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Natalia Zeber-Lubecka 1,2, Krzysztof Goryca 2,†, Filip Ambrożkiewicz 2 , Jakub Karczmarski 2,
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Simple Summary: Identifying risk factors for cancer development can allow for appropriate stratifi-
cation and surveillance of individuals at risk, increasing their chances of benefiting from early disease
detection; however, most of the genetic factors contributing to the risk of colorectal cancer (CRC)
remain undetermined. Here, we adopted a new approach for selecting index polymorphism for
further validation in combination with a genome-wide association study of pooled DNA samples for
CRC susceptibility variants in the Polish population. This study, including 2013 patients and controls,
uncovered five susceptibility loci not previously reported for CRC. Four of identified variants were
located within genes likely involved in tumor invasiveness and metastasis, suggesting that they
could be markers of poor prognosis in CRC patients. Our results provide evidence that conducting
association studies on small but homogenous populations can help us discover new common risk
variants specific to the studied population.

Abstract: Despite great efforts, most of the genetic factors contributing to the risk of colorectal
cancer (CRC) remain undetermined. Including small but homogenous populations in genome-wide
association studies (GWAS) can help us discover new common risk variants specific to the studied
population. In this study, including 465 CRC patients and 1548 controls, a pooled DNA samples-
based GWAS was conducted in search of genetic variants associated with CRC in a Polish population.
Combined with a new method of selecting single-nucleotide polymorphisms (SNPs) for verification
in individual DNA samples, this approach allowed the detection of five new susceptibility loci
not previously reported for CRC. The discovered loci were found to explain 10% of the overall
risk of developing CRC. The strongest association was observed for rs10935945 in long non-coding
RNA LINC02006 (3q25.2). Three other SNPs were also located within genes (rs17575184 in NEGR1,
rs11060839 in PIWIL1, rs12935896 in BCAS3), while one was intergenic (rs9927668 at 16p13.2). An
expression quantitative trait locus (eQTL) bioinformatic analysis suggested that these polymorphisms
may affect transcription factor binding sites. In conclusion, four of the identified variants were located
within genes likely involved in tumor invasiveness and metastasis. Therefore, they could possibly be
markers of poor prognosis in CRC patients.

Keywords: colorectal cancer; genome-wide association study; tumor progression; metastasis; long
non-coding RNA; polymorphism
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1. Introduction

Colorectal cancer (CRC) is the third most commonly diagnosed malignant tumor, both
around the world and in Poland [1]. It also represents the second and third leading cause
of cancer-related deaths among men and women in the Polish population, respectively [2].
Genetic factors are thought to account for up to 35% of the variation in CRC risk [3,4]. Rare
mutations with high penetration are responsible for less than 6% of cases of CRC [5,6]. In or-
der to explain some of the remaining risk that contribute to CRC, numerous genome-wide
association studies (GWAS) have been conducted for common low-penetrance variants.
Currently, at least 100 independent susceptibility loci associated with CRC development
at p < 5 × 10−8 have been identified, including over 50 new loci discovered in large-scale
GWAS meta analyses in 2019 alone [7–12]. Despite these great efforts, less than 12% of
familial relative risk [11] and less than 1% of the heritability of CRC [13] can be explained
by the common variants identified by GWAS. Thus, most of the genetic factors contributing
to the risk of CRC remain undetermined.

Given the significant population diversity in terms of genetic variation, and thus dif-
ferences in allele frequencies and association strength, conducting analyses on different
populations increases the chance of identifying general risk variants [14]. In addition, in-
cluding ethnic or racial minorities can help to discover new loci or risk variants specific to
the studied populations [15]. Our previous studies indicated that there are some benefits of
studying relatively small but homogenous populations, such as the Polish population [16,17].

In several studies from recent years, we successfully implemented a novel approach for
selecting GWAS-discovered single-nucleotide polymorphisms (SNPs) for further validation
of their association with the disease [17–20]. This was shown to be effective particularly
for GWAS with pooled DNA or with a small sample size, where limited study power
hardly allows associations to be made at the standard genome-wide significance level
(p < 5 × 10−8). In this approach, index SNPs for individual genotyping are selected based
more on biological context than a purely statistical criterion, assuming that each associating
SNP is usually not independent of neighboring variants. Such a method reduces the
number of false-positive genome-wide associations and allows for the discovery of new
associations [18]. Here, we adopted this method of selecting the index SNP in combination
with pooled DNA sample GWAS for CRC susceptibility variants in the Polish population.
This approach enabled the detection of five new susceptibility variants which have not
yet been associated with CRC. Of these, four are intron variants of genes that are involved
or very likely to be involved in the neoplastic process, especially tumor progression and
metastasis. Interestingly, the strongest association was observed for the novel long non-
coding RNA (lncRNA) variant, suggesting its role through interaction with transcription
factors (TFs).

2. Materials and Methods
2.1. Ethics Statement

All patients and control subjects were Polish Caucasians recruited from two urban
populations, Warsaw and Szczecin. The local ethics committee approved the study (Maria
Skłodowska-Curie National Research Institute of Oncology, Warsaw, Poland, project ID:
37/2017/1/2021), and all subjects provided informed consent before they participated in
the study. The study protocol conformed to the ethical guidelines of the 1975 Declaration
of Helsinki.

2.2. Patients

In total, the pooled DNA sample-based GWAS and verification stage with individual
samples included 2013 individuals—465 with CRC and 1548 controls. The pooled-sample
GWAS cohorts included 432 patients with CRC (168 females and 264 males; median age:
66 years; range: 20–91 years) and 672 control subjects (360 females and 312 males; median
age: 55 years; range: 19–95 years). The demographic and clinical characteristics of all
patients and controls are shown in Table 1.
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Table 1. The demographic and clinical characteristics of patients and controls.

CRC
(N = 465)

Control
(N = 1548)

Female N (%) 176 (38) 969 (63)
Male N (%) 289 (62) 579 (37)

Age (mean ± SD) 66 ± 11 55 ± 11
Age (median) 66 58

Age (min.–max.) 20–91 19–95

Tumor localization (%)
rectum 173 (37.2)
sigmoid 79 (17.0)

sigmoid-rectum 72 (15.5)
caecum 55 (11.8)

ascendant 39 (8.4)
other 47 (10.1)

Tumor size (%)
0 4 (0.9)
1 40 (8.6)
2 85 (18.3)
3 277 (59.6)
4 56 (12.0)

Tis 3 (0.6)

Node status (%)
0 245 (52.7)
1 126 (27.1)
2 78 (16.8)
3 9 (1.9)

Nx 7 (1.5)

Grade (%)
1 27 (5.8)
2 284 (61.1)
3 44 (9.5)

Gx 110 (23.6)

Metastasis (%) 49 (10.5)
CRC, colorectal cancer; N, number of subjects; SD, standard deviation; Tis, tumor in situ; Nx, indeterminate; Gx,
indeterminate.

2.3. Genome-Wide Microarray Allelotyping

A pooled DNA sample-based GWAS was performed as described previously [21].
Genomic DNA was extracted from whole blood treated with EDTA using a QIAamp DNA
Blood Mini Kit (Qiagen, Hilden, Germany), quantified using a Quant-iTTM PicoGreen
dsDNA Kit (Invitrogen, Carlsbad, CA, USA), and visually checked for integrity on 1%
agarose gel. Solely DNA samples that passed quality control tests (for purity, quantity, and
integrity) were combined according to diagnosis and gender at equimolar concentrations
to obtain 24-sample pools. A total of 18 DNA pools were prepared for the CRC group
(seven for women and 11 for men) and 28 for controls (15 for women and 13 for men).
Pooled DNA samples were adjusted to a final concentration of 50 ng/L in Tris-EDTA buffer
(pH = 8) and analyzed individually on Illumina Infinium Omni2.5-Exome-8 v1.3 BeadChip
microarrays by a commercial organization (Eurofins Genomics, Galten, Denmark). The
datasets from GWAS are available from the Gene Expression Omnibus (GEO) database
under accession number GSE156411.

2.4. Individual Genotyping

According to our previously described approach [17–20] for the verification of GWAS
findings, loci were chosen that were represented by blocks of SNPs associated with CRC at
the p < 5 × 10−3, for which the intervals between all pairs of adjacent SNPs were <30 kb.
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From each of the independent loci, the most strongly associated SNP (at p < 10−4) was
selected as an index SNP for further verification via individual DNA sample genotyp-
ing, and stepwise forward logistic regression analysis. TaqMan SNP Genotyping Assays
(Thermo Fisher Scientific, Waltham, MA, USA, a SensiMix™ II Probe Kit (Bioline Ltd.,
London, United Kingdom), and a 7900HT Real-Time PCR system (Thermo Fisher Scien-
tific,Waltham, MA, USA) were used for individual genotyping in a 384-well format.

2.5. eQTL Analysis

Data collected in an online bioinformatics database by HaploReg, version 4.1 [22], was
used for the analysis of identified CRC susceptibility genetic variants and the expression of
quantitative trait loci (eQTL).

2.6. Survival Curves

Kaplan-Meier survival curves were prepared in Human Protein Atlas [23] (http://
www.proteinatlas.org; accessed on 5 May 2021) using the default cut-off for differentiation
between low and high gene expression and data from The Cancer Genome Atlas (TCGA)
for the CRC patient cohort. P-values in the log-rank test were computed using default
observation periods.

2.7. Statistical Analyses
2.7.1. Genome-Wide Allelotyping

First, the relative allele signal (RAS) for each SNP was calculated as A/(A + B), where
A and B were signal intensities for A and B alleles (as defined by Illumina). The RAS
was used as an approximation of the allele ratio. Student’s t-test (Welch variant) was
used to compare allele ratios between groups. Due to a lack of the call-rate statistics for
pooled samples, the quality was assessed via visual inspection of the first two principal
components for outliers (Figure S1). One control and one CRC pool were removed. The
calculated lambda value of 1.007, together with the quantile–quantile (Q–Q) plot of p-values
(Figure S2), raised no concerns regarding the homogeneity of the final population. No probe
filtering was performed. P-values were corrected for multiple hypothesis testing with the
Holm algorithm. Manhattan plotting was performed using the qqman R package [24].
Probe names were mapped to a reference SNP ID using mapping files (InfiniumOmni2-
5-8v1-5 and InfiniumOmniExpressExome-8v1-6) provided by Illumina. The impact of
variants on the coding sequence and clinical significance were imported with the biomaRt
package [25,26]. All computations were performed according to the R environment [27].
The study power calculations were performed using the epiR package [28], assuming
the proportion of an allele in a reference group of 0.05–0.5 and an odds ratio (OR) of
1.2–2 (Table S1). The method assumed a confidence level of 95% in an unmatched case–
control study.

2.7.2. Individual Genotyping

The Hardy–Weinberg equilibrium concordance of SNPs selected for verification was
tested using the HardyWeinberg R package, version 1.6.8 [29], whereby no statistically sig-
nificant deviations were observed. Differences in frequencies between groups were verified
using the chi-squared test for alleles and the Cochran–Armitage test (implemented in R
package DescTools, version 0.99.23) [30] for genotypes, with the exception of rs17575184,
for which Fisher’s exact test was chosen due to the small number of alternative homozy-
gotes. The p-value significance threshold was adjusted for multiple comparisons with
the Benjamini–Hochberg algorithm [31]. The OR and 95% confidence interval (CI) were
estimated by normal approximation implemented in the EpiTools R package, version
0.5–10 [32]. OR values were given, with the more frequent allele or genotype taken as
the reference.

http://www.proteinatlas.org
http://www.proteinatlas.org
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2.7.3. Stepwise Forward Logistic Regression Analysis

Prediction analysis was performed by a stepwise forward logistic regression method,
with the Akaike information criterion (AIC) used as the criterion for variable choice, using
the step function of the R basic statistics package. The significant SNPs (p < 0.05) were
ranked according to their AIC values, starting from a variant with the lowest AIC value,
and sequentially introduced into the prediction model. Nagelkerke’s pseudo-R2 for each
step was computed with the DescTools package, version 0.99.23 [30], in order to estimate
the proportion of the overall risk of developing CRC. The area under the curve (AUC)
value describing the accuracy of the prediction was computed using the pROC package,
version 1.10 [33].

3. Results
3.1. Association Analyses

A pooled DNA sample-based GWAS in combination with a novel approach to SNP
selection was applied in the search for new genetic variants associated with CRC in a
Polish population. The 24-sample pools of DNA were used, obtained from 432 patients
with CRC (18 pools) and 672 control subjects (28 pools). Seven independent loci were
selected for further verification of their relationship to CRC development; neither showed
statistically significant deviations from the Hardy–Weinberg equilibrium. Of these, six loci
were represented by blocks of at least 11 SNPs associated with p < 5 × 10−3 at a distance of
less than 30 kb from one another. One block (represented by rs17575184) consisted of seven
SNPs, however three associated at p < 10−4. From each selected locus, the most strongly
associated index SNP was further verified via genotyping of individual DNA samples from
both the CRC (N = 465) and control (N = 1079) groups.

As shown in Table 2, in verification analyses, five of the GWAS-selected SNPs ex-
hibit significant differences in allele and genotype frequencies between the CRC and
control groups after the Benjamini–Hochberg algorithm’s adjustment for multiple test-
ing (padj < 0.05). None of these associations have previously been reported for CRC. The
strongest association was observed for rs10935945 in LINC02006 at 3q25.2 (padj = 1.26 × 10−5

and 1.29 × 10−5 for allele and genotype frequencies, respectively). The next three SNPs
revealed allelic associations at padj ≤ 3.92 × 10−4. Apart from rs10935945, three other
SNPs were located within gene regions (rs17575184 in NEGR1 at 1p31.1, rs11060839 in
PIWIL1 at 12q24.33, and rs12935896 in BCAS3 at 17q23.2), while one was at an intergenic
location (16p13.2).

Additional association analyses, including stratifying the CRC patients cohort by
tumor localization or different disease parameters (e.g., grading, metastasis), indicated that
all five identified variants were significantly associated (padj < 0.05) with G2 and T3 CRCs
(Table S2). Interestingly, some significant associations were observed even when the CRC
subgroup was very small, e.g., rs11060839 with G3 (N = 42) or rs10935945 with T4 (N = 56)
and N2 (N = 78).

The minor allele (MA) of two SNPs was associated with an increased risk of CRC
development, while that of the remaining three SNPs showed a protective effect (Table 2).
The effect size of all five susceptibility loci was relatively moderate (OR ≥ 1.45 or ≤ 0.77),
which is consistent with the estimated statistical power of our GWAS. Assuming an allele
frequency of 0.3 to 0.5, a power ranging from 88% to 90% is needed to detect an effect size
of OR = 1.5 (Table S1). The strongest effect was observed for rs17575184, located in the
intron sequence of the NEGR1 gene (OR = 0.57, 95% CI 0.42-0.76, padj = 3.54 × 10−4).
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Table 2. The allelic and genotypic association of GWAS-selected, single-nucleotide polymorphisms (SNPs) with colorectal cancer.

Allele Frequency (%) Genotype Frequency (%)

dbSNP ID a Region MA MAF b Control CRC OR (95% CI) padj-Value Genotype Control CRC OR (95% CI) padj-Value

rs17575184
1p31.1
NEGR1
intron

A 0.088 232 (10.8) 60 (6.5) 0.57 (0.42–0.76) 3.54 × 10−4
AA
AG
GG

11 (1.0)
210 (19.6)
852 (79.4)

1 (0.2)
58 (12.5)

406 (87.3)

0.22 (0.01–1.12)
0.58 (0.42–0.79)

-
7.91 × 10−4

rs10935945
3q25.2

LINC02006
intron

T 0.399 906 (42.2) 478 (51.5) 1.46 (1.25–1.70) 1.26 × 10−5
TT
TC
CC

195 (18.2)
516 (48.0)
363 (33.8)

117 (25.2)
244 (52.6)
103 (22.2)

2.11 (1.54–2.90)
1.66 (1.28–2.18)

-
1.29 × 10−5

rs10838094
11p15.4
OR51B5
intron

A 0.378 445 (41.4) 422 (45.5) 1.18 (0.99–1.41) 8.03 × 10−2
AA
AG
GG

97 (18.1)
251 (46.7)
189 (35.2)

92 (19.8)
238 (51.3)
134 (28.9)

1.34 (0.93–1.92)
1.34 (1.01–1.78)

-
8.12 × 10−2

rs12424924
12p12.1

PYROXD1
intron

A 0.194 223 (20.5) 165 (17.9) 0.85 (0.68–1.06) 0.147
AA
AG
GG

25 (4.6)
173 (31.8)
346 (63.6)

16 (3.5)
133 (28.9)
311 (67.6)

0.71 (0.37–1.36)
0.86 (0.65–1.12)

-
0.152

rs11060839
12q24.33
PIWIL1
intron

A 0.169 332 (15.6) 194 (21.1) 1.45 (1.19–1.76) 3.92 × 10−4
AA
AG
GG

27 (2.5)
278 (26.1)
760 (71.4)

21 (4.6)
152 (33.0)
287 (62.4)

2.06 (1.13–3.71)
1.45 (1.14–1.84)

-
5.70 × 10−4

rs9927668
16p13.2

intergenic
-

C 0.290 840 (39.1) 285 (30.9) 0.70 (0.59–0.82) 5.04 × 10−5
CC
CT
TT

179 (16.7)
482 (44.9)
412 (38.4)

46 (10.0)
193 (41.9)
222 (48.2)

0.48 (0.33–0.68)
0.74 (0.59–0.94)

-
8.25 × 10−5

rs12935896
17q23.2
BCAS3
intron

C 0.400 545 (25.4) 194 (20.9) 0.77 (0.64–0.93) 8.85 × 10−3
CC
CT
TT

68 (6.4)
409 (38.2)
594 (55.5)

21 (4.5)
152 (32.7)
292 (62.8)

0.63 (0.37–1.03)
0.76 (0.60–0.95)

-
8.87 × 10−3

Allelic frequencies of all studied SNPs were in Hardy–Weinberg equilibrium. Bold denotes significant association after Benjamini–Hochberg algorithm adjustment (padj < 0.05). CRC, colorectal cancer; MA, minor
allele; MAF, MA frequency; OR, odds ratio; CI, confidence interval. a/ SNP identifier based on NCBI SNP database (http://www.ncbi.nlm.nih.gov/snp/; accessed on 20 November 2020). b/ MAF based on NCBI
SNP database (http://www.ncbi.nlm.nih.gov/snp/; accessed on 20 November 2020).

http://www.ncbi.nlm.nih.gov/snp/
http://www.ncbi.nlm.nih.gov/snp/


Biology 2021, 10, 465 7 of 14

3.2. Risk Prediction Modeling

To evaluate the contribution of individual SNPs to the risk of developing CRC, a
stepwise forward logistic regression was performed with AIC minimization as a selection
criterion. SNPs significant in the stepwise logistic regression were ranked according
to their AIC value and sequentially introduced into the prediction model. Out of the
seven SNPs selected for verification, only rs12424924 was excluded from further modeling
(p > 0.05). According to the AIC estimates, the optimal model included six SNPs: rs9927668,
rs10935945, rs17575184, rs12935896, rs11060839, and rs10838094 (Table 3). SNP rs9927668
emerged as the model with the lowest AIC value of all single-SNP models, and the addition
of rs10935945 resulted in the largest AIC decrease. Both of these SNPs account for more
than half of the risk of CRC development explained by the final model involving six
SNPs. The sequential introduction of rs17575184, rs12935896, and rs11060839 moderately
improved the parameters of the resulting models, while the inclusion of rs10838094 only
marginally lowered the AIC. In total, the six SNPs included in the model were found to
explain 10% of the overall risk of CRC development, as assessed using the Nagelkerke
pseudo-R2 statistic (Table 3). However, the overall accuracy expressed by an AUC value of
0.66 suggests the rather low predictability of the final model.

Table 3. The results of the stepwise selection for the logistic regression model.

dbSNP ID a AIC b AIC Change (%) R2 c R2 Change
(%)

rs9927668 1309.45 0.028
rs10935945 1294.45 15.0 (1.15) 0.054 0.026 (92)
rs17575184 1285.31 9.14 (0.74) 0.071 0.017 (33)
rs12935896 1279.74 5.57 (0.43) 0.084 0.013 (18)
rs11060839 1274.75 4.99 (0.39) 0.095 0.012 (14)
rs10838094 1274.26 0.49 (0.04) 0.101 0.006 (6)

Six significant SNPs (p < 0.05) ranked by Akaike information criterion (AIC) values were sequentially implemented
into the model, starting with SNP rs9927668 with the lowest AIC value. All six SNPs were included in the final
prediction model. a/ SNP identifier based on NCBI SNP database (http://www.ncbi.nlm.nih.gov/SNP/; accessed
on 20 November 2020). b/ AIC value calculated after sequential implementation of the ranked SNPs. c/ Nagelkerke
pseudo-R2 value calculated after sequential implementation of the ranked SNPs.

3.3. eQTL Bioinformatic Analysis

A search of the HaploReg database [22,34] revealed that four of the five SNPs signifi-
cantly associated with CRC risk potentially changed TF binding motifs, which may impli-
cate the regulatory effect of a variant (Figure 1). Among others, the predicted binding motifs
of D-box binding PAR BZIP transcription factor (DBP) and CCAAT/enhancer-binding
protein gamma (CEBPG) TFs overlap with the position of rs10935945 and rs12935896
polymorphisms, respectively.

3.4. Survival Probability

The expression levels of PIWIL1, NEGR1, and BCAS3 did not significantly affect the
probability of survival when analyzed in the full cohort of CRC patients and controls
(p > 0.05; Figure S3). However, after stratification by gender, high relative PIWIL1 expres-
sion at diagnosis was associated with a significantly lower survival probability in the male
cohort (p = 0.02, 46% vs. 77% 5-year survival probability; Figure S3B), while low expression
of NEGR1 was correlated with a significantly lower 5-year survival probability among
women (p = 0.049, 54% vs. 65%; Figure S3D).

http://www.ncbi.nlm.nih.gov/SNP/
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haploreg/haploreg.php) [22]. Position weight matrix motifs in biological sequences [34]. Allele variants are indicated in
bold. Ref, reference sequence; Alt, alternative sequence.

4. Discussion

An important issue in GWAS is the large number of false positive results, to some
extent due to the structure of the studied population, but also due to certain methodological
assumptions. Defining an appropriate p-value threshold for statistical significance appears
to be critical [35,36]. Our previous study revealed that most associations selected solely
on the basis of the arbitrarily established genome-wide significance level (p < 5 × 10−8)
turned out to be false positives, whereas the inclusion of biological context in the SNP
selection method (by taking into account the strong allele linkage disequilibrium (LG))
significantly reduced the number of false positives [18]. This approach also increases the
chance of finding new associations in small-sized studies and GWAS based on pooled
DNA samples when the ability to reach the standard genome-wide significance level is
limited [17,19]. The adoption of this method of selecting the index SNP for verification in
combination with pooled DNA sample-based GWAS enabled the detection of five new
genetic variants associated with CRC development in the Polish population. None of these
SNPs have previously been reported to be associated with CRC. It cannot be determined
whether the finding of new susceptibility loci resulted from the adopted methodological
approach or because these variants are more specific to our population. It should be noted,
however, that in the group of our study subjects, both clearly higher and lower frequencies
of the MA of the identified variants were observed compared to those reported in the NCBI
SNP database (Table 2), e.g., SNPs rs9927668 (0.391 vs. 0.290) and rs12935896 (0.252 vs.
0.400), respectively.

The strongest effect on CRC susceptibility was observed for SNP rs17575184, located
within an intron of the neuronal growth regulator 1 (NEGR1) gene (OR = 0.57; Table 2).
Previous GWASs have indicated an association of the rs17575184 polymorphism with
asthma in children (p = 4 × 10−3) [37], whereas other SNPs in NEGR1 were implicated
in body weight regulation [38,39] and dyslexia [40]. NEGR1 is an extracellular adhesion
protein that binds to cell membrane rafts, especially in the cell junction area, where it
promotes cell-to-cell attachment and aggregation [41]. Given that adhesion properties are
crucial in tumor cell migration and invasion during metastasis, NEGR1 may play a role in

https://pubs.broadinstitute.org/mammals/haploreg/haploreg.php
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malignant transformation by regulating intercellular and cell-to-matrix interactions [42].
Accordingly, NEGR1 was identified as a commonly downregulated gene in various types
of human cancers, including CRC, suggesting its contribution to tumor suppression [41],
while NEGR1 overexpression reduced the tumorigenic properties of ovarian cancer cell line
SKOV-3 cells [41]. When analyzed in the TCGA female CRC patients cohort, low expression
of NEGR1 was associated with the shorter 5-year survival rate (Figure S3D). NEGR1 may
play a role in regulating neurite outgrowth and neuronal arborization via direct interaction
with receptor tyrosine kinase fibroblast growth factor receptor 2 (FGFR2) [43,44]. FGFR2
silencing inhibited cell migration and invasion [45], and its overexpression negatively
correlated with overall CRC patient survival [46]. Therefore, NEGR1 may be functionally
related to CRC, although the variant identified by GWAS is unlikely to be directly causal.

Similar to NEGR1, the breast-carcinoma-amplified sequence 3 (BCAS3) gene encoded a
protein involved in cell adhesion and migration processes. The rs12935896, located in the in-
tron sequence of BCAS3, was also associated with decreased CRC susceptibility (OR = 0.77;
Table 2). BCAS3 polymorphisms were previously associated via GWAS with gout [47], traits
of kidney disease [48], and coronary artery disease [49]. Its misexpression was found in
various types of cancer [50,51], and was implicated in tumor progression to a higher grade
of malignancy [52]. BCAS3 is a cytoskeletal WD repeat domain-containing protein essential
for angiogenesis, both during the developmental process and in tumor metastasis [51,53].
By activating and recruiting cell division cycle 42 (CDC42) Rho-GTPase [54] and facilitating
crosstalk between cytoskeleton elements, BCAS3 regulates cell polarity and focal adhesion
assembly [55].

SNP rs11060839 located in the intronic sequence of PIWI-like, RNA-mediated gene
silencing 1 (PIWIL1) was associated with an increased risk of developing CRC (OR = 1.45;
Table 2). PIWIL1 is a member of the PIWI-like family of Argonaute proteins, commonly
associated with stem cell differentiation and self-renewal, RNA silencing, and the regulation
of gene expression, whose activity is mediated by interactions with a specific class of small
non-coding RNAs, referred to as PIWI-interacting RNAs (piRNAs) [56,57]. Both PIWIL1
and piRNAs are overexpressed in CRC [58], and an upward trend was observed in PIWIL1
expression levels during the colon adenoma–carcinoma sequence [59].

In patients with CRC, PIWIL1 expression levels were closely related to the degree of
tumor differentiation, TNM stage, the occurrence of lymph node invasion, and distant
metastasis [59–61], suggesting that increased PIWIL1 expression may promote tumor inva-
sion. Moreover, patients with PIWIL1 overexpression exhibited worse overall survival and
disease-free survival, especially in the case of CRC at early stages or without lymph node
invasion, showing the potential prognostic value of the PIWIL1 expression status [61–63].
Accordingly, high expression levels of PIWIL1 were associated with significantly lower
5-year survival probability when analyzed in the TCGA male CRC cohort (Figure S3B).
Recently, a functional analysis of transcripts interacting with the PIWIL1–piRNA complex
in the CRC COLO 205 cell line suggested that this complex may be directly involved in the
activity regulation of key components of signal transduction cascades that are frequently
dysregulated in CRC progression, including tumor suppressors and genes involved in the
control of cell proliferation and differentiation, such as IGF1R, JUN, and ERBB3 [64].

The strongest association reported in the current study was observed for rs10935945
in the lncRNA coding gene LINC02006 at 3q25.2, which was associated with increased CRC
risk. Although incapable of encoding proteins, lncRNAs play critical roles in the regulation
of various cellular processes, such as cell growth, proliferation, apoptosis, and cancer
progression [65]. LncRNAs can regulate gene expression, mainly at the post-transcriptional
level, via various modes of direct action or as miRNA sponges or endogenous competitors,
thus reducing their regulatory effect on target mRNAs [66]. The aberrant expression of
lncRNAs, exemplified by lncRNA H19 and lncRNA 91H, an antisense gene of H19, has been
implicated in the tumorigenesis and metastasis of different types of cancer, including CRC,
where it is associated with a poor prognosis and a high risk of tumor metastasis [67,68].
Both LINC01354 and lncRNA CASC11 are upregulated in CRC and contribute to the pro-
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liferation, invasion, and metastasis of CRC via activation of the Wnt/β-catenin signaling
pathway [69,70]. Additionally, LINC01123 was upregulated in CRC tumors and cells, and
its expression positively correlated with the vascular endothelial growth factor A (VEGFA)
expression and the binding of miR-34c-5p, sponged by LINC01123 [71]. The silencing of
UNC5B-AS1, highly expressed in CRC tissues, repressed cancer growth and metastasis,
most likely by increasing miR-622 expression and suppression of the AMP-activated pro-
tein kinase (AMPK) and the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT)
signaling pathways [72]. On the other hand, overexpression of lncRNA TUSC7 reduces cell
migration and invasion in CRC by sponging miR-211 [73].

Several genetic variants located in lncRNA genes influence the risk of CRC develop-
ment; polymorphisms in lncRNA HOTTIP, rs145204276 and rs55829688 in lncRNA GAS5,
rs2839698 in lncRNA H19, rs2632159 in lncRNA PCAT1, rs2147578 in lnc-LAMC2-1:1, and
rs664589 in MALAT1 were associated with a significantly increased CRC risk [67], while
rs13252298 and rs1456315 in lncRNA PRNCR1 and rs1194338 in MALAT1 had protective
effects on CRC [67,74]. It has been suggested that the rs664589 G allele alters the binding of
MALAT1 to miR-194-5p, resulting in an increased expression of MALAT1 and enhanced
CRC development and metastasis [75], while the rs2147578 in lnc-LAMC2-1:1 affects the
sponging of miR-128-3p, which correlates with higher expression of the LAMC2 oncogene
in CRC [76]. The rs55829688 in the lncRNA GAS5 promoter region exerts its regulatory
effect by affecting the binding affinity of TF YY1 to the GAS5 promoter and downreg-
ulating GAS5 expression [77]. Additionally, the lncRNA PCAT1 rs2632159 may impact
the risk of CRC by modulating the binding of EBF, LUN-1, and TCF12 [78], which could
stimulate PCAT1 expression, thus increasing its oncogenic function. Similarly, an eQTL
bioinformatic analysis showed that the rs10935945 T variant of LINC02006 identified in this
study could influence binding with the TF DBP, a member of the PAR leucine zipper TF
family (Figure 1), possibly increasing the risk of CRC development.

Based on the above-mentioned functional relations to CRC, it can be speculated
that the gene variants identified in this study may be associated with metastatic and
invasive CRC. Accordingly, after stratification of the CRC patient cohort by different
disease parameters, all five identified variants were significantly associated with rather
advanced tumors (T3; Table S2). Moreover, when comparing the CRC subgroup with
the metastases to the control group, associations of three variants (rs11060839, rs9927668,
and rs12935896) were observed, although they did not remain significant after statistical
adjustment. However, it should be borne in mind that the lack of certain associations
could be due to the small size of the analyzed subgroups, and all these observations need
to be validated in a bigger, independent study. Our study included CRC patients with
relatively advanced neoplastic disease, as indicated by the clinical characteristics of the
patients (Table 1). Apart from the differences resulting from the use of technologically
different platforms, this may also be the reason why the associations of known GWAS
variants did not reach statistical significance. Moreover, the specific genetic architecture of
the Polish population may also be important, which is consistent with the results of the
recent replication study in the Basque population [79].

5. Conclusions

In this study, five new susceptibility variants associated with CRC development were
revealed by the pooled DNA sample GWAS in a Polish population. Among them, four
are intron variants of genes encoding proteins that are likely involved in the neoplastic
process, especially tumor invasiveness and metastasis, and therefore could possibly be
markers of poor prognosis in CRC patients. In total, discovered loci were found to account
for 10% of the variation in the risk of developing CRC. While the prediction accuracy of
the built model was rather low, the newly identified variants can significantly improve the
cumulative risk assessment of CRC based on common susceptibility variants.

In line with the growing body of data suggesting that SNPs in lncRNAs can influ-
ence CRC risk, the novel lncRNA variant LINC02006 was shown to express the strongest
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association with CRC development, possibly by affecting the DBP TK binding site and
deregulating downstream pathways. Further understanding of lncRNA functions in cancer
progression could improve CRC prediction and diagnosis.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/biology10060465/s1: Figure S1: A plot of the first two principal components for the relative
allele signal (RAS) values of all analyzed microarray samples. Figure S2: A quantile–quantile (Q–Q)
plot of the 2,561,761 t statistics from the whole-exome microarray analysis of 18 CRC and 28 control
pooled DNA samples. Figure S3: The Kaplan–Meier curves for the association of the expression
levels of identified genes with survival probability in colorectal cancer patients, according to the
Human Protein Atlas database. Table S1: The power of the study calculated for a given minor allele
frequency (first column) and odds ratio (second row). Table S2: The significant allelic association of
GWAS-selected SNPs with colorectal cancer parameters.
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