml of

FuGene 6 reagent (Roche). At 6 h post HEK293 transfection

and 24 h post COS-1 transfection, producer cells were

cocultured with target cells at a 2:1 ratio for 24 h in the

absence or presence of 1% methyl cellulose. At the end of

coculture, cells were lysed and the luciferase activity measured

using a Berthold Technologies Centro LB960 Luminometer.

Supporting Information

Figure S1 Visualizing MLV assembly and release in
Cos-1 cells. (A) An experiment as in (Figure 2A and 2B) was

performed in Cos-1 cells generating fluorescently labeled MLV

(Gag-YFP, red). (B) Release of a particle from Cos-1 cells into the

medium following completion of assembly.

Found at: doi:10.1371/journal.pbio.1000163.s001 (1.70 MB TIF)

Figure S2 Endogenous dynamin is recruited to sites
where target cell membranes are anchored in infected
cells. HEK293 cells expressing MLV genome, Env, GagPol, and

Gag-YFP (green) were cocultured with XC target cells expressing

mCAT1-CFP (blue). Cells were fixed and permeabilized at 3 h

post coculture. Endogenous dynamin was stained with dynamin

antibody and Alexa568 conjugated secondary antibody (red).

Endogenous dynamin localized to sites of cell-cell contact where

receptor and virus particles accumulated. Size bars correspond to

15 mm.

Found at: doi:10.1371/journal.pbio.1000163.s002 (0.42 MB TIF)

Figure S3 Expression of wild-type and dominant-nega-
tive dynamin2 does not affect MLV cell-to-cell transmis-
sion. A control experiment as in Figure 3 was performed to

determine potential effects of dynamin2 expression on the

efficiency of virus cell-to-cell transmission. Producer cells

(HEK293 cells) expressing an intron-regulated MLV luciferase

reporter inLuc, MLV GagPol, and MLV Env, as well as either

wild-type dynamin2-CFP or K44A dynamin2-CFP or CFP

control, were cocultured with target cells (XC, NIH 3T3,

HEK293 cells stably expressing mCAT1). The luciferase activity

originating from infection of target cells is presented.

Found at: doi:10.1371/journal.pbio.1000163.s003 (0.11 MB TIF)

Table S1 Calculation of the fold enhancement of MLV
assembly at sites of cell-cell contact as presented in
Figure 6. Single-particle tracking was applied to identify all de

novo assembly events in the MLV-producing HEK293 cell

cocultured with XC-expressing mCAT1-CFP in Video S3.

Number of assembly events as well as the surface area of contact

and the noncontact zones are listed for each frame when initiation

of de novo assembly can be detected. The surface area of contact

and the noncontact zones in the merged image of all the frames

were also listed. To determine the assembly frequency in the

absence or presence of cell contact, the number of assembly events

observed inside or outside of contact zones was normalized to the

respective surface area. For frame-by-frame analysis, average

surface area was used, and for overlay analysis, surface area in the

merged image was used. To obtain the fold enhancement of MLV

assembly in zones of cell-cell contact, the assembly frequency in

the presence of cell-cell contact was divided by the assembly

frequency in the absence of contact.

Found at: doi:10.1371/journal.pbio.1000163.s004 (0.17 MB PDF)

Table S2 Calculation of the fold enhancement of MLV
assembly at sites of cell-cell contact as presented in
Figure 7. Single-particle tracking was applied to identify all de

novo assembly events in MLV-producing cells (HEK293, COS-1

cells) cocultured with receptor-expressing target cells. To deter-

mine the assembly frequency in the absence or presence of cell

contact, the number of assembly events observed inside or outside

of contact zones was normalized to the respective surface area in

the frame merged images. To obtain the fold enhancement of

MLV assembly in zones of cell-cell contact, the assembly

frequency in the presence of cell-cell contact was divided by the

assembly frequency in the absence of contact. In addition, the

table lists technical parameters of the underlying time-lapse videos

such as the total imaging time and the frame time.

Found at: doi:10.1371/journal.pbio.1000163.s005 (0.16 MB PDF)

Table S3 Calculation of the fold enhancement of MLV
assembly observed for cells expressing wild-type or
mutant Env lacking the cytoplasmic tail as presented in
Figure 11. A calculation as in Table S2 was performed for cells

expressing Env carrying a histidine 8 deletion (Env DH8) and Env

lacking a cytoplasmic tail in addition to the histidine 8 mutation

(Env DH8DCT).

Found at: doi:10.1371/journal.pbio.1000163.s006 (0.17 MB PDF)

Video S1 Visualization of de novo assembly and release
of MLV in living cells. A HEK293 cell generating MLV

labeled with Gag-YFP (red) was monitored using spinning disc

confocal microscopy over a period of 1 h and 12 min. A z-stack of

13 images covering 4 mm was acquired every 59 s. To generate

the QuickTime video, the 13 frames were merged into a single

image using Improvision Volocity and Openlab software. The last

frame of the QuickTime video displays the merged image of all

frames of the time-lapse video. The video is played at 10 frames/s.

The four labeled particles correspond to the particles A–D

presented in Figure 2A.

Found at: doi:10.1371/journal.pbio.1000163.s007 (1.72 MB

MOV)

Video S2 Cell-to-cell transmission of virus particles
towards target cells following completion of assembly. A

HEK293 cell generating MLV labeled with Gag-YFP (red) and

expressing dynamin2-CFP (green) in contact with a noninfected

target XC cell expressing mCAT1-CFP (green) was monitored

using spinning disc confocal microscopy. The cell-cell contact was

imaged over a period of 1 h and 35 min. A z-stack of red and

green images was taken every 60 s and merged into a single file to

generate a QuickTime video. The video represents first the ‘‘red/

green’’ sequence followed by the ‘‘red only’’ to facilitate the

detection of de novo assembly events. At the end of each sequence,

a single image is presented to display the merged image of all

frames of the time-lapse video. The video is played at 10 frames/s.

The six labeled particles correspond to particles A–F in Figure 4A.

Found at: doi:10.1371/journal.pbio.1000163.s008 (5.86 MB

MOV)
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Video S3 Identification of de novo assembly events.
Video S3 represents a larger viewing field of the cell-cell contact

displayed in Video S2. Blue crosses were used to label the sites

where virus particles started to assemble during the imaging time.

At the end of the sequence, a single image is presented to display

the merged image of all frames of the time-lapse video. The video

is played at four frames/s.

Found at: doi:10.1371/journal.pbio.1000163.s009 (8.90 MB

MOV)

Video S4 Retroviral assembly is directed towards sites
of cell-cell contact. An experiment as described for Video S3

for an additional cell-cell contact. The video is played at 10

frames/s. Video S4 represents the data source for the analysis

presented in Figure 7B. Statistical data for this video can be found

in Table S2.

Found at: doi:10.1371/journal.pbio.1000163.s010 (12.61 MB

MOV)

Video S5 Retroviral assembly is directed towards sites
of cell-cell contact. An experiment as described above for an

additional cell-cell contact. The video is played at 10 frames/s.

Video S5 corresponds to Figure 7C. Statistical data for this video

can be found in Table S2.

Found at: doi:10.1371/journal.pbio.1000163.s011 (20.84 MB

MOV)

Video S6 Retroviral assembly is directed towards sites
of cell-cell contact. Time-lapse video monitoring the cell-cell

interaction between a HEK293 cell producing MLV and XC

target cell expressing Lifeact-CFP. The video is played at 10

frames/s. Video S6 corresponds to Figure 7J. Statistical data for

this video can be found in Table S2.

Found at: doi:10.1371/journal.pbio.1000163.s012 (6.66 MB

MOV)

Video S7 Retroviral assembly is directed towards sites
of cell-cell contact. Time-lapse video monitoring the cell-cell

interaction between a HEK293 cell producing MLV without

coexpression of dynamin2-CFP and a HEK293 cell expressing

mCAT1-CFP. The video is played at 10 frames/s. Video S7

corresponds to Figure 7K. Statistical data for this video can be

found in Table S2.

Found at: doi:10.1371/journal.pbio.1000163.s013 (6.56 MB

MOV)

Video S8 Retroviral assembly is directed towards sites
of cell-cell contact. Time-lapse video monitoring the cell-cell

interaction between a COS-1 cell producing MLV and XC target

cells. The video is played at 5 frames/s. Video S8 represent the

data source for the analysis presented in Figure 7N. Statistical data

for this video can be found in Table S2.

Found at: doi:10.1371/journal.pbio.1000163.s014 (9.54 MB

MOV)

Video S9 Env containing intact cytoplasmic tail directs
assembly towards sites of cell-cell contact. Time-lapse

analysis as described in Video S3 was performed for cells

expressing MLV Env with a deletion of histidine 8. The statistical

data for this video can be found in Table S3. The video is played

at 10 frames/s and corresponds to the analysis shown in

Figure 11D.

Found at: doi:10.1371/journal.pbio.1000163.s015 (9.44 MB

MOV)

Video S10 Env lacking the cytoplasmic tail fails to
direct assembly towards sites of cell-cell contact. Time-

lapse analysis as above was performed for cells expressing mutant

Env lacking the cytoplasmic tail. The statistical data for this video

can be found in Table S3. The video is played at 10 frames/s and

corresponds to Figure 11F.

Found at: doi:10.1371/journal.pbio.1000163.s016 (6.46 MB

MOV)

Video S11 Polarized assembly in the context of the
dynamics of cell-to-cell transmission. A COS-1 cell

generating MLV labeled with Gag-YFP (red) and expressing

dynamin2-CFP (green) in contact with XC target cell expressing

mCAT1-CFP (green) was imaged over a period of 8 h and 28 min.

A z-stack of red and green images was taken every 134 s and

merged into a single file to generate Video S11. Repeated rounds

of establishment of contact, contact-induced virus assembly, and

virus transmission are observed. The video is played at 5 frames/s.

Video S11 represents the original data source for the analysis

presented in Figure 12.

Found at: doi:10.1371/journal.pbio.1000163.s017 (20.09 MB

MOV)

Video S12 Split channels for Video S11. This time-lapse

video depicts red and green channels of Video S11 in parallel.

Found at: doi:10.1371/journal.pbio.1000163.s018 (17.52 MB

MOV)
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