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Abstract Cocaine is an addictive drug that acts in brain reward areas. Recent evidence suggests

that cocaine stimulates synthesis of the endocannabinoid 2-arachidonoylglycerol (2-AG) in midbrain,

increasing dopamine neuron activity via disinhibition. Although a mechanism for cocaine-stimulated

2-AG synthesis is known, our understanding of 2-AG release is limited. In NG108 cells and mouse

midbrain tissue, we find that 2-AG is localized in non-synaptic extracellular vesicles (EVs) that are

secreted in the presence of cocaine via interaction with the chaperone protein sigma-1 receptor

(Sig-1R). The release of EVs occurs when cocaine causes dissociation of the Sig-1R from ADP-

ribosylation factor (ARF6), a G-protein regulating EV trafficking, leading to activation of myosin

light chain kinase (MLCK). Blockade of Sig-1R function, or inhibition of ARF6 or MLCK also

prevented cocaine-induced EV release and cocaine-stimulated 2-AG-modulation of inhibitory

synapses in DA neurons. Our results implicate the Sig-1R-ARF6 complex in control of EV release

and demonstrate that cocaine-mediated 2-AG release can occur via EVs.

DOI: https://doi.org/10.7554/eLife.47209.001

Introduction
The sigma-1 receptor (Sig-1R) is a small protein that resides at the endoplasmic reticulum (ER)-mito-

chondrion interface (mitochondrion-associated ER membrane; MAM) (Hayashi and Su, 2007;

Hayashi et al., 2009; Mori et al., 2013), where it constrains type-3 inositol 1,4,5-trisphosphate

receptors (IP3R3) to facilitate Ca2+ signaling from ER to mitochondria (Hayashi and Su, 2007;

Hayashi et al., 2009). In addition, the Sig-1R binds a wide range of molecules, including psychotro-

pic drugs and psychostimulants, such as cocaine and methamphetamine (Largent et al., 1987), and

can translocate to other cellular regions to associate with organelles, proteins, plasma membranes,

and the nuclear envelope to control trafficking of other molecules, such as ion channels and recep-

tors in neurons (Su et al., 2016; Yasui and Su, 2016). These diverse signaling roles for the Sig-1R

highlight a widespread influence on cellular function that is incompletely understood.
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Substantial data suggest that the Sig-1R is also a target of the abused psychostimulant cocaine

(Hayashi and Su, 2007; Sharkey et al., 1988; Hayashi and Su, 2003; Kourrich et al., 2013;

Tsai et al., 2015; Chen et al., 2007). In the mouse nucleus accumbens (NAc), cocaine decreases the

excitability of GABAergic medium spiny neurons by strengthening an association between the Sig-

1R and Kv1.2 potassium channels, contributing to behavioral sensitization to the drug

(Kourrich et al., 2013). Moreover, the Sig-1R is also involved in cocaine reward (Romieu et al.,

2002). Given the diverse demonstrated roles for the Sig-1R in cellular signaling, its regulation by

cocaine has the potential to affect many unknown cellular properties.

Extracellular vesicles (EVs) are a diverse group of membranous entities of endosomal origin that

are secreted from a broad range of cell types (van Niel et al., 2018). The EV classification broadly

includes exosomes and microvesicles that range in size from 30 to 150 nm, and 100–1000 nm,

respectively. Exosomes are formed by invagination of the endosomal membrane to form multivesicu-

lar bodies that are released into the extracellular space via budding of the cellular membrane,

whereas microvesicles are formed by budding of plasma membrane (van Niel et al., 2018;

Radhakrishna et al., 1996; Huang-Doran et al., 2017). It is increasingly apparent that EV formation

occurs through highly regulated cellular processes (Abels and Breakefield, 2016), that permit their

participation in intercellular communication via delivery of cargos of RNAs, microRNAs, proteins,

and bioactive lipids such as prostaglandins (van Niel et al., 2018; Huang-Doran et al., 2017;

EL Andaloussi et al., 2013). This implicates EVs in a wide range of physiological and pathological

processes. EV motility can be controlled by signaling molecules such as the guanine-nucleotide bind-

ing protein, ADP-ribosylation factor 6 (ARF6) (Abels and Breakefield, 2016; Muralidharan-

Chari et al., 2009; D’Souza-Schorey and Chavrier, 2006). As a small GTPase, ARF6 exists in GTP-

or GDP-bound forms (ARF6-GTP or ARF6-GDP), and stimulation of ARF6 by neurotransmitters or

growth factors recruits guanine nucleotide exchange factors (GEFs) to convert ARF6-GDP to the

active ARF6-GTP (EL Andaloussi et al., 2013). Although ARF6 itself has GTPase activity, ARF6-GTP

requires GTPase-activating proteins (GAPs) to hydrolyze to its inactive ARF6-GDP form. ARF6-GTP

influences a wide variety of cellular events including endocytosis, actin cytoskeleton reorganization

eLife digest The cannabis plant contains hundreds of different chemicals, including more than

sixty types of cannabinoids. By binding to specific sites on brain cells, cannabinoids change how

cells communicate with one another. This in turn triggers widespread alterations in brain activity,

which can affect mood, appetite, coordination and perception.

But not all cannabinoids come from plants. The brain also produces its own versions, known as

endocannabinoids (or eCBs for short). These bind to the same sites on brain cells as the plant-

derived chemicals. Changes in endocannabinoid activity have been implicated in various brain

disorders. These include Alzheimer’s disease, epilepsy and stress disorders. They may also have a

role in drug addiction. Exposing rats to cocaine causes endocannabinoid levels to increase in areas

of the brain that process pleasurable sensations. This suggests that the release of endocannabinoids

may contribute to cocaine addiction. But how cocaine triggers this release has been unclear.

By studying brain tissues and cells kept alive in petri dishes, Nakamura, Dryanovski et al. show

that cocaine drives cells to release endocannabinoids via a process called extracellular vesicle

release. In essence, cocaine causes cells to make endocannabinoids that are then enclosed inside

membrane-bound packages. These packages – or extracellular vesicles – can then fuse with the

cell’s outer membrane. Multiple proteins must interact with each other for cells to assemble and

release extracellular vesicles. Nakamura, Dryanovski et al. show that disrupting these interactions

prevents vesicles from forming, and also prevents cocaine from triggering endocannabinoid release.

Blocking extracellular vesicle release prevents cocaine from altering communication between brain

cells.

Cocaine thus drives endocannabinoid release in the brain’s pleasure centers via the assembly of

extracellular vesicles. Using other drugs to manipulate the protein interactions that underlie vesicle

assembly could provide a new way to counter cocaine addiction.

DOI: https://doi.org/10.7554/eLife.47209.002
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and phosphoinositide metabolism in many types of cells. Importantly, ARF6-GTP is involved in EV

release from plasma membranes (Muralidharan-Chari et al., 2009; Than et al., 2017), and exosome

budding into multivesicular bodies (Ghossoub et al., 2014; Friand et al., 2015; Imjeti et al., 2017).

Thus, GEFs and GAPs regulate ARF6 activity to then modulate EV secretion (D’Souza-Schorey and

Chavrier, 2006). Also, since ARF6 is a GTPase, it is noteworthy that another GTPase, Rac-GTPase,

forms a complex with the Sig-1R (Natsvlishvili et al., 2015), suggesting the possibility that the Sig-

1R may interact with other molecules of this class. Collectively, these points of regulation position

EVs and ARF6 as important participants in diverse physiological and pathological processes

(van Niel et al., 2018).

Endocannabinoids (eCB) are lipid signaling molecules that activate CB1 or CB2 cannabinoid

receptors. Of these, CB1Rs are expressed at high levels on neuronal axon terminals where they

inhibit fast neurotransmitter release (Misner and Sullivan, 1999; Hoffman and Lupica, 2000;

Katona et al., 1999). The eCBs are typically synthesized in postsynaptic structures, such as den-

drites, to then retrogradely activate CB1Rs on axon terminals (Wilson and Nicoll, 2001). Moreover,

eCBs are not released via canonical mechanisms of calcium-dependent synaptic vesicle exocytosis,

but rather through poorly understood processes. Recent evidence gathered using cell cultures sug-

gests that the eCB N-arachidonoylethanolamine (AEA, anandamide) is found in EVs, suggesting a

possible mechanism to release these messengers and permit retrograde eCB signaling

(Gabrielli et al., 2015a; Gabrielli et al., 2015b). Another eCB, 2-arachidonoylglycerol (2-AG), is

released from neurons in an activity-dependent fashion, or via neurotransmitter stimulation of phos-

pholipase-regulating G-protein coupled receptors (GPCRs) (Kano et al., 2009; Maejima et al.,

2005; Alger and Kim, 2011). Recent evidence shows that inhibition of catecholamine uptake by

cocaine leads to activation of GPCRs that stimulate 2-AG synthesis in the rodent ventral tegmental

area (VTA) (Wang et al., 2015). Moreover, as VTA GABAergic axons express CB1Rs, the cocaine-

stimulated increase in 2-AG inhibits GABA release via these receptors (Wang et al., 2015;

Riegel and Lupica, 2004), and this can be used as a sensitive measure of eCB function. Although

measurements like these are used to detect eCBs throughout the CNS, the mechanisms through

which these lipids cross the extracellular space to bind to presynaptic CB1Rs remain poorly

understood.

Given that cocaine stimulates 2-AG synthesis, can act as a Sig-1R agonist, and that the Sig-1R

interacts with Rac-GTPase, we hypothesize that it may also control other GTPases such as ARF6, a

known EV release modulator (Muralidharan-Chari et al., 2009; Ghossoub et al., 2014;

Natsvlishvili et al., 2015; Tsai et al., 2009), and this might regulate 2-AG release. Through conver-

gent experiments we demonstrate that Sig-1Rs can control EV release via interaction with ARF-6,

and that cocaine stimulates this process. Moreover, the cocaine-evoked 2-AG release required intact

Sig-1Rs, ARF-6, and cytoskeletal function, implicating EVs as a mechanism for 2-AG release in the

VTA.

Results

Cocaine activation of Sig-1Rs stimulates EV release from NG-108 cells
To investigate whether Sig-1Rs are involved in EV function, we first conducted studies in NG-108

cells to permit manipulation of signaling pathways. The integrin b1 (Ib1; CD29) protein mediates

transcellular interaction of EVs with target membranes, and is a useful marker of EVs isolated

through differential sequential sucrose-gradient centrifugation (van Niel et al., 2018; EL Andaloussi

et al., 2013; Muralidharan-Chari et al., 2009; Imjeti et al., 2017; Benmoussa et al., 2019;

Momen-Heravi et al., 2013). We prepared membrane fractions enriched in EVs in effluent from NG-

108 cells and measured Ib1 using western blots. Cocaine (10 mM) caused a time- and concentration-

dependent increase in the accumulation of Ib1 in isolated fractions from these NG-108 cells

(Figure 1A and B), suggesting that cocaine increased EV release. Because our previous studies show

that cocaine interacts with Sig-1Rs, we next investigated their involvement in cocaine-stimulated EV

release. We found that the Sig-1R agonists PRE-084, or fluvoxamine, both increased the Ib1-marker

of EV release from NG-108 cells in the absence of cocaine (Figure 1B), and that pretreatment with

either of the Sig-1R antagonists, BD1063 (Figure 1C) or NE100 (Figure 1D), prevented the effect of

cocaine. We also found that the knock-down of Sig-1Rs with siRNA alone significantly increased Ib1
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Figure 1. Cocaine stimulates EV release via Sig-1R and ARF6 signaling in NG108 Cells. (A) Effect of cocaine (10 mM) on integrin b1 (Ib1) concentration in

EV-rich fractions of NG-108 cells at several time points. Western blots also show relative amounts of Ib1 in cell lysates (CL), and a-tubulin protein (a-

tub.) as a control. Bar graph showing the relative change in Ib1 at 30 and 60 min after cocaine treatment (mean ± S.E.M, F2,9 = 5.7, p=0.026, one-way

ANOVA, *=p < 0.05 compared to control, Dunnett’s multiple comparison test). The number of replications of the experiment at left is shown in

parentheses for each group in the bar graph. (B) Concentration-dependent effect of cocaine, and effects of the Sig-1R agonists, PRE084 (PRE, 1 mM),

and Fluvoxamine (Flv, 10 mM) on Ib1 concentration in the NG-108 cell culture media, 30 min after treatments (n = 1). (C–D) Sig-1R antagonists prevent

cocaine-induced EV release in NG-108 cells. BD1063 (BD, 1 mM) or NE100 (NE, 1 mM) were applied to NG-108 cell cultures 10 min before cocaine

treatment (C: means ± S.E.M, F3,15 = 6.2, p=0.006, one-way ANOVA, *=p < 0.05, **=p < 0.01, Dunnett’s multiple comparison test; D: means ± S.E.M,

F3,12 = 10.4, p=0.001, one-way ANOVA, *=p < 0.05, **=p < 0.01, ***=p < 0.001, Dunnett’s multiple comparison test). (E) Inhibition of ARF-6 activation

by the GEF inhibitor, SH3 (10 mM) blocks the increase in EV release caused by cocaine in NG-108 cells. Cocaine (10 mM) was applied for 30 min,

beginning 10 min after SH3 application (n = 4; means ± S.E.M, F3,14 = 6.5, p=0.005, one-way ANOVA, *=p < 0.05, **=p < 0.01, Dunnett’s multiple

comparison test). (F) Immunoprecipitation of the Sig-1R/ARF6 complex. Halo-Sig-1R was co-transfected with either cyan-fluorescent protein (CFP) and

ARF6 (WT)-CFP into NG108 cells (n = 1). (G) Sig-1R prefers ARF6 inactive form. Halo-Sig-1R was co-transfected with CFP, ARF6 (Q67L: mimicking ARF6-

GTP)-CFP, or ARF6 (T27N: mimicking ARF6-GDP)-CFP into NG108 cells and co-immunoprecipitation studies performed (n = 1). The number of

replications of each experiment is shown in parentheses for each group in the bar graphs. See Source data 1 for values used in statistical analyses.

Figure 1—figure supplement 1 shows that Sig-1R knockdown alters cocaine effects on EV release as well as the identification of the ARF6 binding site

in NG108 cells.

DOI: https://doi.org/10.7554/eLife.47209.003

The following figure supplement is available for figure 1:

Figure supplement 1. Sig-1R knockdown alters cocaine effects on EV release and identification of the ARF6 binding site in NG108 cells.

DOI: https://doi.org/10.7554/eLife.47209.004
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and abolished the stimulatory effect of cocaine (Figure 1—figure supplement 1A), and that overex-

pression of Halo-tagged Sig-1Rs decreased EV release from NG-108 cells, but also blocked the

effect of cocaine (Figure 1—figure supplement 1B). These data support a mechanism in which Sig-

1Rs tonically inhibit EV release, and this inhibition is relieved in the presence of cocaine. Having

established that Sig-1Rs are involved in the stimulatory effect of cocaine on EV release in NG-108

cells, we next investigated the role of additional other signaling molecules known to also regulate

EV secretion (van Niel et al., 2018; Muralidharan-Chari et al., 2009; Imjeti et al., 2017).

Cytohesins are a family of GEFs that activate ARFs by catalyzing a shift from GDP- to GTP-bound

forms (D’Souza-Schorey and Chavrier, 2006; Frank et al., 1998; Hafner et al., 2006), and this can

trigger EV release from LOX cells (D’Souza-Schorey and Chavrier, 2006; Than et al., 2017). To

determine whether ARF6 is similarly involved in cocaine-induced release of EVs in NG108 cells, we

used the GEF inhibitor secinH3 (SH3, 10 mM) (Hafner et al., 2006) and found that it prevented the

cocaine-stimulated increase in Ib1 levels in the EV fractions (Figure 1E). To next determine the

nature of the association between ARF6 and Sig-1R proteins in NG-108 cells, we overexpressed

ARF6 mutants that mimic either the active, GTP-bound (Q67L), or the inactive GDP-bound (T27N)

forms of this protein, and performed co-immunoprecipitation experiments with a Halo-tagged Sig-

1R (Halo-Sig-1R) (Radhakrishna et al., 1996; Muralidharan-Chari et al., 2009). We found that the

Halo-Sig-1R co-immunoprecipitated much more strongly with the GDP-bound form of ARF6 (ARF6-

T27N), compared to either wild-type ARF6, or the GTP-bound form (ARF6-Q67L) (Figure 1F,

Figure 1G). This suggests that the Sig-1R more strongly binds the inactive GDP-ARF6, rather than

the active GTP-ARF6.

As previous studies show that the Sig-1R C-terminus region contains a chaperone domain that

interacts with MAM proteins (Hayashi and Su, 2007; Su et al., 2016; Ortega-Roldan et al., 2013),

we also performed experiments with mutant Sig-1Rs to determine the regions of interaction with

ARF6-GDP (Figure 1—figure supplement 1C). NG-108 cells were transfected with plasmids

expressing Halo-tagged N- or C-termini on the full-length Sig-1R (Halo-Sig-1R and Sig-1R-Halo,

respectively), or on truncated forms of the Sig-1R (Sig-1R-1–60-Halo or Halo-Sig-1R-61–223) that

contained chaperone (Hayashi and Su, 2007), or ligand binding motifs (Chen et al., 2007;

Pal et al., 2008), respectively. We then examined whether the Halo-tagged receptors co-immuno-

precipitated with either the active or the inactive ARF6 mutants described above. The inactive form

of ARF6 (ARF6-T27N) co-precipitated with Sig-1R-61–223-Halo, but not with Sig-1R-1–60-Halo (Fig-

ure 1—figure supplement 1C), suggesting that the C-terminus, chaperone region of the Sig-1R

interacts with GDP-bound ARF6. Interestingly, co-immunoprecipitation also revealed that ARF6-

T27N interacted with the Halo-Sig-1R, but not the Sig-1R-Halo (Figure 1—figure supplement 1C),

suggesting that the C-terminus tag interferes with the interaction between Sig-1R and ARF6.

Taken together, our data in NG-108 cells support a model in which the chaperone region of the

Sig-1R binds to the inactive form of ARF6 (GDP-ARF6) to tonically inhibit EV release. Therefore, we

next examined the co-localization of ARF6 and Sig-1Rs and their ability to regulate EV release in the

mouse midbrain to determine the functional relevance of this interaction.

Sig-1Rs mediate effects of cocaine on EV release in mouse midbrain
Mice received single injections of cocaine (15 mg/kg, i.p.), followed by removal and processing of

the midbrain for EV content (Figure 2—figure supplement 1). In agreement with previous reports

(Perez-Gonzalez et al., 2012; Polanco et al., 2016), a membrane fraction 3 (fr3), obtained by

sequential sucrose-gradient centrifugation, was isolated and found to be enriched with several

markers of EVs, such as Ib1, alix, and flotillin-1 (Figure 2A). Moreover, high concentrations of ARF6

and tyrosine hydroxylase (TH) were found in the EV enriched fr3 (Figure 2A). However, because of

the stringency of the EV isolation procedure, only a small amount of material could be obtained for

analysis from these fractions. Therefore, in several experiments, we also utilized a total EV mem-

brane fraction preparation (tEV) that was not subjected to a stepwise sucrose gradient, but neverthe-

less contained the same EV markers as fr3 (Figure 2—figure supplement 1). The mean size of the

midbrain tEVs was 154 ± 1.41 nm (Figure 2C), and midbrain tEVs contained higher levels of Ib1,

ARF6, and TH, compared to tEVs isolated from cortex and hippocampus (Figure 2B).

The topology of TH, Ib1, and ARF6 in midbrain tEV preparations was next examined using the

broad-spectrum serine protease, proteinase-K (PK) (Wang et al., 2017; de Jong et al., 2016). In

tEVs not treated with Triton X detergent, PK decreased only Ib1 (Figure 2D), which is consistent

Nakamura et al. eLife 2019;8:e47209. DOI: https://doi.org/10.7554/eLife.47209 5 of 33

Research article Cell Biology Neuroscience

https://doi.org/10.7554/eLife.47209


Figure 2. Effect of cocaine on EV secretion in mouse midbrain. (A) Representative western blots of different sucrose fractions (F1–F6) of EVs isolated

from mouse midbrain, showing the markers tyrosine hydroxylase (TH), Ib1 (Inte. b1), ARF6, Alix, and Flotillin-1. The mitochondrial marker (cytochrome-c:

Cyto.-c) was also used as a control, and is western blots from total brain lysates (BL) are also shown (2–3 replicates). (B) Representative western blots

from tEVs obtained from midbrain (M), cortex (C), and hippocampus (H) (two replicates). (C) The size distribution of tEVs in mouse midbrain, as

measured by NanoSight particle tracking (n = 3 replicates). (D) Proteinase K (PK) treatment of EV preparations from mouse midbrain, with, and without

Triton-X (TX) included (two replicates). (E) Effect of cocaine (15 mg/kg, i.p.) on EV markers in preparations from WT mouse midbrain at several 30- and

60 min time points. Bar graphs of the experiments described in E (mean ± S.E.M; TH: F2,12 = 7.3, p=0.0084, one-way ANOVA, *=p < 0.05 compared

with naive, Dunnett’s multiple comparison test; Ib1: F2,9 = 15.2, p=0.001, one-way ANOVA, **=p < 0.01 compared with naive, Dunnett’s multiple

comparison test; ARF6: F2,9 = 2.5, p=0.14, one-way ANOVA). (F) Effect of the Sig-1R antagonist (BD1063: BD, 10 mg/kg, s.c.) on cocaine-evoked tEV

release in WT mouse midbrain, 30 min after the in vivo cocaine injection. The Bar graphs shows mean effects from these experiments (mean ± S.E.M,

TH: F3,12 = 14.2, p=0.0003, one-way ANOVA, **=p < 0.01, ***=p < 0.001, Dunnett’s multiple comparison test; Ib1: F3,12 = 16.3, p=0.0002, one-way

ANOVA, **=p < 0.01, ***=p < 0.001, Dunnett’s multiple comparison test; ARF6: F3,12 = 1.5, p=0.26, n.s., not significant one-way ANOVA). (G) The effect

of cocaine on tEV release is absent in Sig-1R knock out mouse midbrain, 30 min after in vivo cocaine injection. The Bar graph shows the means from

Figure 2 continued on next page
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with its location on the plasma membrane (van Niel et al., 2018; EL Andaloussi et al., 2013; Mura-

lidharan-Chari et al., 2009; Imjeti et al., 2017). In contrast, all three proteins were degraded by PK

in tEV preparations treated with Triton X (Figure 2D), suggesting that, unlike Ib1, TH and ARF6 are

located within EVs, rather than on their membranes.

Because they were found in EV-rich preparations of midbrain, TH, Ib1, and ARF6 were used as

markers to evaluate the effect of cocaine on tEVs. Like NG-108 cells, cocaine (15 mg/kg) increased

Ib1 (and TH) levels in midbrain tissue within 30 min of an intraperitoneal (i.p.) injection (Figure 2E),

and this returned to control levels 60 min following cocaine treatment (Figure 2E). However, ARF6

levels were not significantly altered by cocaine (Figure 2E). As in NG-108 cells, the cocaine-stimula-

tion of tEV markers in midbrain was also prevented by the Sig-1R antagonist, BD1063 (Figure 2F).

Moreover, cocaine failed to increase any of the tEV markers (Figure 2G) in midbrain preparations

from mice lacking the Sig-1R gene (Sigmar1), suggesting that Sig-1Rs are essential for cocaine-

induced tEV release in mouse midbrain.

The Sig-1R associates with the inactive form of ARF6 in mouse midbrain
To determine cellular locations of the Sig-1R we used immunofluorescence confocal microscopy in

the mouse ventral midbrain. We found that Sig-1R (Mavlyutov et al., 2016) and TH fluorescence

signals were colocalized (Figure 3A), and as TH is a marker for DA neurons in the ventral midbrain,

the data suggest that Sig-1Rs are found in DA neurons. However, the Sig-1R signal was also found

associated with the vesicular GABA transporter (vGAT), a marker of GABA neurons in the mouse

ventral midbrain (Figure 3A). Therefore, the Sig-1R is likely expressed in both DA and GABA neu-

rons in the midbrain. Immunofluorescence confocal microscopy also revealed co-localization of Sig-

1R and ARF6 in TH-positive neurons in the mouse ventral midbrain (Figure 3C), and these proteins

co-immunoprecipitated in midbrain samples from wild-type, but not Sig-1R knockout mice

(Figure 3D). Also, the Sig-1R immunohistochemical signal was absent in Sig-1R knockout mice (Fig-

ure 3—figure supplement 1).

The subcellular distribution of ARF6 in the mouse midbrain was next compared with Sig-1Rs in a

fractionation assay allowing detection of the MAM (Figure 3B), where Sig-1Rs are abundant

(Hayashi and Su, 2007; Lewis et al., 2016). Both the Sig-1R and ARF6 were found in this MAM frac-

tion (Figure 3B), but another ARF GTPase, ARF-1, was not detected (Figure 3B). Together, our

results indicate that Sig-1Rs and ARF6 colocalize with GABA and DA neuron markers and are associ-

ated with the MAM in the mouse midbrain.

Involvement of Sig-1Rs, ARF6, and myosin light chain kinase in cocaine-
induced EV release
To determine whether, like in NG-108 cells, cocaine-stimulation of EV secretion occurred through

Sig-1R- and ARF6-dependent mechanisms, we manipulated signaling by these proteins, followed by

preparation of midbrain tEV fractions. We found that an injection of cocaine (15 mg/kg, i.p.) signifi-

cantly attenuated the co-immunoprecipitation of ARF6 and Sig1R in the mouse midbrain

(Figure 4A), and this was prevented by a preceding subcutaneous (s.c.) injection of the Sig-1R

antagonist, BD1063 (10 mg/kg) (Figure 4B). This suggests that the cocaine facilitates activation of

the Sig-1R, and this triggers Sig-1R dissociation from ARF6. Next, we determined whether in vivo

cocaine treatment altered the intracellular localization of ARF6, using the MAM fractionation assay.

We found that, unlike that observed in the P3 fraction where ARF6 levels remained unchanged, 10

min after cocaine injection the level of MAM-associated ARF6 was decreased (Figure 4C). Moreover,

Figure 2 continued

this experiment (n.s., not significant, unpaired t-test). The number of replications of each experiment is shown in parentheses for each group in the bar

graphs. Details All statistical comparisons. See Source data 1 for values used in statistical analyses. Figure 3—figure supplement 1 shows specificity

of the Sig-1R antibody. Figure 2—figure supplement 1 shows the protocol for isolation of EVs from mouse midbrain.

DOI: https://doi.org/10.7554/eLife.47209.005

The following figure supplement is available for figure 2:

Figure supplement 1. Brain EV Isolation Experimental Flow Chart.

DOI: https://doi.org/10.7554/eLife.47209.006
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Figure 3. The Sig-1R interacts with ARF6 at the MAM in mouse midbrain. (A) Confocal microscopy shows Sig-1R fluorescence immunostaining (Red) in

association with either TH (Blue)-, or vGAT (Green)-positive neurons in the wildtype mouse VTA. Scale bar = 50 mm. (B) The subcellular distribution of

proteins in wildtype mouse midbrain (P1: nuclear fraction; Mito: mitochondrial fraction; P3: microsomal fraction, containing plasma membrane and ER;

Cyt: cytosolic fraction; NucleoP: nucleoporin p62; Cyto-c: cytochrome-c; TH: tyrosine hydroxylase; HSP90: heat-shock protein 90). (C) Confocal

Figure 3 continued on next page
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Sig-1R levels were not significantly altered in either the P3 or the MAM fractions (Figure 4C). These

results suggest that the Sig-1R is activated by cocaine while associated with the MAM and this facili-

tates dissociation of the Sig-1R from ARF6. As ARF6-GTP modulation by the GEF inhibitor SH3

altered EV secretion in NG-108 cells (Figure 1E), we measured its effect (s.c., 10 mg/kg) on cocaine-

stimulated tEV secretion in mouse midbrain. Consistent with NG-108 cell data, SH3 significantly

inhibited the cocaine-induced increase of TH and Ib1 in mouse midbrain (Figure 4D). Existing data

also support the involvement of cytoskeletal myosin and actin in EV release and show that ARF6

exerts its effects on EV release through phosphorylation of myosin light-chain kinase

(MLCK) (van Niel et al., 2018; Muralidharan-Chari et al., 2009). Therefore, we examined MLCK

involvement in the cocaine-simulated EV release in midbrain tissue and found that the MLCK inhibi-

tor ML7 (2 mM) prevented the increase in EV release, as measured by Ib1, or TH in EV-rich fractions

(Figure 4D).

In consideration of these data, we propose the following model; 1) the Sig-1R forms a stable com-

plex with the inactive ARF6-GDP at the MAM, 2) cocaine, through interaction with the Sig-1R, causes

dissociation of the ARF6-GDP/Sig-1R complex, 3) free ARF6-GDP is then converted to the active

ARF6-GTP by GEFs, and 4) ARF6-GTP translocates to the plasma membrane where it stimulates EV

release into the extracellular space (Figure 4E) by activating MLCK, and permitting EV mobility.

Using this model of EV secretion, we next sought to determine its functional relevance to synaptic

modulation by eCBs in the mouse midbrain.

2-AG is found in EV-enriched midbrain fractions
A recent study found that microvesicle-enriched fractions from primary microglia cultures contained

the eCB anandamide (Gabrielli et al., 2015a), and work from our laboratory showed that cocaine

promotes the release of eCB 2-AG in the midbrain (Wang et al., 2015). However, the potential

involvement of EVs in 2-AG function has not been assessed. To determine whether 2-AG is found in

EV fractions from mouse midbrain, we used Fourier transform mass spectrometry (FTMS). We found

that the levels of 2-AG were higher in midbrain homogenates than in cerebral cortex, and were

approximately fivefold larger than those observed in tEV fractions from these brain regions

(Figure 5A). The concentration of 2-AG in midbrain tEV fractions (206.9 ± 70.2 pmol/mg, Figure 5A)

was also higher than that measured in the cerebral cortex (121.4 ± 16.1 pmol/mg, Figure 5A), sug-

gesting regional differences in concentrations of 2-AG. We also found that cocaine significantly

increased 2-AG levels in midbrain tissue (Figure 5B). However, when cocaine-stimulation of 2-AG

levels in tEV fraction were measured using FTMS in pooled samples of mouse midbrain, we observed

considerable variability in baseline saline-injected controls (n = 15 mice in three experiments;

Figure 5C), and in cocaine-stimulated levels of the eCB (n = 15 mice in three experiments). Thus,

although a clear trend toward increased 2-AG in these tEV fractions was observed, and cocaine sig-

nificantly increase midbrain tissue levels of 2-AG (Figure 5B), the effect of cocaine on 2-AG content

in the tEV fractions was not significant (t8 = 1.61, p=0.147, unpaired Student’s t-test; Figure 5C).

Recent studies show that fatty acid binding proteins can act as intracellular carriers for 2-AG

(Kaczocha et al., 2009), and one of these, fatty acid binding protein 5 (FABP5), was involved in

mediating extracellular 2-AG release in the mouse brain (Haj-Dahmane et al., 2018). To determine

whether this carrier of 2-AG could also be localized to midbrain EVs, we isolated EV fractions from

mouse midbrain and used western blots to measure FABP5 and other EV markers. These EV

Figure 3 continued

microscopic images showing co-localization of fluorescence immunostaining of the Sig-1R (Red) and ARF6 (Blue) in TH (Green)-positive neurons in the

wildtype mouse VTA (scale bar = 20 mm). (D) Immunoprecipitation (IP) of the Sig-1R/ARF6 complex. Brain lysates were prepared from wildtype or Sig-1R

KO mouse midbrain, immunoprecipitated with anti-ARF6 antibody, and then probed with anti-Sig1R, ARF6, and GAPDH antibody. (E) Schematic

drawing of the interaction between Sig1R and ARF6 in mouse midbrain. Each experiment was replicated twice. Figure 3—figure supplement 1 shows

the absence of Sig-1R immunofluorescence in the Sig-1R knockout mouse brain. Also see Figure 8—figure supplement 1 for proposed interaction

between the Sig-1R and ARF6.

DOI: https://doi.org/10.7554/eLife.47209.007

The following figure supplement is available for figure 3:

Figure supplement 1. Absence of Sig-1R immunofluorescence in Sig-1R knockout mouse brain.

DOI: https://doi.org/10.7554/eLife.47209.008
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fractions contained FABP5 as well as the EV markers TH, Ib1, and flotillin-1 (Figure 5D). This sug-

gests that the FABP5 protein is associated with EVs to perhaps mediate 2-AG signaling in the CNS.

Sig-1R antagonism prevents cocaine-stimulated synaptic 2-AG function
in VTA DA neurons
There is strong evidence that 2-AG is synthesized in rodent midbrain VTA neurons, where it can

modulate synaptic neurotransmitter release (Riegel and Lupica, 2004; Melis et al., 2004;

Parsons and Hurd, 2015; Labouèbe et al., 2013). Moreover, 2-AG function is increased during

heightened DA neuron activity (Riegel and Lupica, 2004; Melis et al., 2004), or when phospholi-

pases are activated by certain Gaq11-containing GPCRs, such as the a1-noradrenergic (a1R), or type-I

metabotropic glutamate receptors (mGluRIs) (Wang et al., 2015; Haj-Dahmane and Shen, 2014).

These data also show that cocaine’s ability to increase VTA 2-AG function occurs via its inhibition of

the norepinephrine transporter (NET), causing activation of a1Rs on VTA DA neurons and 2-AG syn-

thesis from membrane phospholipids (Wang et al., 2015). Based on this previous work, and our

data showing cocaine interactions with midbrain Sig-1Rs, ARF6 and EV release, we evaluated the

possibility that 2-AG function in the VTA occurs via EV- and Sig-1R-dependent mechanisms in mouse

midbrain DA neurons.

Local 2-AG function can be measured with high temporal fidelity through its activation of CB1Rs

leading to local inhibition of synaptic transmission (Alger, 2002). This functionally relevant endoge-

nous 2-AG reduces inhibitory postsynaptic currents (IPSCs) mediated by synaptic GABA release onto

GABAB receptors (GABABRs) located on DA neuron dendrites (Wang et al., 2015; Riegel and Lup-

ica, 2004). Similar to previous data from rat VTA DA neurons (Wang et al., 2015), we found that

cocaine (10 mM) inhibited IPSCs recorded in mouse DA neurons (Figure 5E and F). The IPSC inhibi-

tion by cocaine was prevented by the CB1R antagonist, AM251 (1 mM; Figure 5H-Figure 5—figure

supplement 1) and was absent in mice lacking the CB1R (Zimmer et al., 1999) (Figure 5E and F).

The inhibition of IPSCs by cocaine was also reduced by tetrahydrolipostatin (THL, 2 mM), an inhibitor

of the enzyme diacylglycerol lipase-a (DGLa), preventing conversion of diacylglycerol (DAG) to 2-AG

(Figure 5—figure supplement 1A1, Figure 5—figure supplement 1B). Cocaine-mediated 2-AG

release was also absent in mutant mice lacking expression of DGLa in DA neurons (Shonesy et al.,

2014) (Daglaflox/flox x DATCre mice; Figure 5G and H). These experiments confirm that inhibition of

GABA release onto DA neurons by cocaine occurs via stimulation of 2-AG function in the mouse

VTA.

We next examined Sig1-R involvement in cocaine-dependent 2-AG release in mouse VTA DA

neurons. Each of two Sig-1R antagonists (BD1063 or NE100; 2 mM) significantly reduced the cocaine

(10 mM) simulation of 2-AG release in VTA DA neurons (Figure 6A–C and E). This effect of cocaine

was also significantly reduced in DA neurons from Sig-1R knockout mice, particularly 5–10 min after

beginning cocaine application (Figure 6D and E). Importantly, the inhibition of IPSCs by the syn-

thetic CB1R agonist, WIN55,212–2 (1 mM), was not reduced by Sig-1R antagonism, or by genetic

Figure 4. Cocaine causes translocation of ARF6 via its dissociation from the Sig-1R in mouse midbrain. (A) Western blots showing that cocaine reduces

the interaction between ARF6 and the Sig-1R in a time-dependent manner in mouse midbrain. The graph shows mean (± s.e.m.) of co-IP of ARF6 and

Sig-1R, before, and 10, 20 and 30 min after in vivo cocaine injection (n = 4; (F3,12 = 4.3, p=0.028, one-way ANOVA, *=p < 0.05 compared with naive,

Dunnett’s multiple comparison test). *p<0.05, **p<0.01; one-way ANOVA followed by Dunnett post-hoc test). (B) Effect of the Sig-1R antagonist

BD1063 (BD, 10 mg/kg, s.c.) on the dissociation of the ARF6-Sig-1R complex in mouse midbrain, 10 min after i.p. cocaine injection. BD1063 was injected

20 min before cocaine. The bar graph represent mean ± s.e.m. (n = 7; F3,23 = 5.3, p=0.006, one-way ANOVA, *=p < 0.05, **=p < 0.01, Dunnett’s

multiple comparison test (C) Western blots showing the effect of cocaine versus saline injection on ARF6 concentration associated with the MAM, or P3

in mouse midbrain at 10 min post-i.p. injection. Bar graphs show mean (± S.E.M., n = 3) expression of ARF6 or Sig-1R as a proportion of GAPDH

protein in MAM or P3 preparations, for all conditions, expressed as the percent response observed following saline injection (*=p < 0.001, unpaired

t-test). (D) Western blots showing the effect of the ARF6 GEF inhibitor (SecinH3: SH3, 10 mmol/kg, s.c.) or the MLCK inhibitor, ML7 (2 mM, s.c.) on

cocaine-evoked EV marker release in mouse midbrain, 30 min after i.p. cocaine or saline injection. SH3, ML7, or vehicle was injected 20 min prior to

cocaine or saline injection. ERK1 is used as a control protein. The bar graphs represent the mean (± S.E.M) concentration of TH or Ib1 expressed as a

percentage of the level seen following vehicle-saline control injections(n = 4–7, TH: F3,12 = 7.9, p=0.004, one-way ANOVA, *=p < 0.05, **=p < 0.01,

Dunnett’s multiple comparison test; Ib1: F3,12 = 7.0, p=0.006, one-way ANOVA, *=p < 0.05, **=p < 0.01, Dunnett’s multiple comparison test). (E)

Schematic illustrating of the effect of cocaine on the Sig1R-ARF6 interaction in mouse midbrain. See Source data 1 for values used in statistical

analyses. Also see Figure 8—figure supplement 1 for proposed interaction between the Sig-1R and ARF6 and cocaine.

DOI: https://doi.org/10.7554/eLife.47209.009
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Figure 5. Cocaine-stimulation of 2-AG accumulation in midbrain tEVs and brain slices. (A) Levels of 2-AG measured in midbrain and cortex tissue

homogenates and in tEVs from these same brain regions using Fourier transform mass spectrometry (FTMS; F3,8 = 86.92, p<0.0001; Tukey’s posthoc

test, ***=p < 0.05, †††=p < 0.05, tissue midbrain vs. cortex, n = 3). (B) Comparison of the concentration of 2-AG in midbrain homogenates from mice

injected with saline or cocaine 15 min prior to dissection (mean ± S.E.M.; *=p < 0.05, unpaired Student’s t-test, n = 3). (C) Levels of 2-AG measured

using FTMS in fr3 containing tEVs isolated from mouse midbrain 15 min after in vivo injection with saline or 10 mg/kg cocaine. Each point represents

data pooled from three mice (t8 = 1.61, p=0.147, unpaired Student’s t-test; n = 15 mice per group). (D) Western blots detecting fatty acid binding

protein-5 (FABP5), TH, Ib1, Flot-1 and Cyto-C in either whole brain lysate (BL) or in the EV fraction (fr3) obtained via sequential centrifugation and

sucrose-gradient separation. Note that all EV marker proteins are detected in the BL preparation and that FABP5 is also found in this EV fraction. (E)

Cocaine stimulates 2-AG inhibition of GABA release onto VTA DA neurons in vitro. Cocaine application inhibits GABAB-receptor-mediated synaptic

Figure 5 continued on next page
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deletion of this receptor (Figure 6—figure supplement 1). This indicates that Sig-1Rs are linked to

cocaine-stimulated 2-AG function in the CNS, and that CB1R signaling is not diminished by altered

Sig-1R function or expression.

To examine whether Sig-1Rs are involved in facilitating 2-AG release derived from direct GPCR

activation, we determined whether a1R and mGluRI co-activation could stimulate 2-AG function in

mouse VTA, and whether this is altered in Sig-1R knockout mice. Consistent with our previous report

(Wang et al., 2015), co-application of the a1R agonist phenylephrine (PE, 100 mM) and the mGluRI

agonist, DHPG (1 mM) inhibited GABAB IPSCs in wildtype mouse VTA DA neurons, and this was

blocked by AM251 (Figure 7B and C). However, it is also important to note that the properties of

the IPSC inhibition produced by DHPG+PE differed from that seen with cocaine. Thus, the response

to DHPG+PE was much slower to reach maximum and lacked the early fast component observed

with cocaine (Figure 7—figure supplement 1) in wildtype mice. Therefore, in comparison, the effect

of DHPG+PE primarily consisted of the delayed slow component (Figure 7—figure supplement

1C). Also, in DA neurons from Sig-1R knockout mice, the slow response to DHPG+PE was signifi-

cantly smaller (Figure 7A–7C, Figure 7—figure supplement 1A), which contrasts with that seen

with cocaine where the early fast inhibition was absent, but the later inhibition was less affected in

Sig-1R knockout mice (Figure 6D, Figure 7—figure supplement 1B). These differences could indi-

cate reliance upon distinct signaling pathways that convergence upon Sig-1Rs to permit 2-AG

release via EVs.

To determine whether the effects of 2-AG derived from a non-GPCR source are also altered in

the Sig-1R knockout mouse, we measured tonic 2-AG release that is observed without GPCR activa-

tion (either indirectly by cocaine or directly by DHPG+PE) (Wang et al., 2015). The tonic inhibition

of GABAB IPSCs mediated by this basal level of endogenous 2-AG is revealed when CB1Rs are

blocked by antagonists, resulting in an increase in these synaptic currents (Wang et al., 2015;

Riegel and Lupica, 2004). We found that DA neurons from both wildtype and Sig-1R knockout mice

exhibited similar significant IPSC increases when the CB1R antagonist AM251 was applied

(Figure 7A and B). Therefore, the data suggest that only 2-AG derived from GPCR stimulation is

dependent upon intact Sig-1R function, and additionally that 2-AG synthesis itself is not disrupted in

Sig-1R knockout mice.

Our NG-108 experiments indicated that Sig-1Rs stabilize the inactive GDP-bound form of ARF6,

and that cocaine activates GTP-bound ARF6 through an interaction with Sig-1Rs, thereby permitting

EV release. Moreover, our FTMS experiments identified 2-AG in midbrain tEV fractions (Figure 5A,

Figure 5C). Therefore, involvement of ARF6 in the 2-AG-dependent inhibition of GABA release by

cocaine was tested in wild-type mouse VTA DA neurons. Manipulation of ARF6 activation with the

GEF inhibitor, SH3 (Figure 8A and E), or, direct inhibition of ARF6 with NAV2729 (both at 10

mM) (Yoo et al., 2016), significantly inhibited cocaine-induced 2-AG function in midbrain DA neurons

(Figure 8B and E). Also, like that observed with Sig-1R antagonists or knockouts (Figure 6), the

reduction in the cocaine inhibition of IPSCs by both SH3 and NAV2729 was more prominent within

the first 10 min of cocaine application (Figure 8A, Figure 8B). As inhibition of MLCK significantly

reduced EV release in midbrain tissue experiments, we examined its involvement in the synaptic

effects of cocaine-simulated 2-AG function in DA neurons. We found that the MLCK inhibition by

Figure 5 continued

IPSCs in DA neurons from wildtype mice, but not in CB1R knockout (KO) mice. (F) Mean inhibition by cocaine of IPSCs in wildtype and CB1R-KO mice

(p=0.0004, unpaired t-test). (G) The inhibition of IPSCs by cocaine is absent in mice lacking the gene (Dagla) encoding the 2-AG synthetic enzyme, DGL-

a, in DA neurons. (H) Mean effects of cocaine on IPSCs in the presence and absence of the CB1R antagonist/inverse agonist (AM251, 4 mM) in wildtype

and DGL-a-KO mice. Note the reversal of the cocaine inhibition by AM251 in wildtype DA neurons, the absence of inhibition of IPSCs by cocaine, and

lack of effect of AM251 in the neurons from DGL-a-KO mice (F3, 40 = 8.3, p=0.0002, one-way ANOVA, p=0.009, Tukey’s multiple comparison post-hoc

test). Figure 5—figure supplement 1 shows that blockade of CB1Rs or 2-AG synthesis also prevents inhibition of IPSCs by cocaine. See Source data 1

for values used in statistical analyses.

DOI: https://doi.org/10.7554/eLife.47209.010

The following figure supplement is available for figure 5:

Figure supplement 1. Blockade of CB1Rs or 2-AG synthesis prevents inhibition of IPSCs by cocaine.

DOI: https://doi.org/10.7554/eLife.47209.011
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Figure 6. Inhibition of IPSCs by cocaine in VTA DA neurons depends upon Sig-1Rs. (A) Mean waveforms showing the effect of cocaine (10 mM) on

GABAB IPSCs in a DA neuron from a wildtype mouse during application of the Sig-1R antagonist NE100 (2 mM, left), or in a cell from a Sig-1R KO

mouse (right). (B) Mean time-course showing effect of cocaine on IPSCs in absence (Control) and presence of NE100 in wildtype mice. (C) Mean time-

course showing effect of cocaine on IPSCs in absence (Control) and presence of BD1063 (2 mM) in wildtype mice. (D) Time-course of cocaine effects in

Figure 6 continued on next page
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ML7 (2 mM) also significantly reduced the effect of cocaine on 2-AG release in this electrophysiologi-

cal assay of eCB function (Figure 8C and E).

Together these data demonstrate that EV release is controlled by the Sig-1R, ARF6, and MLCK,

and that cocaine’s interaction with the Sig-1R can recruit this signaling cascade. The data further

demonstrate that disruption of these signaling mechanisms leads to reduced synaptic 2-AG function

in the midbrain, thereby implicating these proteins and EVs in the release of eCBs.

Discussion
Previous studies show that a cocaine binds to Sig-1Rs (Sharkey et al., 1988; Chen et al., 2007;

Hiranita et al., 2011), and that blockade of this interaction reduces effects of the psychostimulant

(Romieu et al., 2002; Hiranita et al., 2011; Lever et al., 2014; Fritz et al., 2011). Additionally,

cocaine’s actions at Sig1-Rs alters its ability to influence voltage-gated potassium channel function,

and this can reduce its behavioral effects (Kourrich et al., 2013; Romieu et al., 2002; Lever et al.,

2014; Fritz et al., 2011). The present data demonstrate that the Sig-1R also regulates EV secretion

in cultured cells and in the mouse midbrain, and that cocaine modulates this process through inter-

action with the Sig-1R. We also show that the interactions among Sig1-Rs, cocaine, and EVs can reg-

ulate synaptic transmission in the brain via the control of 2-AG release and its inhibition of

GABAergic input to DA neurons in the mouse VTA. Therefore, our study identifies novel mechanisms

for Sig-1R control of EV function and implicates EVs in eCB release in the CNS.

EVs are increasingly recognized as a highly regulated mechanism to permit exchange of signaling

molecules, such as lipids, nucleic acids, organelles, and proteins, among cells (van Niel et al., 2018).

As such, regulatory control points for EV formation, budding, translocation, and cargo release have

been delineated in many cell types during normal cellular function, and in disease states (van Niel

et al., 2018; Huang-Doran et al., 2017; EL Andaloussi et al., 2013; Muralidharan-Chari et al.,

2009; Wang et al., 2017; Yoo et al., 2016). Here, we show that cocaine treatment of NG108 cells,

or of mouse midbrain after in vivo injection, stimulates EV release, and that this is mimicked by ago-

nists of Sig-1Rs, and prevented by antagonists or genetic elimination of these receptors. Moreover,

using co-immunoprecipitation assays, we provide evidence for an association between ARF6, an

established regulator of EV secretion (D’Souza-Schorey and Chavrier, 2006; Yoo et al., 2016), and

the Sig-1R in TH-positive VTA neurons, and find that blockade of ARF6 activation prevents cocaine-

induced EV release in both NG-108 cells and midbrain. We also report that in vivo cocaine causes

the ARF6/Sig1R complex to dissociate, and this is prevented by Sig-1R antagonism. These data sug-

gest that Sig-1Rs bind ARF6 proteins to hold them in an inactive GDP-bound form, and that cocaine

facilitates the dissociation of these proteins to permit conversion of ARF-GDP to the active ARF6-

GTP. Our data also suggest that this interaction between ARF6 and Sig-1Rs occurs at the MAM, and

that cocaine enables translocation of ARF6-GTP to the plasma membrane. This mechanism is notable

because ARF6 is implicated in EV secretion via regulation of cytoskeletal actin function in a wide

range of mammalian tissues (D’Souza-Schorey and Chavrier, 2006; Yoo et al., 2016), and this is

supported by our observation that inhibition of MLCK also prevents the cocaine-induced increase in

EV levels in mouse midbrain.

Previous work shows that anandamide is found in EV-containing membrane fractions of rodent

microglia cultures, and that these fractions exhibit cannabinoid agonist properties when applied to

hippocampal brain slices (Gabrielli et al., 2015a). Here, we show using FTMS that 2-AG is found in

acute mouse midbrain preparations that are enriched in tEVs, and that 2-AG levels are significantly

Figure 6 continued

wildtype and Sig-1R KO mice. (E) Summary of Data shown in A-D. The inhibition of IPSCs by cocaine was significantly reduced by NE100 or BD1063 in

wildtype mice and was significantly smaller in Sig-1R KO mice (F3,49 = 10.90, one-way ANOVA, p<0.0001; *=p < 0.0001, #=p = 0.0002, %=p = 0.005,

Dunnett’s multiple comparisons post-hoc test. Figure 6—figure supplement 1 shows that antagonism or knockout of the Sig-1R does not change

CB1R function in mouse VTA DA neurons. See Source data 1 for values used in statistical analyses.

DOI: https://doi.org/10.7554/eLife.47209.012

The following figure supplement is available for figure 6:

Figure supplement 1. Antagonism or knockout of the Sig-1R does not reduce CB1R function in mouse VTA DA neurons.

DOI: https://doi.org/10.7554/eLife.47209.013
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Figure 7. The Sig-1R is necessary for GPCR-induced but not tonic 2-AG release in the mouse VTA. (A) Mean GABAB IPSC waveforms collected during

baseline (control, black line) and during co-application of DHPG and PE (gray line), in DA neurons from wildtype (WT, left), and Sig-1R knockout (KO,

center) mice. Also shown is the effect of DHPG+PE in a representative neuron from a WT mouse following preincubation with AM251 (right). (B) Mean

time courses of the effects of DHPG+PE in DA neurons from WT, sig-1R KO mice, and WT mice that had been pre-treated with AM251. The effect of

DHPG+PE was significant (one-way repeated measures ANOVA, F1.5, 110 = 133, p<0.0001), and this was significantly reduced in the Sig-1R KO, and by

AM251 (Tukey’s post hoc test p<0.0001). (C) Bar graph of data from the last 5 min of application of DGPG+PE as shown in B. The inhibition of IPSCs by

DHPG+PE was significant (t9 = 4.5, *=p = 0.0014, and the this was significantly reduced in the Sig-1R KO and AM251 groups (F2,34 = 11.0, p=0.0002,

one-way ANOVA; ##=p < 0.0001; #=p = 0.0013, Dunnett’s posthoc test, the number of cells in each condition is indicated in parentheses). (D) Mean

time course showing tonic inhibition of GABAB IPSCs by endogenous 2-AG, as revealed by antagonist of CB1Rs with AM251 in neurons from wildtype

(WT) and Sig-1R KO mice (n = 15 and 11, respectively). (E) Bar graph of the change in IPSC amplitude during the last 5 min of AM251 application for

Figure 7 continued on next page
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increased in midbrain homogenates after in vivo exposure to cocaine. In contrast, although 2-AG

could be measured in tEV fractions using FTMS in mouse midbrain, and tEV markers were signifi-

cantly increased after in vivo cocaine treatment, the increase in 2-AG levels produced by cocaine in

the tEV preparation did not reach statistical significance despite a clear trend. As these preparations

are technically demanding and yield small amounts of material, it is possible that the between-

groups ex vivo design and variability among samples in both saline control and cocaine injected

mice contributed to this outcome. Alternatively, it is possible that cocaine causes an increase in 2-

AG-containing EV release, but that the amount of 2-AG per vesicle does not change, and this

increase in vesicle release could be sufficient to locally activate CB1Rs on GABAergic axon terminals.

The observation that cocaine increased midbrain levels of 2-AG provides biochemical support for

our finding of cocaine-increased 2-AG function in mouse (this study) and rat VTA DA neurons in vitro

(Wang et al., 2015). In this regard, we demonstrate that cocaine stimulates a 2-AG-dependent inhi-

bition of GABAB receptor-mediated synaptic responses that is absent in mice lacking the CB1R, or

the 2-AG biosynthetic enzyme, DGLa, in DA neurons. Based upon present data and our published

work (Wang et al., 2015), we propose that 2-AG synthesis is stimulated when cocaine blocks norepi-

nephrine uptake in the VTA, resulting in activation of G-protein-aq-coupled a1Rs, which, together

with Gq-coupled mGluRIs stimulated by endogenous glutamate, activate phospholipases and liber-

ate 2-AG from precursor membrane lipids (Figure 8—figure supplement 1) (Kano et al., 2009;

Maejima et al., 2005; Alger and Kim, 2011; Wang et al., 2015; Haj-Dahmane and Shen, 2014;

Mátyás et al., 2008). Although this model of 2-AG synthesis is supported by our studies, the mecha-

nism of 2-AG is release is unknown. Here, using this 2-AG-sensitive synaptic response, we find that

the same manipulations that blocked EV release in NG-108 cells and midbrain EV assays also

reduced or eliminated cocaine-stimulated 2-AG effects on synaptic transmission in the mouse VTA.

These manipulations include the disruption of Sig-1R signaling, the inhibition of ARF6 function, and

the inhibition of MLCK. Moreover, we also found that the IPSC inhibition produced by a synthetic

CB1R agonist was not altered by antagonism or genetic deletion of Sig-1Rs, suggesting that Sig-1Rs

regulate 2-AG signaling but not CB1R function.

The involvement of Sig-1Rs in the GPCR-dependent 2-AG release was supported by experiments

showing that co-activation of mGluRIs and a1Rs by DHPG+PE could increase the release of this eCB,

and that this was significantly reduced in Sig-1R KO mice. Moreover, another form of tonic 2-AG

release that occurs under basal conditions in the absence of GPCR stimulation was unaltered in Sig-

1R KO mice. Therefore, the data suggest that Sig-1Rs and EVs mediate only GPCR-dependent 2-AG

release, and not that generated by other cellular pathways.

Based on our biochemical and electrophysiological data, we propose a model (Figure 8—figure

supplement 1) in which cocaine initiates 2-AG synthesis via inhibition of the NET, leading to activa-

tion of a1Rs coupled to Gq proteins controlling phospholipases and the liberation of the 2-AG pre-

cursor DAG. DAG is then converted to 2-AG via DGLa and then packaged in EVs through an

unknown process. 2-AG release from EVs is triggered when cocaine binds to Sig-1Rs to liberate

ARF6-GDP and permit its conversion to the active ARF6-GTP, which can then act at MLCK to initiate

EV fusion with the cellular membrane and release of 2-AG. Although these mechanisms are sup-

ported by the present data, our finding that the inhibition of IPSCs by 2-AG release by DHPG+PE is

absent cells from Sig-1R KO mice suggests that cocaine binding to the Sig-1R is not necessary to ini-

tiate EV release. However, fundamental differences in the characteristics of the inhibition produced

by these methods were noted. Thus, the kinetics of the 2-AG-mediated inhibition of GABA release

Figure 7 continued

data shown in D. AM251 caused a significant increase in mean IPSC amplitude in both groups (two-tailed unpaired t-test; **=p < 0.0001, *=p = 0.001),

but there was no significant difference in this effect between groups (n.s. = not significant, two-tailed unpaired t-test, p=0.76). These data show that

Sig-1Rs are necessary for the GPCR-induced 2-AG release caused by DHPG+PE (A–C), but not for tonic non-GPCR-dependent 2-AG release (D–E), and

they suggest that DGLa function is not impaired in Sig-1R KO mice. Figure 7—figure supplement 1 shows kinetic differences between 2-AG function

elicited by DHPG+PE and cocaine in the mouse VTA. See Source data 1 for values used in statistical analyses.

DOI: https://doi.org/10.7554/eLife.47209.014

The following figure supplement is available for figure 7:

Figure supplement 1. Differences between 2-AG function elicited by DHPG+PE and cocaine in the mouse VTA.

DOI: https://doi.org/10.7554/eLife.47209.015
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Figure 8. Cocaine stimulated 2-AG inhibition of GABA release is blocked by ARF6 inhibitors or myosin-light chain kinase (MLCK) inhibition. (A) Mean

time-course of the effect of cocaine on GABAB IPSCs under control conditions, and during incubation with the ARF6 GEF inhibitor SH3 (10 mM). (B)

Mean time-course of the effect of cocaine on the GABAB IPSCs under control conditions and during incubation with direct ARF6 inhibitor NAV2729 (10

mM). (C) Mean time-course of the effect of cocaine on the GABAB IPSCs under control conditions and during incubation with the MLCK inhibitor ML7 (2

Figure 8 continued on next page
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caused by cocaine differ from DHPG+PE in that the effect onset and the peak response to cocaine

occurred more rapidly than that seen with DHPG+PE (Figure 6—figure supplement 1). Also, the

cocaine effect reached a maximum within approximately the first 5 min after application, and this

early phase was completely blocked when Sig-1R, ARF6 or MLCK function was disrupted (Figure 8),

whereas the smaller late phase of inhibition was resistant to these manipulations (Figure 8, Fig-

ure 7—figure supplement 1). Despite this, data showing that both the early and late phases of

cocaine inhibition are prevented by AM251 (Figure 5—figure supplement 1) and absent in mice

lacking the CB1R or DGLa (Figure 5E–H), indicate that both inhibitory phases depend upon 2-AG

and CB1Rs. In contrast to the effect of cocaine, DHPG+PE does not produce a robust early phase of

IPSC inhibition (Figure 6—figure supplement 1) and the delayed inhibition produced by the ago-

nists is smaller, but not absent in Sig-1R KO mice (Figure 7—figure supplement 1A). These differen-

ces suggest that although cocaine and DHPG+PE initiate 2-AG-dependent inhibition of synaptic

GABA release, they may involve distinct upstream mechanisms that converge on Sig-1Rs and their

control of EV release. Thus, the faster time-course of the cocaine effect may result from its direct

binding to Sig-1Rs (Sharkey et al., 1988; Chen et al., 2007; Hiranita et al., 2011) to more rapidly

stimulate EV release, resulting in their depletion during the late phase. In contrast, the slower and

more sustained effect of DHPG+PE on 2-AG release may reflect coupling of EV release to a signaling

pathway that relies upon intracellular release of an endogenous Sig-1R agonist. In support of this,

several putative endogenous Sig-1R agonists have been identified (Monnet and Maurice, 2006;

Ramachandran et al., 2009; Fontanilla et al., 2009), and a more recent study shows that agonists

of Gq-coupled receptors that stimulate phospholipases can increase intracellular levels of choline,

which then acts as an agonist at Sig-1Rs to enhance their calcium signaling properties

(Brailoiu et al., 2019). Therefore, we speculate that the distinct phases of 2-AG-dependent inhibi-

tion are related the ability of the cocaine to act as a direct agonist at Sig-1Rs, compared to potential

indirect effects of DHPG+PE that may be mediated by an intracellular signaling molecule having

agonist properties at sig-1Rs. Future experiments will test this hypothesis.

Fatty acid binding proteins (FABPs) can bind and transport lipid molecules within and between

cells (Kaczocha et al., 2009; Ertunc et al., 2015). One of these, adipocyte fatty-acid binding protein

4 (aP2), is secreted from adipocytes via EVs (Ertunc et al., 2015), and several FABPs are found in

brain (Owada et al., 1996). Recent studies show that one of these proteins, FABP5, has high affinity

for 2-AG, and its inhibition or genetic deletion impairs 2-AG-mediated signaling and plasticity at glu-

tamate synapses in the dorsal raphe nucleus (Haj-Dahmane et al., 2018; Owada et al., 1996;

Kaczocha et al., 2012). Based on these results, and our present observation that FABP5 is co-local-

ized with the EV markers Ib1 and flotillin-1 in EV fractions from the mouse midbrain, it is possible

that 2-AG release may occur via binding to FABPs that are transported to the extracellular space via

EVs, and therefore subject to mechanisms regulating EV secretion, such as Sig-1Rs, ARF6, and

MLCK. Future studies will more closely examine this possibility to more completely understand the

mechanisms of EV-dependent eCB release in the brain.

Figure 8 continued

mM). (D) Mean waveforms of GABAB receptor-mediated IPSCs after addition of cocaine in cells preincubated with ML7 or SH3. (E) Summary of data with

ML7, SH3, and NAV2729, shown in A-C. The effect of cocaine is significantly reduced by SH3, NAV2729, and ML7 (F3,39 = 8.7, p=0.0002, one-way

ANOVA, **=p < 0.001, Dunnett’s multiple comparison test, *=p = 0.0003, #=p = 0.0005, %=p = 0.001; n for each condition shown in parentheses).

Figure 8—figure supplement 1 shows our model of the proposed mechanisms underlying the cocaine-regulated synthesis and release of 2-AG in VTA

DA neurons and the involvement of EVs and Sig1R-ARF6 signaling pathway See Source data 1 for values used in statistical analyses.

DOI: https://doi.org/10.7554/eLife.47209.016

The following figure supplement is available for figure 8:

Figure supplement 1. Proposed mechanisms underlying the cocaine-regulated synthesis and release of 2-AG in VTA.

DOI: https://doi.org/10.7554/eLife.47209.017
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Materials and methods

Key resources table

Reagent
type Designation

Source or
reference Identifiers

Additional
information

Mouse: M. musculus
(C57BL/6J)

C57BL/6J;
wildtype, WT

Charles
River
Laboratories

Strain Code:
027

Mouse: M. musculus
(C57BL/6J)

sigma1r; Sigma1
receptor: Sig-1R;
Sig-1R KO,
knockout

https://doi.
org/10.1073/pnas.
1518894112

Mouse:
M. musculus
(C57BL/6J)

Dagla fl/fl x
Slc6a3-Cre +/-;
floxed DGL-a x DATCre
heterozygote; DGL-a x
DATCre; DGL-a KO,
knockout

Dagla fl/fl,
a gift from
Sachin Patel;
Dagla fl/fl x Slc6a3-
Cre + /- breeders a
gift from
Daniel P. Covey

Mouse:
M. musculus
(C57BL/6J)

CNR1; CB1R;
CB1R -/-;
CB1R KO; knockout

https://doi.org/
10.1073/
pnas.96.10.5780

Cell Line (M. musculus) Mouse
neuroblastoma
x Rat glioma:
NG108-15 cells;
NG108 cells

ATCC HB-12317

Antibody Mouse
monoclonal
(mcl) anti-alpha-
tubulin

Sigma-Aldrich Cat#: T5168 Western Blot (WB);
Dilution (1:10,000)

Antibody Rabbit
polyclonal (plcl)
anti-Alix

Sigma-Aldrich Cat#: SAB4200476 WB (1:1,000)

Antibody Mouse
monoclonal (mcl)
anti-ARF6

Santa Cruz
Biotechnology

Cat#: sc-7971 Immunohisto
chemistry
(IHC); (1:100),
Immunopre
cipitation
(IP), 1 mg

Antibody Rabbit plcl
anti-ARF1

Thermo Fisher
Scientific

Cat#: PA1-127 WB (1:1,000)

Antibody Rabbit plcl anti-
ARF6

Cell Signaling
Technology

Cat#: 3546 WB (1:1,000)

Antibody Mouse mcl anti-
Cytochrome c

BD Biosciences Cat#: 556433 WB (1:1,000)

Antibody Rabbit plcl anti-
ERK1

Santa Cruz
Biotechnology

Cat#: sc-94 WB (1:500)

Antibody Rabbit mcl anti-
FABP5 (D1A7T)

Cell Signaling
Technology

Cat#: 39926 WB (1:1,000)

Antibody Rabbit plcl anti-
Flotillin-1

Santa Cruz
Biotechnology

Cat#: sc-25506 WB (1:1,000)

Antibody Rabbit mcl anti-
GAPDH
(D16H11)

Cell Signaling
Technology

Cat#: 5174 WB (1:2000)

Antibody Mouse mcl
anti-GFP

Clonetech Cat#: 632381 WB (1:10,000)

Antibody Rabbit plcl
anti-GFP

Clonetech Cat#: 632592 IP (1 mg)

Antibody Mouse mcl
anti-Halo

Promega
Corporation

Cat#: G9211 WB (1:10,000)

Continued on next page
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Continued

Reagent
type Designation

Source or
reference Identifiers

Additional
information

Antibody Mouse mcl
anti-HSP90

Enzo Life
Sciences

Cat#:
ADI-SPA-830

WB (1:1,000)

Antibody Mouse mcl
anti-Integrin b1

Thermo Fisher
Scientific

Cat#: MA5-17103 WB (1:1,000)

Antibody Mouse mcl
anti-Nucleoporin
p62

BD Biosciences Cat#: 610498 WB (1:1,000)

Antibody Rabbit mcl
anti-PDI

Cell Signaling
Technology

Cat#: 3501 WB (1:1,000)

Antibody Rabbit anti-
Sigma-1
receptor
serum

A gift from
Arnold Ruoho

N/A IHC (1:1,000)

Antibody Rabbit anti-
Sigma-1
receptor
serum #5460

In house N/A WB (1:1,000)

Antibody Mouse anti-sigma-1
receptor B-5 mcl

Santa Cruz
Biotechnology

Cat#: Sc-137075 IP (1 mg)

Antibody Mouse mcl anti-
Tyrosine
hydroxylase

Millipore
Corporation

Cat#: MAB318 IHC (1:1,000),
WB (1:2,000)

Antibody Rabbit
plcl anti-
Tyrosine
hydroxylase

Millipore
Corporation

Cat#: AB152 IHC (1:1,000)

Antibody Chicken
plcl anti-
Tyrosine
hydroxylase

Aves Labs Cat#: TH IHC (1:1,000)

Antibody Mouse mcl
anti-tsg 101

Santa Cruz
Biotechnology

Cat#: Sc-7964 WB (1:500)

Antibody Chicken plcl
anti-vGAT

Synaptic
Systems

Cat#: 131 006 IHC (1:500)

Antibody IRDye
680RD
goat anti-
mouse IgG

LI-COR
Biosciences

Cat#: 925–68070 WB (1:10,000)

Antibody IRDye
800CW
goat anti-
mouse IgG

LI-COR
Biosciences

Cat#: 925–32210 WB (1:10,000)

Antibody IRDye
680RD
goat anti-
rabbit IgG

LI-COR
Biosciences

Cat#: 925–68071 WB (1:10,000)

Antibody IRDye
800CW
goat anti-
rabbit IgG

LI-COR
Biosciences

Cat#: 925–32211 WB (1:10,000)

Antibody Alexa Fluor
405
goat anti-
mouse IgG

Thermo
Fisher Sci.

Cat#: A-31553 IHC (1:500)

Antibody Alexa Fluor
488
anti-
chicken IgY

Thermo
Fisher Sci.

Cat#: A-11039 IHC (1:500)

Continued on next page
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Continued

Reagent
type Designation

Source or
reference Identifiers

Additional
information

Antibody Alexa Fluor 568
anti-rabbit IgG

Thermo
Fisher Sci.

Cat#: A-11036 IHC (1:500)

Recombinant
DNA reagent

pcDNA3-CFP A gift from
Doug
Golenbock

Addgene
Plasmid # 13030

Recombinant
DNA reagent

pARF6
(WT)-CFP

A gift from Joel
Swanson;
https://doi.org/
10.1371/journal.
pbio.0040162

Addgene
Plasmid # 11382

Recombinant
DNA reagent

pARF6 (Q67L)-CFP A gift from Joel Swanson;
https://doi.org/
10.1371/journal.
pbio.0040162

Addgene
Plasmid # 11387

Recombinant
DNA reagent

pARF6
(T27N)-CFP

A gift from
Joel Swanson;
https://doi.org/
10.1371/journal
.pbio.0040162

Addgene
Plasmid # 11386

Recombinant
DNA reagent

pHTC HaloTag Promega Cat#: G7711

Recombinant
DNA reagent

pHTN HaloTag Promega Cat#: G7721

Recombinant
DNA reagent

Halo-Sig1R This paper N/A contact for resource:
Dr. Tsung-Ping Su;
TSU@intra.nida.nih.gov

Recombinant
DNA reagent

Sig1R-Halo This paper N/A contact for resource:
Dr. Tsung-Ping Su;
TSU@intra.nida.nih.gov

Recombinant
DNA reagent

Sig1R (1-60)-Halo This paper N/A contact for resource:
Dr. Tsung-Ping Su; T
SU@intra.nida.nih.gov

Recombinant
DNA reagent

Halo-Sig1R (61-223) This paper N/A contact for resource:
Dr. Tsung-Ping Su; TSU
@intra.nida.nih.gov

Commercial
assay or kit

NanoSight
Particle
Analysis

System
Biosciences

Cat#: CSNANO100A-1

Commercial
assay or kit

Dynabeads
Protein G

Thermo
Fisher Scientific

Cat#: 10009D

Commercial
assay or kit

PolyJet In Vitro
DNA Transfection

Signagen
Laboratories

Cat#: SL100688

Commercial
assay or kit

Micro BCA
Protein Assay Kit

Thermo
Fisher Scientific

Cat#: 23235

Chemical
compound,
drug

Cocaine
hydrochloride

NIDA Drug
Supply

N/A https://d14rmgtrwzf5a.
cloudfront.net/sites/d
efault/files/ndspcat24thed
march2015.pdf

Chemical
compound,
drug

BD 1063
dihydrochloride

Tocris
Bioscience

Cat#:
0883; CAS:
206996-13-6

Chemical
compound,
drug

SecinH3 Tocris Bioscience Cat#: 2849;
CAS: 853625-
60-2

Chemical
compound,
drug

AM251 Tocris
Bioscience

Cat#: 1117;
CAS: 183232-
66-8

Continued on next page
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Continued

Reagent
type Designation

Source or
reference Identifiers

Additional
information

Chemical
compound,
drug

CGP55845
hydrochloride

Tocris
Bioscience

Cat#: 1248;
CAS:
149184-22-5

Chemical
compound,
drug

Hanks’
Balanced
Salt Solution

Thermo
Fisher
Scientific

Cat#: 14175095

Chemical
compound,
drug

Neurobasal
Medium

Thermo
Fisher
Scientific

Cat#: 21103049

Chemical
compound,
drug

Collagenase Thermo
Fisher
Scientific

Cat#: 17100017

Chemical
compound,
drug

Protease
Inhibitor Cocktail

Sigma-Aldrich Cat#: P8340

Chemical
compound,
drug

Blotting-
grade blocker

Bio-Rad
Laboratories

Cat#: 1706404

Chemical
compound,
drug

Bovine
serum albumin

Sigma-
Aldrich

Cat#: A2153

Chemical
compound, drug

Percoll GE Healthcare
Life Sci.

Cat#: 17-0891-02

Chemical
compound,
drug

Dulbecco’s
Modified
Eagle Medium

Thermo Fisher
Scientific

Cat#: 11965092

Chemical
compound,
drug

Fetalgro Bovine
Growth Serum

RMBIO Cat#: FGR-BBT

Chemical
compound,
drug

HAT Supplement
(50X)

Thermo Fisher
Scientific

Cat#: 21060017

Chemical
compound,
drug

Penicillin-
Streptomycin
(10,000 U/mL)

Thermo Fisher
Scientific

Cat#: 15140122

Chemical
compound,
drug

Lauryl maltose
neopentyl glycol

Anatrace Cat#: NG310

Chemical
compound,
drug

two x Laemmli
Sample Buffer

Bio-Rad
Laboratories

Cat#: 1610737

Chemical
compound,
drug

Nonidet P-40 Sigma-Aldrich Cat#: I3021

Chemical
compound,
drug

Phenylme
thanesulfonyl
fluoride

Sigma-Aldrich Cat#: P7626

Chemical
compound,
drug

NAV2729 Tocris
Bioscience

Cat#: 5986;
CAS: 419547-
11-8

Chemical
compound,
drug

ML seven
hydrochloride

Tocris
Bioscience

Cat#: 4310;
CAS: 110448-
33-4

Chemical
compound, drug

NE100 Tocris
Bioscience

Cat#: 3313;
CAS:
149409-57-4

Continued on next page
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Continued

Reagent
type Designation

Source or
reference Identifiers

Additional
information

Software,
algorithm

GraphPad
Prism 7

GraphPad
Software, San
Diego, CA

Image
Studio Lite

L LI-COR
Biosciences,
Lincoln,
Nebraska

WINLTP 2.30 WinLTP Ltd.,
Bristol, U.K.

https://www.winltp.com/

G-Power 3.1.9.4 https://doi.org/
10.3758/BF03193146

http://www.psychologie.
hhu.de/arbeitsgruppen/
allgemeine-
psychologie-und-arbeitspsy
chologie/gpower.html

Drugs
1-[2-(3,4-Dichlorophenyl)ethyl]�4-methylpiperazine dihydrochloride (BD 1063 dihydrochloride, Cat#:

0883, Tocris), and cocaine hydrochloride were dissolved in 0.9% NaCl. N-[4-[5-(1,3-Benzodioxol-5-

yl)�3-methoxy-1H-1,2,4-triazol-1-yl]phenyl]�2-(phenylthio)acetamide (SecinH3, Cat#: 2849, Tocris)

was dissolved in DMSO, and then diluted with 25% DMSO/75% glucose solution (5 w/v%).

Animals
Ethics statement
All animal procedures were conducted in accordance with the principles as indicated by the NIH

Guide for the Care and Use of Laboratory Animals. These animal protocols were also reviewed and

approved by the NIDA intramural research program Animal Care and Use Committee, which is fully

accredited by the Assessment and Accreditation of Laboratory Animal Care (AAALAC) International

(approved protocols: 17-CNRB-15, 16-CNRB-128, 16-INB-1, 16-INB-3, 17-INB-5).

Adult (8+ weeks) male mice were housed with food and water available ad libitum. Mice were

housed on a 12/12 hr light cycle. Wild-type C57Bl6/J mice were ordered from Charles River Labora-

tories. Sigma one receptor transgenic mice were bred in house. Sigmar1 mutant (+/�) Sigmar1Gt(IRE-

SBetageo)33Lex litters on a C57BL/6J � 129s/SvEv mixed background were purchased from the Mutant

Mouse Regional Resource Center at the University of California, Davis. The sigma-1 receptor (+/�)

males were backcrossed for 10 generations to female on C57BL/6J to ensure that animals had a

homogenous background. The resulting mice were genotyped to select Sig-1R WT and KO mice. To

generate mice lacking diacylglycerol lipase-a (DGL-a) in DA neurons, mice in which the Dagla gene

was flanked by LoxP were obtained from the laboratory of Dr. Sachin Patel (Vanderbilt University).

These mice were then crossed with dopamine transporter (Slc6a3; DAT) Cre mice (Slc6a3Cre+/-) to

generate mice lacking the DGL-a gene (Dagla) in DAT-expressing neurons (Daglafl/fl x Slc6a3-Cre+/-).

Group allocation
Group membership was determined by genotype where transgenic mice were used. In in vitro elec-

trophysiology studies, recordings from untreated control brain slices were interleaved with record-

ings from drug pre-incubated brain slices from the same animal. In cell biology experiments, mice

were chosen for experiments depending upon date of arrival from the supplier. In this way, mice

were assigned to groups according availability and to the experimental procedures to be performed

that day. In most cases, brain tissue from each mouse was used in both control and treatment condi-

tions. NG-108 cell culture dishes were selected randomly from those available in the tissue

incubator.
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Isolation of mouse midbrain slices
Mice were killed with CO2 gas, and brains were removed, and rinsed in ice-cold Hank’s balanced

salt solution (Thermo Fisher Scientific). Midbrain samples were isolated by cutting coronal sections

containing the VTA using mouse brain matrices (Roboz), and the cortex and a hippocampus dis-

sected free (Figure 2—figure supplement 1).

Preparation of EV fractions
NG108 cells
To isolate EVs from NG108 cells we used an established protocol with minor modifications

(Gabrielli et al., 2015a). First, conditioned HBSS was collected and pre-cleared from cells and debris

by centrifugation at 300 x g for 10 min, and 2000 x g for 10 min. Then, for EV purification, the super-

natant was centrifuged at 100,000 x g for 60 min. Pellets obtained from this spin-down were then

resuspended in 30 mL of lysis buffer (50 mM Tris, pH 7.4, 150 mM NaCl, 1% Triton-X and protease

inhibitor (Sigma-Aldrich) for western blotting. Cocaine stimulation occurred by adding the drug (1–

10 mM) to the cultures in HBSS.

Midbrain
For vesicle fractions from brain tissue we used an established protocol with minor modifications

(Perez-Gonzalez et al., 2012; Polanco et al., 2016). Briefly, following dissection, midbrain slices

from two wildtype male C57BL/6J mice were chopped and then incubated in 1.5 ml of 0.125% colla-

genase (Sigma-Aldrich) in Neurobasal medium (Thermo Fisher Scientific) for 30 min at 37˚C (see Fig-

ure 2—figure supplement 1 for a graphic summary of Ev isolation procedures). To stop the

digestion, 4.5 ml of ice-cold phosphate-buffered saline (PBS) was added and the temperature main-

tained at 4˚C throughout subsequent steps. The tissue was then gently disrupted by multiple passes

through a 200 mL pipette tip, followed by a series of differential centrifugations at 300 x g for 10

min, 2000 x g for 10 min, and 7500 x g for 30 min. The pellets resulting from these spins, containing

cells, membranes, and cellular debris, respectively, were then discarded. For EV purification, the

7500 x g supernatant was syringe filtered at 1.0 mm (Whatman Puradisc Syringe Filters, GE Health-

care Life Sciences, Cat. #6780–2510) and centrifuged at 100,000 x g for 70 min to obtain a pellet

containing EVs. The 100,000 x g pellet was washed with PBS and spun again at 100,000 x g for 60

min to obtain a total EV (tEV) pellet. For EV purification, the tEV sample was resuspended in 0.5 mL

of 0.95 M sucrose in 20 mM HEPES (pH 7.4) before addition to a sucrose-step gradient column. The

column consisted of 6 � 0.5 mL fraction running from the bottom 2.0 M, 1.65 M, 1.3 M, 0.95M, 0.6

M, to 0.25 M at the top. Similarly, sucrose step gradients were centrifuged for 16 hr at 200,000 x g,

after which the six fractions were collected. EVs settled typically at 0.95 M sucrose. The original six

0.5 mL fractions were collected and resuspended in 6 mL of ice-cold PBS, followed by a 100,000 x g

centrifugation for 70 min at 4˚C. Finally, the pellets were resuspended in 30 mL of filtrated-PBS when

EVs were used for cell assays or 15 ml of lysis buffer (50 mM Tris pH7.4, 150 mM NaCl, 1% Triton-X

and protease inhibitor (Sigma-Aldrich) when EVs were intended for western blots. For western blot-

ting, EV lysates in lysis buffer were quantified for protein content with a Micro BCA Protein Assay Kit

(Thermo Fisher Scientific). We also prepared brain lysate sample (BL) in lysate buffer using the mid-

brain tissues from the 300 x g pellets obtained in the courses of the EV isolations, which were used

as positive controls for the western blots and to normalize tEVs sample amount between each

treatment.

Drug treatment regimen
Drugs were injected i.p. at a volume of 5 ml/kg. Regimen 1 (for Figure 2E): Thirty and 60 min after

i.p. injections with cocaine (15 mg/kg), midbrain slices were collected. Regimen 2 (for Figures 2F

and 4E): Injections with BD1063 (10 mg/kg, s.c.), SecinH3 (10 mmol/kg, s.c.), ML7 (5 mg/kg), or vehi-

cle (inj 1) were performed 20 min prior to injections with saline or cocaine (15 mg/kg, i.p.; inj 2).

Thirty min after inj 2, midbrain slices were collected. Regimen 3 (for Figure 4A): 10, 20 and 30 min

after i.p. injections with cocaine (15 mg/kg), midbrain slices were collected. Regimen 4 (for

Figure 4B): Injections with BD1063 (10 mg/kg, s.c.), SecinH3 (10 mmol/kg, s.c.), or vehicle (s.c.) (inj 1)

were performed 20 min prior to injections with saline or cocaine (15 mg/kg, i.p.; inj 2). Ten min after

inj 2, midbrain slices were collected. Regimen 5 (for Figure 4C): 20 min after i.p. injections with
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cocaine (15 mg/kg) or vehicle, midbrain slices were collected. Regimen 6 (for Figure 5B): 30 min

after i.p. injections with cocaine (15 mg/kg) or vehicle, midbrain slices were collected. For western

blotting of extracellular vesicles from NG108 cells, the cells on 10 cm dishes were washed with pre-

warmed Hanks’ Balanced Salt Solution (HBSS) twice and incubated in HBSS at 37˚C in the presence

of cocaine.

Western blotting
In brief, western blotting was performed with protein samples separated using a 12% sodium

dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), and then transferred onto a Immo-

bilon FL Transfer polyvinylidene difluoride (PVDF) membrane (Mollipore) in the Tris/Glycine buffer

(Bio-Rad Laboratories) without methanol. After incubation with 5% blotting-grade blocker (Bio-Rad

Laboratories) or 5% bovine serum albumin (BSA, Sigma-Aldrich) in TBST buffer (10 mM Tris. pH 8.0,

150 mM NaCl, and 0.5% Tween 20) for 1 hr, membranes were incubated with the primary antibodies

at 4˚C overnight. Membranes were washed for 10 min four times by using TBST buffer and incubated

with a 1:10,000 dilution of secondly antibodies (LI-COR Biosciences) at room temperature for 1 hr.

Blots were washed for 10 min four times by using TBST buffer and the signal intensity was deter-

mined using Odyssey Imaging System (LI-COR Biosciences). Resultants were analyzed using an

Image Studio Lite (LI-COR Biosciences).

Nanoparticle tracking analysis (NTAs) for EVs
Total EV (tEV) samples were isolated in filtered (at 1 mm)-PBS from WT and Sig1R KO mouse mid-

brain, 30 min after treatment with either saline or cocaine (15 mg/kg, i.p.), and sent to Systems Bio-

sciences (Palo Alto, CA) for metric analysis of tEVs.

Isolation of MAM from mouse midbrain tissues
MAM was isolated from mouse mid brain as previously reported (Hayashi and Su, 2007;

Kourrich et al., 2013). Briefly, following homogenization of the brain tissue, nuclear, crude mito-

chondrial, and microsomal fractions were prepared by differential centrifugation. Supernatants were

collected as the cytosolic fraction. The crude mitochondrial fraction in the isolation buffer (250 mM

mannitol, 5 mM HEPES, 0.5 mM EGTA, pH 7.4) was subjected to a Percoll gradient centrifugation

for separation of the MAM from mitochondria.

Immunofluorescence staining
Immunofluorescence staining was performed as described previously. In brief, after blocking, the

sections were incubated with the first antibodies in 5% BSA/0.1% Triton X-100 PBS overnight at 4˚C.

Bound antibodies were detected with Alexa Fluor 405-conjugated anti-mouse IgG (1:200, Thermo

Fisher Scientific), Alexa Fluor 488-conjugated anti-chicken IgG (1:200, Thermo Fisher Scientific), and

Alexa Fluor 568-conjugated anti-Rabbit IgG antibodies (1:200, Thermo Fisher Scientific) in 5% BSA

PBS. An UltraView confocal microscopic system (PerkinElmer) was used for imaging.

For the immunostaining of Sig-1R, rabbit anti-serum against Sig-1R, a gift from Dr. Arnold Ruoho

(University of Wisconsin, USA; Ramachandran et al., 2007), was used. When compared to several

commercially available products, the affinity-purified antibody from this antiserum, is very specific for

the sigma-1 receptor in the mouse dorsal root ganglia (Mavlyutov et al., 2016). We established the

following procedures to allow for the best specific detection of the Sig-1R in mouse brain slices,

using the antiserum from Dr. Ruoho. Deeply anesthetized animals were transcardially perfused with

filtered 0.1 M Phosphate buffer (PB; pH 7.4) followed by 4% paraformaldehyde (w/v) in 0.1 M PB.

After perfusion, whole brains were isolated and post-fixed in the same fixatives overnight at 4˚C with

rotation. Subsequently, they were dehydrated with 20% sucrose in 0.1 M PB (w/v) and then 30%

sucrose in 0.1 M PB (w/v) at 4˚C with rotation. The brain samples were then embedded in O.C.T.

compound (Sakura Finetek, Torrance, CA) on dry ice and stored in �80˚C. Thirty-mm sections were

cut on a cryostat and mounted on Tissue Path Superfrost Plus Gold Microscope Slides (Fisher Scien-

tific, Hamilton, NH) dried overnight. Sections were blocked with 5% bovine serum albumin (BSA, w/

v) in PBS containing 0.1% Triton-X100 (v/v) for 1 hr at room temperature. The sections were then

incubated with the sigma-1 receptor anti-sera diluted at 1:1000 in the blocking solution overnight at

4˚C. Following 10 min PBS washing for three times, sections were incubated with Alexa Fluor (488
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for green/568 or 594 or 546 for Red)-conjugated goat anti-rabbit IgG (1:500, Invitrogen, Carlsbad,

CA) in 5% BSA in PBS for 90 min at room temperature. The sections were washed with PBS for 5 min

three times, then counterstained with 4’,6’-diamino-2-phenylindole (DAPI, Invitrogen, 1 mg/mL in

MilliQ; Millipore, Billerica, MA) by 10 min incubation at room temperature. Sections were washed

with PBS for 5 min three times, mounted on coverslips with Prolong Diamond Antifade Mountant

(Life technologies, Carlsbad, CA) for imaging. The specificity of this antiserum in labeling the Sig-1R

is demonstrated in brain slices from wildtype mice, where strong staining is shown, and in and Sig-

1R knockout mice, where staining is absent (Figure 3—figure supplement 1).

Immunoprecipitation
Brain tissue
The midbrain slice sample was homogenized in 900 ml of ice-cold IP lysis buffer-1 (50 mM Tris pH7.4,

150 mM NaCl, 0.1% lauryl maltose neopentyl glycol (Anatrace, Maumee, OH) and protease inhibi-

tors (Sigma-Aldrich) with a glass Dounce homogenizer (20 strokes). After centrifugation at 15,000 g

for 10 min, protein concentration of cellular extracts was measured using a Micro BCA Protein Assay

Kit (Thermo Fisher Scientific). Five hundred mg of protein amount in supernatants were mixed with

ice-cold IP lysis buffer-1 with protease inhibitors to adjust total 1000 ml. The samples were incubated

and rotated with 5 mg ARF6 (Santa cruz) antibody at 4˚C for overnight. Forty ml of prewashed Dyna-

beads Protein G (Thermo Fisher Scientific) added into the sample, incubated and rotated at 4˚C for

90 min. Immunoprecipitants were washed five times with 0.8 ml of ice-cold IP lysis buffer-1 for 5 min.

Samples were boiled in 30 ml elution buffer, which is combined between 15 ml of 2 x Laemmli Sample

Buffer (Bio-Rad Laboratories) and 15 ml 7 M Urea/1% CHAPS at 37˚C for 10 min. Importantly, 2-mer-

captoethanol was omitted from the endogenous Sig1R IP assay to prevent degrading antibody disul-

fide bonds. Proteins were analyzed with a 12% SDS-PAGE.

NG-108 cells
All processes were performed on ice. The overexpressed NG108 cells in 100 mm dishes were

washed twice with cold PBS and then lysed in 1.0 ml of IP lysis buffer-2 (50 mM Tris pH7.4, 150 mM

NaCl, 1% Nonidet P-40 (Sigma-Aldrich) and protease inhibitors (Sigma-Aldrich). After centrifugation

at 15,000 g for 10 min, protein concentration of cellular extracts was measured using a Micro BCA

Protein Assay Kit (Thermo Fisher Scientific). One-hundred fifty mg of supernatants were mixed with

PBS in equal volume. The supernatants were incubated and rotated at 4˚C overnight with 1 mg of

the rabbit anti-EGFP/EYFP/ECFP (Clontech) or 1 mg normal rabbit IgG (Santa Cruz). Thirty ml of pre-

washed Dynabeads Protein G (Thermo Fisher Scientific) was then applied, and samples were rotated

for 90 min at 4˚C. Immunoprecipitants were washed 4 times with 0.8 ml of IP lysis buffer-2 for 5 min,

and twice with 1 ml of PBS for 5 min. Samples were boiled in 70 ml elution buffer combined between

35 ml of 2 x Laemmli Sample Buffer with 5% 2-ME and 35 ml lysis buffer at 95˚C for 5 min. Proteins

were analyzed with a 12% SDS-PAGE.

Cell culture and transfection
NG108 cells were cultured at 37˚C and 5% CO2 in High glucose Dulbecco’s Modified Eagle Medium

(DMEM, Thermo Fisher Scientific) containing L-glutamine, 10% Fetalgro Bovine Growth Serum

(RMBIO), HAT supplement (Thermo Fisher Scientific), 100 mg/ml Penicillin-Streptomycin (Thermo

Fisher Scientific). Transfection of cells with expression vectors was done by using PolyJet DNA In

Vitro Transfection Reagent (Signagen Laboratories, Rockville, MD) according to manufacturer’s

instructions. Sources of vectors are provided above.

Measurement of 2-AG in brain tissue
2-AG extraction
2-Arachidonoyl glycerol (2-AG) was extracted from samples using a modified Folch extraction

method. A mixture of chloroform/methanol (2:1 v/v) was added to the sample at a rate of 8 mL for

each mg of protein detected. An internal standard 10Z-heptadecenoylethanolamide (HEA, 17:1 etha-

nolamide, Avanti Polar Lipids, Alabaster, Al) (4 mg/mL) was included in this volume and was added at

a rate of 0.05 mL per mg of protein. Samples were homogenized, sonicated and vortexed. Two mL of

water was added for each mg of protein in the sample. The mixture was again vortexed and
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centrifuged. The extraction results in an upper aqueous phase and a lower organic phase (containing

2-AG and the internal standard, HEA 17:1 ethanolamide). The lower phase (organic phase) was evap-

orated to dryness using nitrogen, re-suspended in 500 mL of chloroform and fractionated. The proce-

dure used for fractionation was similar to one developed previously for eCBs (Schmid et al., 2000).

The fractionation was performed with Discovery SPE-Si tubes 1 mL (Sigma-Aldrich, St. Louis, MO).

The samples were loaded on the columns in 500 mL chloroform and then washed with 3 mL of chlo-

roform. Next, the 2-AG was eluted with 3 mL of chloroform/methanol (98/2%). Finally, the elute was

evaporated to dryness using nitrogen and re-suspended in 100 mL of acetonitrile.

Mass spectrometry analysis
Samples were diluted 1:1 (v/v) in 400 mm silver acetate in acetonitrile prior to mass analysis. A previ-

ous study has demonstrated the advantages to adding silver cations into the sample mixture for

detecting 2-AG (Kingsley and Marnett, 2003). Samples were analyzed on an Oribtrap Velos

(Thermo Fisher) in positive ion mode with a static nanospray source with 4 mm spray tips and a capil-

lary temperature of 200˚C. The Fourier transform mass spectrometry (FTMS) mode with a mass reso-

lution of 100K was employed for all samples. The mass error for 2-AG assignment was ±3 ppm and

MS/MS analyses were also conducted to confirm the identification of 2-AG.

In vitro electrophysiology
Twelve-week-old WT C57BL6, Cnr1-/- (CB1R knockout), or Sigmar1+/- Sig-1R KO mice were decapi-

tated, and their brains rapidly removed and transferred to an oxygenated (95% O2, 5% CO2) ice-

cold solution containing (in mM) 93 N-Methyl-D-glucamine (NMDG), 2.5 KCl, 1.2 NaH2PO4, 30

NaHCO3, 20 HEPES, 25 Glucose, 3 Sodium pyruvate, 10 MgCl2, 0.5 CaCl2, 5.6 Ascorbic acid. Hori-

zontal slices (220 mm) containing the VTA were sectioned using a Leica VT1200S vibratome (Leica

Biosystems) and transferred to a holding chamber at room temperature (RT) filled with oxygenated

solution containing (in mM) 109 NaCl, 4.5 KCl, 1.2 NaH2PO4, 35 NaHCO3, 20 HEPES, 11 Glucose, 1

MgCl2, 2.5 CaCl2, 0.4 Ascorbic acid. After incubation for at least 1 hr in the holding chamber at RT,

slices were transferred to a recording chamber perfused with oxygenated aCSF containing (in mM)

126 NaCl, 3 KCl, 1.2 NaH2PO4, 26 NaHCO3, 11 Glucose, 1.5 MgCl2, 2.4 CaCl2, maintained at 35–36˚

C using an inline solution heater (Warner Instruments, Hamden, CT). Cells were visualized with an

upright microscope (Olympus BX51WI) equipped with infrared interference-contrast optics.

Recorded neurons identified in the lateral VTA, medial to the terminal nucleus of the accessory optic

track (MT) and anterior to the third cranial nerve. Dopamine neurons were identified in the lateral

VTA using electrophysiological criteria in cell-attached mode. Only cell demonstrating regular pace-

maker firing (>3 Hz) and action potential widths > 2.5 ms were chosen for further recording

(Ungless and Grace, 2012). Whole-cell voltage-clamp recordings from DA neurons were acquired

using an Axopatch 200B amplifier (Molecular Devices, San Jose, CA). Recording pipettes (3.5–5 MW)

were pulled with a P-97 horizontal micropipette puller (Sutter Instruments, Novato, CA) and filled

with internal solution containing (in mM) 140 K-gluconate, 2 NaCl, 1.5 MgCl2, 10 HEPES, 10 Tris-

phosphocreatine, 4 Mg-ATP, 0.3 Na-GTP, 0.1 EGTA (pH 7.2, 290 mOSM). DNQX (20 mM), DL-AP5

(40 mM), picrotoxin (100 mM) and strychnine (1 mM) were present in the aCSF to block AMPA,

NMDA, GABAA and glycine receptors, respectively. Electrophysiological identification of DA neu-

rons was performed in cell-attached mode to select only cells exhibiting pacemaker firing and action

potential widths < GABAB IPSCs were evoked using electrical stimulation with bipolar tungsten stim-

ulating electrodes with tip separation of 300–400 mm. A train of 6 stimuli of 100ms duration were

delivered at 50 Hz every 30 s. Stimulation protocols were generated, and signals acquired using the

electrophysiology software WinLTP. Control GABAB currents were recorded for 10 min before the

appropriate drug was applied for an additional 30 min. Data was analyzed using WinWCP software

(Courtesy of Dr. John Dempster, Strathclyde University, Glasgow, UK). Figures were generated, and

statistics analyzed using GraphPad Prism6 (v6.07; LaJolla, CA). Data are presented as the change in

percent from control.

Quantification, statistical analysis and reporting
The experiments were designed using estimates of effect size and standard error derived from prior

experience and pilot experiments. These values were then used in power analysis calculations using
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the program G-Power (version 3.1.9.4, University of Dusseldorf, Germany) to determine sample

sizes. Means ± s.e.m. are used throughout to report measures of centricity and dispersion. A spread-

sheet (Source data 1) describing means, significance levels and 95% confidence intervals for each

experiment is included with this report. Statistical tests were determined by the number of groups

and treatments to be compared. An omnibus test was used when necessary statistical assumptions

could be met. Thus, in experiments where repeated measures could be obtained from the same sub-

jects, samples, or cells (e.g. time course data), a repeated-measures ANOVA was used. When

repeated measures were not performed, and group size was >2, a one-way ANOVA was used. Post-

hoc analyses (Tukey’s, Dunnett’s, or Bonferroni’s multiple comparison tests) were determined by the

type of omnibus test, as well as the nature of the multiple comparisons (pairwise rows and columns,

comparison to control columns, main effects versus interactions). When only two groups of data

were compared, a Student’s t-test was used. In all cases, a two-tailed p value of 0.05 was considered

the minimum for significance. Actual p values are reported for all omnibus tests, unless p<0.0001,

and the statistical information is reported in the figure captions. In immunoprecipitation experi-

ments, co-localization was determined from observed association on Western blots, and therefore,

statistical tests were not used (Figure 1F and G; Figure 3B and D; Figure 5D; Figure 1—figure sup-

plement 1C).
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