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Whole-body ischemia and reperfusion due to cardiac arrest and subsequent return 
of spontaneous circulation constitute post-cardiac arrest syndrome (PCAS), which 
consists of four syndromes including systemic ischemia/reperfusion responses and 
post-cardiac arrest brain injury. The major pathophysiologies underlying systemic 
ischemia/reperfusion responses are systemic inflammatory response syndrome and 
increased coagulation, leading to disseminated intravascular coagulation (DIC), which 
clinically manifests as obstruction of microcirculation and multiple organ dysfunction. 
In particular, thrombotic occlusion in the brain due to DIC, referred to as the “no-reflow 
phenomenon,” may be deeply involved in post-cardiac arrest brain injury, which is 
the leading cause of mortality in patients with PCAS. Coagulofibrinolytic changes in 
patients with PCAS are characterized by tissue factor-dependent coagulation, which 
is accelerated by impaired anticoagulant mechanisms, including antithrombin, protein 
C, thrombomodulin, and tissue factor pathway inhibitor. Damage-associated molecular 
patterns (DAMPs) accelerate not only tissue factor-dependent coagulation but also the 
factor XII- and factor XI-dependent activation of coagulation. Inflammatory cytokines 
are also involved in these changes via the expression of tissue factor on endothelial 
cells and monocytes, the inhibition of anticoagulant systems, and the release of neu-
trophil elastase from neutrophils activated by inflammatory cytokines. Hyperfibrinolysis 
in the early phase of PCAS is followed by inadequate endogenous fibrinolysis and 
fibrinolytic shutdown by plasminogen activator inhibitor-1. Moreover, cell-free DNA, 
which is also a DAMP, plays a pivotal role in the inhibition of fibrinolysis. DIC diagnosis 
criteria or fibrinolysis markers, including d-dimer and fibrin/fibrinogen degradation 
products, which are commonly tested in patients and easily accessible, can be used 
to predict the mortality or neurological outcome of PCAS patients with high accuracy.  
A number of studies have explored therapy for this unique pathophysiology since the 
first report on “no-reflow phenomenon” was published roughly 50 years ago. However, 
the optimum therapeutic strategy focusing on the coagulofibrinolytic changes in cardiac 
arrest or PCAS patients has not yet been established. The elucidation of more precise 
pathomechanisms of coagulofibrinolytic changes in PCAS may aid in the development 
of novel therapeutic targets, leading to an improvement in the outcomes of PCAS 
patients.

Keywords: post-cardiac arrest syndrome, systemic ischemia/reperfusion, disseminated intravascular coagulation, 
no-reflow phenomenon, activation of coagulation, impaired anticoagulant, fibrinolytic shutdown
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iNTRODUCTiON

The history of post-cardiac arrest syndrome (PCAS) dates back 
to the early 1970s. Negovsky named the unique and complicated 
pathophysiology of successfully resuscitated cardiac arrest, “post-
resuscitation disease” (1). Since then, a bunch of investigations 
on this disease have been conducted, with concurrent progress in 
the management of cardiac arrest, including modern cardiopul-
monary resuscitation (CPR) and emergency cardiovascular treat-
ment. However, the long-term survival of resuscitated patients 
has not been associated with an improvement in the rate of return 
of spontaneous circulation (ROSC).

In 2008, the International Liaison Committee on Resuscitation 
suggested a new concept and definition of PCAS to indicate the 
direction of future research by evaluating and organizing the 
epidemiology, pathophysiology, therapy, and outcome of this 
disease (2). PCAS consists of four syndromes, which include sys-
temic ischemia/reperfusion response and post-cardiac arrest brain 
injury. Coagulofibrinolytic changes are referred to as “increased 
coagulation,” which constitutes one “pathophy siology” of sys-
temic ischemia/reperfusion response. The concept of “increased 
coagulation” is based mainly on the publications by Adrie et al., 
who suggested that the pathology of post-resuscitation was a 
“sepsis-like syndrome,” based on the evidence that successfully 
resuscitated patients showed several similar features, including 
a coagulation abnormality associated with systemic inflamma-
tory response syndrome (SIRS), which is commonly seen in  
sepsis (3).

Around the same time as when post-resuscitation disease 
was suggested, the first study on disseminated intravascular 
coagulation (DIC) following cardiac arrest was reported (4).  
DIC is defined as the tissue factor-dependent systemic  
hypercoagulation, deficient control of coagulation by impaired 
physiologic anticoagulation systems, and plasminogen activator 
inhibitor-1 (PAI-1)-associated inhibition of fibrinolysis. These 
changes result in the thrombotic vascular occlusion, followed 
by an aggravation of the blood and oxygen supply to cells and 
tissues, ultimately leading to microvasculature damage and mul-
tiple organ dysfunction syndrome (MODS) (5–7). Interestingly, 
several years before the suggestion of post-resuscitation disease, 
the no-reflow phenomenon, characterized by impaired reperfu-
sion after cerebral ischemia despite a stable systemic circulatory 
condition, was first reported by Ames et al (8). The severity of 
no-reflow depends on the duration of ischemia and is promoted 
by accompanying pathologies, including an activated coagula-
tion system (8–12).

These findings imply that coagulofibrinolytic changes in 
patients with PCAS are deeply involved in post-cardiac arrest 
brain injury, which is the leading cause of death in PCAS patients. 
Thus far, however, there has been little evidence regarding the 
optimum therapeutic strategy for patients with coagulofibrino-
lytic changes associated with PCAS.

In this review, the pathophysiology of coagulofibrinolytic 
changes associated with PCAS is summarized based on the previ-
ous findings. The prediction of the outcomes of PCAS patients 
and therapeutic strategies targeting coagulofibrinolytic disorders 
associated with PCAS are also reviewed.

PATHOPHYSiOLOGY

Whole-body ischemia/reperfusion due to cardiac arrest and sub-
sequent ROSC can produce SIRS, which is characterized by the 
release of systemic pro-inflammatory cytokines and generalized 
activation of leukocytes and endothelial cells. Recent advances in 
immunology have elucidated the involvement of innate immu-
nity for the process of SIRS (13). Damage-associated molecular 
patterns (DAMPs), which are molecules derived from stressed 
or damaged cells and tissues, are sensed by pattern-recognition 
receptors expressed on immune cells and endothelial cells. These 
sensed signals lead to the production of pro-inflammatory 
cytokines, which stimulates the production of inflammatory 
biomarkers (14).

Close interaction among coagulation, inflammation, and in nate 
immunity have been well investigated. Under normal conditions, 
the endothelium provides an anticoagulated surface including 
antithrombin, protein C/thrombomodulin system, and tissue fac-
tor pathway inhibitor (TFPI), along with the endothelial release 
of tissue-type plasminogen activator (t-PA), which dissolves 
forming clots. Coagulation and fibrinolysis after cardiac arrest are 
not adequately balanced due to the release of these inflammatory 
cytokines and DAMPs (12, 15).

A schematic illustration and the chronological changes in the 
coagulofibrinolytic status in patients with PCAS are shown in 
Figures 1 and 2, respectively.

Coagulation System
Procoagulants in the Systemic Circulation
Tissue Factor-Initiated Coagulation
Patients with PCAS are in a condition of hypercoagulation, as 
has been confirmed by previous studies showing increased levels 
of soluble fibrin (11, 15), fibrinopeptide A (16), tissue factor  
antigen (17), and thrombin–antithrombin complex (12). Ische-
mia (hypoxia)/reperfusion due to cardiac arrest and ROSC 
and subsequent excessive catecholamine release due to shock-
induced sympathoadrenal activation causes endothelial activa-
tion and injury. These changes induce the expression of tissue 
factor on the endothelial cells (18). Tissue factor exposed in the 
circulating blood binds to activated factor VII (FVIIa) (formerly 
known as the “extrinsic coagulation pathway”). This pathway is 
also facilitated by the exposure of perivascular tissue factor to 
the plasma compartment due to increased vascular permeability 
after ischemia/reperfusion (19). Tissue factor/FVIIa complex and 
ischemia itself activate factor X (FX), and the activated factor Va 
(FVa)/activated factor X (FXa) complex (FVa/FXa: prothrom-
binase) converts prothrombin into thrombin, which aggregates 
and activates platelets (20). Factors V, VIII, and IX in circulation 
bind to the activated platelets, resulting in a massive amount of 
thrombin generation (thrombin burst) by prothrombinase and 
activated factor VIII (FVIIIa)/activated factor IX (FIXa) complex 
(FVIIIa/FIXa: tenase) on activated platelets (20).

Inflammatory Cytokines
Inflammatory cytokines induce the expression of tissue factor 
in endothelial cells and monocytes (21). High levels of tumor 
necrosis factor-α (3, 22), interleukin (IL)-6 (3, 11), and IL-8 
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FiGURe 1 | A schematic illustration of the coagulofibrinolytic changes in patients with PCAS. Systemic ischemia/reperfusion leads to the activation of coagulation by 
the induction of TF on monocytes and endothelial cells, ultimately resulting in thrombin burst. DAMPs, including cfDNA, histones, and HMGB1, play a crucial role in 
the generation of thrombin via both TF-dependent pathways and XII-dependent pathways. The binding of thrombin to PARs produces several cytokines, which 
subsequently upregulate the expression of TF on endothelial cells and monocytes. Decreased levels of protein C and AT in circulation and reductions in AT, TM, 
TFPI, and EPCR on endothelial cells, which are caused by downregulation due to hypoxia and inflammatory cytokines and cleavage from the endothelium, are 
involved in the impairment of anticoagulant system. NE and the DAMP-mediated inhibition of the anticoagulant pathway also lead to the deterioration of the 
anticoagulant activity. t-PA is released from endothelial cells in the early phase of PCAS. PAI-1 increases 24 h after the onset of PCAS and keeps increasing in the 
late phase of PCAS, resulting in “no-reflow,” multiple organ dysfunction, and poor outcome. High concentrations of cfDNA also reduce the rate of fibrinolysis by 
competing for plasmin with fibrin. TM, thrombomodulin; PC, protein C; APC, activated protein C; EPCR, endothelial protein C receptor; AT, antithrombin; TFPI, 
tissue factor pathway inhibitor; PARs, protease-activated receptors; TF, tissue factor; HMGB1, high-mobility group box 1 protein; cfDNA, cell-free DNA; NE, 
neutrophil elastase; NETs, neutrophil extracellular traps; HMWK, high-molecular-weight kininogen; PAI-1, plasminogen activator inhibitor-1; t-PA, tissue-type 
plasminogen activator; Va, activated factor V; VIIa, activated factor VII; VIIIa, activated factor VIII; IX, factor IX; IXa, activated factor IX; X, factor X; Xa, activated factor 
X; XI, factor XI; XIa, activated factor XI; XII, factor XII; XIIa, activated factor XII; PCAS, post-cardiac arrest syndrome; DAMP, damage-associated molecular pattern. 
This figure was created by author.
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(3, 23) have been found in PCAS patients. Thrombin produced 
in this process not only converts fibrinogen to fibrin but also 
works as a potent pro-inflammatory factor through binding 
to protease-activated receptors (24), suggesting that systemic 
inflammation and coagulation activation shore up each other (11).  
On the basis of the concept that the pathophysiology in patients 
who achieve ROSC after cardiac arrest is similar to that observed 
in sepsis patients, Adrie et  al. named this unique syndrome 
“sepsis-like syndrome” (3). Both patients with sepsis and patients 
with PCAS exhibited the high levels of cytokines in comparison 
to the healthy control subjects, suggesting that patients in both 
groups suffered from systemic inflammation due to severe insult; 
however, the levels of cytokines in the PCAS patients were lower 
than those in the sepsis patients (3). This can be explained by 

the difference in the degree and period of insult between sepsis 
and PCAS. Whether PCAS should be referred to as sepsis-like 
syndrome remains controversial.

Damage-Associated Molecular Patterns
Recent observations have highlighted the important role of 
DAMPs, which can be actively released by ischemic or impaired 
cells and be involved in the development of DIC (25, 26). PCAS 
patients were found to have high levels of DAMPs, including cell-
free DNA (cfDNA) (27–30), DNA-binding proteins such as his-
tones (DNA–histones complexes) (30), and high-mobility group 
box 1 protein (HMGB1) (31). cfDNA binds factor XII (FXII) and 
high-molecular-weight kininogen and triggers FXII- and factor 
XI-dependent blood coagulation (32–34).
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FiGURe 2 | Chronological changes in the coagulofibrinolytic status of 
patients with post-cardiac arrest syndrome. The vertical axis shows the 
increases from the values of control subjects (times). A, thrombin activity;  
B, plasmin activity; C, tissue-type plasminogen activator activity;  
D, plasminogen activator inhibitor-1 activity; E, neutrophil elastase-mediated 
fibrinolytic activity.

4

Wada Coagulofibrinolytic Changes in Patients with PCAS

Frontiers in Medicine | www.frontiersin.org September 2017 | Volume 4 | Article 156

A recent study showed a positive correlation to exist between 
thrombin generation and endogenous cfDNA and that histones 
and DNA–histone complexes also enhance thrombin generation 
in sepsis patients (34). Histones are a key component of neutrophil 
extracellular traps (NETs), which contribute to vascular throm-
bosis and inflammation (35). A study including both experimen-
tal and clinical aspects demonstrated that circulating histones 
directly induced features of thrombosis and DIC (36). Histones 
are also involved in platelet aggregation (37) and the release of 
pro-inflammatory cytokines (38). Furthermore, histone–DNA 
complexes might be important clinical prognostic markers and 
predictors of multiple organ failure and mortality in patients 
with DIC (39). HMGB1, which drives inflammation and tissue 
repair during its release into the extracellular milieu, is known as 
a mediator of lethal systemic inflammation in patients with sepsis 
(40, 41). Monocytes activated by extracellular HMGB1 show the 
expression of tissue factor on their surface (42). In addition, neu-
trophils activated by extracellular HMGB1 induce the extrusion of  
NETs (43).

Most of these studies on the relationship between DAMPs and 
coagulation were performed to investigate the pathophysiology 
of sepsis-associated coagulopathy. However, these findings can 
be applied to PCAS-related coagulopathy because PCAS patients 
have high levels of DAMPs.

Impairment of Endogenous Anticoagulant Activity
Endothelial Activation and Injury
The impairment of the physiological anticoagulant pathways 
results in a deterioration of the hypercoagulant state in patients 
with PCAS. Previous studies showed that PCAS patients have a 
high level of soluble P-selectin due to the activation of platelets, 
endothelial cells, and leukocyte activation, which is evidenced 
by a low level of soluble L-selectin (44, 45). In addition, PCAS 
patients were found to have high levels of soluble intercellular 
adhesion molecule-1, soluble vascular cell adhesion molecule-1, 

and E-selectin, which are the main adhesion molecules respon-
sible for neutrophil attachment to endothelial cells (45, 46).  
These findings indicate that the pathophysiology of PCAS is 
involved in the neutrophil–endothelial interrelation followed 
by their activation, resulting in endothelial injury, which was 
confirmed by an increased level of soluble thrombomodulin  
(11, 44–48). These changes contribute to shedding, degrada-
tion, and/or the release of anticoagulants by endothelial cells, 
including thrombomodulin, endothelial protein C receptor, anti-
thrombin, and TFPI (11, 17, 48, 49).

Protein C and Thrombomodulin
Protein C and its cofactor protein S constitute a defense line 
against the excessive activation of coagulation. Protein C is 
converted to its active form, activated protein C (APC) by 
thrombin–thrombomodulin complex on the endothelial cell 
surface. APC degrades FVIIIa and FVa, attenuating thrombin 
production and fibrin formation. Decreases in protein C antigen 
(50), protein C activity (11, 50), and protein S activity (11) were 
confirmed in successfully resuscitated patients. The decrease in 
protein C can be explained by massive thrombin formation fol-
lowing ROSC and consequent rapid consumption of protein C 
in the circulation (50). It should also be noted that DAMPs, such 
as histones and HMGB1, inhibit the thrombin–thrombomodulin 
complex-mediated anticoagulant protein C pathway (42, 51).

Antithrombin
Antithrombin, which forms complexes with thrombin and 
inhibits thrombin and FXa, is one of the important anticoagu-
lant factors. Previous studies have confirmed reduced levels of 
antithrombin in PCAS patients (11, 52), particularly those with 
DIC (53), with a poor outcome (54), and with refractory shock 
(11). The reduction in the antithrombin levels may be caused 
by not only consumption through the formation of complexes 
with thrombin and protease but also extravascular loss due to 
increased vascular permeability (20, 55). In addition, degradation 
of antithrombin by neutrophil elastase (NE) may be a cause of 
antithrombin reduction (56).

Tissue Factor Pathway Inhibitor
Tissue factor pathway inhibitor is a major inhibitor of tissue 
factor-initiated coagulation. This inhibitor is bound to the 
endothelial surface and lipoproteins in the circulation. Low TFPI 
levels have been found in PCAS patients (17). High levels of NE, 
which cleaves TFPI, were confirmed in patients with PCAS in 
previous studies (15, 22, 46, 57). Therefore, NE may be one reason 
why the TFPI levels are decreased in patients with PCAS, which 
impairs the ability of TFPI to counteract tissue factor activity.

As a result of these changes, the anticoagulant system is 
impaired, leading to the acceleration of thrombin generation.

Fibrinolytic System
Acute Release of t-PA
In the early phase of PCAS, hyperfibrinolysis was confirmed 
by marked increases in t-PA antigen and activity (16) and high 
levels of plasmin-alpha2 plasmin inhibitor complex (a marker of 
plasmin formation) (11, 15, 52), d-dimer (11, 15, 52), and fibrin/
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FiGURe 3 | Serial changes in soluble fibrin (A) (a marker of thrombin activation) and plasmin-α2 plasmin inhibitor complex (PPIC) (B) (a marker of plasmin activation). 
Thirteen patients with post-cardiac arrest syndrome (PCAS) caused by cardiogenic cardiac arrest (black bars) and 13 patients with PCAS caused by hypoxia-related 
cardiac arrest were enrolled. The white bars represent control subjects (healthy adult). All results were expressed as the mean ± SEM. +p < 0.05 vs control subjects, 
*p < 0.05 cardiogenic group vs hypoxia group.
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fibrinogen degradation product (FDP) (15, 54), as well as based 
on the results of rotational thromboelastometry (ROTEM) (58). 
Whole-body ischemia/reperfusion and tissue hypoxia due to 
ROSC after cardiac arrest cause t-PA release from Weibel–Palade 
bodies in endothelial cells, leading to systemic hyperfibrinolysis 
(59, 60). A recent study demonstrated that the lactate levels, which 
reflect the degree of tissue hypoperfusion, is an independent 
predictor of developing PCAS-related DIC with hyperfibrinoly-
sis (53). This result is also supported by other studies regarding  
the significant relationship between hypoperfusion markers— 
including pH, base excess, and lactate—and hyperfibrinolysis 
detected by ROTEM in PCAS patients (61) and hyperfibrinolytic 
DIC resulting from asphyxia by drowning (62). Interestingly, no 
t-PA release was detected in the late phase of PCAS, leading to 
MODS caused by an imbalance between the activation of coagu-
lation and the activation of endogenous fibrinolysis (12, 16).

Fibrinolytic Shutdown
Plasminogen activator inhibitor-1 is the primary inhibitor of t-PA. 
Fibrinolytic shutdown due to increases in PAI-1 is a factor leading 
to the “no-reflow phenomenon” (12, 15). Contrary to t-PA, PAI-1 
is not stored within endothelial cells but is instead found in plasma, 
platelets, and extracellular matrix (63). However, PAI-1 mRNA is 
expressed under hypoxic conditions, and PAI-1 antigen appears 
within 6 h after hypoxia, with the peak levels achieved at 20–24 h 
after hypoxia (11, 63, 64). This increase in PAI-1, which has been 
confirmed at 24 h after the onset of PCAS (late phase of PCAS, not 
early phase), leads to fibrinolytic shutdown, resulting in MODS and 
a poor outcome (15, 65). In the early stage of PCAS, a moderate 
increase in the PAI-1 antigen has also been found (16). This increase 
may be due to the thrombin-activated release from platelets.

Interestingly, DAMPs appear to be involved in the develop-
ment of fibrinolytic shutdown. Physiologically, cfDNA enhances 
the activation of plasminogen by t-PA and concurrently sup-
presses fibrinolysis by potentiating the inactivation of t-PA by 
PAI-1 (66). However, higher concentrations of DNA attenuate 
fibrinolysis (66). In addition, DNA-histone complexes and 
histones make fibrin fibers thicker, resulting in the formation of 
more stable clots that are resistant to shear force (67).

Neutrophil-Mediated Fibrinolysis
Insufficient activation of fibrinolysis may also be associated with 
the pathophysiology of organ dysfunction in PCAS (15). Not only 
plasmin but also NE mediates the degradation of fibrin(ogen). 
The products degraded by NE (fibrin degradation product by NE, 
EXDP) are distinguished from plasmin digest (68, 69). A previous 
study revealed significant correlations between the levels of PAI-1 
and EXDP in PCAS patients without MODS, while there were 
no significant correlations between these values in patients with 
MODS. This result suggests that PCAS patients may be able to 
avoid developing MODS if NE-mediated fibrinolysis can make up 
for the fibrinolytic shutdown by PAI-1. However, the levels of NE 
in PCAS patients with MODS were high in comparison to those 
without MODS (15). These conflicting results may be explained 
by the noted evidence, which suggested that the changes in the 
levels of NE and EXDP differed from those observed in sepsis-
induced DIC (69). The precise role of NE in the pathophysiology 
of PCAS-associated DIC remains unclear.

Differences in Coagulofibrinolytic 
Changes by Causes of Cardiac Arrest
A recent study indicated that PCAS patients who suffer from 
cardiac arrest due to a hypoxic event exhibited severe thrombin 
activation and hyperfibrinolysis in comparison to patients who 
experience cardiac arrest due to a cardiogenic cause (Figure 3) 
(70). This result coincides with a previous report showing that 
asphyxia by drowning leads to severe hemorrhage due to hyperfi-
brinolytic DIC (62). Hypoxic PCAS is influenced by both hypoxia 
caused by circulatory arrest and pre-cardiac arrest hypoxia, fol-
lowed by more serious endothelial damage and coagulopathy. 
These results may be directly supported by the results of previous 
studies, indicating that the time from the onset of cardiac arrest 
to first CPR and the duration of CPR were primary causes of 
hyperfibrinolysis (61, 62, 71, 72) and that poor cerebral oxy-
genation during CPR in out-of-hospital cardiac arrest (OHCA) 
are associated with hyperfibrinolysis (72), suggesting that the 
degree of hypoxia is a significant determinant of the severity of  
PCAS-related DIC.
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TABLe 1 | Experimental studies on coagulofibrinolytic changes associated with cardiac arrest and “no-reflow phenomenon.”

Authors intervention Method effect

Ames et al. (8) Heparin Cerebral ischemia in rabbits Extended period of permissible ischemia and long-term survival

Kowada et al. (82)
Fischer et al. (83) Hemodilution with saline Cerebral ischemia in rabbits Improvement of cerebral circulatory impairment
Safar et al. (84) Combination of hypertensive perfusion, 

heparin, and dextran
Cardiac arrest in dogs Improvement of neurological deficit score and normalization of 

the electroencephalogram
Lin et al. (85) Combination of dextran and 

streptokinase
Cardiac arrest in dogs Improvement of impaired cerebral blood flow and normalization  

of the electroencephalogram
Fischer et al. (88) Heparin and recombinant tissue 

plasminogen activator
Cardiac arrest in cats Improvement of microcirculatory reperfusion

Teschendorf et al. (109) Recombinant human activated protein C Cardiac arrest in rats No deference of neurological deficit score. Failure to limit the 
inflammatory response to ischemic injury

Teschendorf et al. (110) Recombinant human activated protein C Cardiac arrest in rats No significant effect on wall shear rate and plasma extravasation
Johansson et al. (111) Antithrombin Cardiac arrest in piglets Failure to increase cerebral circulation or reduce reperfusion injury
Yin et al. (114) Shen-Fu injection (ginsenoside and 

acotinine)
Cardiac arrest in pigs Inhibition of coagulation–fibrinolysis disorders after cardiac arrest
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The Changes in the Coagulation System 
Due to Targeted Temperature 
Management (TTM)
Targeted temperature management is one of major standard 
therapeutic options for PCAS because it can improve survival 
and the neurological outcomes in PCAS patients through 
the attenuation of neurological injury caused by hypoxia and 
reperfusion injury (2, 73). However, as previous studies on the 
relationship between hypothermia and poor outcomes in patients 
with sepsis and trauma have shown (74, 75), TTM for PCAS may 
be associated with impairment of hemostasis, which may be 
followed by uncontrolled bleeding, especially in PCAS patients 
who have suffered thromboembolic cardiac events because they 
require effective antiplatelet therapy after primary percutaneous 
coronary intervention (76).

Nielsen et  al. investigated the changes in the coagulation of 
PCAS patients during TTM using ROTEM and standard coagula-
tion tests. They found that coagulation in hypothermia (33°C) 
was not substantially different from coagulation in normothermia 
(37°C) (77). Another previous study by Jacob et al. investigated 
whether the application of different levels of TTM (33 and 36°C) 
to patients with PCAS due to presumed myocardial infarction 
affected the coagulation system with regard to standard labora-
tory coagulation parameters and thromboelastography. The study 
found no evidence to suggest that 33°C temperature management 
has an adverse effect on coagulation or bleeding (76). These find-
ings indicate that TTM does not impair coagulation and that 
TTM can be safely applied to PCAS patients including those who 
require antithrombotic therapy.

PReDiCTiNG THe OUTCOMe  
OF PCAS PATieNTS

Numerous studies have investigated the factors associated with 
the risk of death in PCAS patients. Previous reports investigating 
the relationship between the risk of death in PCAS patients and 
the levels of d-dimer showed that the levels of d-dimer on admis-
sion were independent predictors of the 30-day mortality in 

patients with OHCA (78) and that the precardiac arrest d-dimer 
level could be a valuable predictor of immediate mortality after 
ROSC in patients with in-hospital cardiac arrest (79). A recent 
study investigated the correlation between the coagulofibrino-
lytic values and the outcome of PCAS patients combined with 
prehospital information. In this study, there were significant posi-
tive correlations between time from calling emergency medical 
services to ROSC and the FDP levels on admission, for which the 
cutoff point was able to predict a favorable neurological outcome 
with high accuracy (54).

DIC scores were also proven to be useful predictive factors for 
the outcome of PCAS patients. The Japanese Association for Acute 
Medicine DIC diagnostic criteria (80) independently predicted 
the 28-day mortality (53) and the severity of organ dysfunction 
associated with PCAS (15), which was evaluated in accordance 
to the Sequential Organ Failure Assessment scores (81). A high 
initial International Society of Thrombosis and Haemostasis DIC 
score was also an independent risk factor of both in-hospital 
mortality and an unfavorable outcome (71).

COAGULOFiBRYNOLiTiC SYSTeM AS  
A THeRAPeUTiC TARGeT FOR PCAS

Representative experimental studies on coagulofibrinolytic 
changes associated with cardiac arrest and the “no-reflow phe-
nomenon” and prospective clinical trials on thrombolytic therapy 
in PCAS are summarized in Tables 1 and 2, respectively.

experimental Studies on Therapeutic 
Targets for the “No-Reflow Phenomenon”
At the same time as the concept of “no-reflow phenomenon” was 
born, researchers naturally tried to develop therapy to combat 
this novel disease. Ames et al., who reported the “no-reflow phe-
nomenon” for the first time, suggested that heparin might help 
restore the blood pressure after ischemia/reperfusion to obtain a 
slightly better recovery and long-term survival (8, 82). They also 
exhibited the importance of hemodilution with saline, based on 
their experimental finding that the major cause of post-ischemic 
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vascular impairment was erythrocyte aggregation, which is fol-
lowed by increased blood viscosity in no-flow conditions (83). 
Thereafter, improved cerebral outcome after cardiac arrest was 
observed using a combination of hypertensive reperfusion, 
heparin, and dextran (84). Dextran was also found to improve 
the post-cardiac arrest cerebral blood flow when administered in 
combination with streptokinase (85).

Thrombolytic Therapy
Based on the results of experimental and clinical studies showing 
the efficacy of the administration of thrombolytic agents, such as 
t-PA, urokinase, and streptokinase, in the pathology of PCAS (12, 
86–90), the first prospective study of t-PA in cardiac arrest was 
conducted. This study demonstrated that thrombolytic therapy 
(t-PA combined with heparin in this trial) had a strong association 
with an improvement of mortality along with a favorable safety 
profile (91). However, the first prospective randomized, blinded, 
placebo-controlled trial in OHCA patients whose initial rhythm 
was pulseless electrical activity showed no evidence of a favorable 
effect of t-PA (92). Although some researches have reported the 
availability and safety of thrombolytic therapy in OHCA patients 
(93–96), a randomized, blinded, placebo-controlled trial assessing 
patients with witnessed OHCA due to presumed cardiac causes 
demonstrated no marked difference in the survival outcomes 
between tenecteplase and placebo. Furthermore, intracranial 
hemorrhaging occurred with significantly higher frequency in 
the tenecteplase group than in the placebo group. One possible 
reason for the apparent ineffectiveness of tenecteplase was sug-
gested to be the fact that antithrombotic and antiplatelet agents 
were not given during CPR or before arrival at the hospital due to 
concern about the bleeding risk (97). Since then, several studies 
encouraging the use of t-PA have been published (98, 99), but 
no guidelines or studies with high evidence levels supporting 
thrombolytic therapy in PCAS have yet been published. The 
guidelines for CPR and emergency cardiovascular care, which 
were published by the American Heart Association in 2015, 
recommended thrombolytic therapy as a reasonable emergency 
treatment option for patients with confirmed pulmonary 
embolism as the precipitant of cardiac arrest (Class IIa). These 
guidelines do not mention thrombolytic therapy as a manage-
ment in PCAS patients in whom the cause of cardiac arrest is 
undetermined (100).

Anticoagulant Agents
A lot of experimental studies showing the efficacy of antico-
agulants in treating critical organs with ischemia/reperfusion 
injury have been reported. APC was proven to attenuate 
ischemia/liver (101), spinal cord (102), and brain (103, 104). 
Antithrombin also attenuated ischemia/reperfusion injury in 
the intestines (105) and kid neys (106). In addition, recent studies 
have suggested that both antithrombin and APC are protective 
against myocardial ischemia and reperfusion injury (107, 108). 
To our best knowledge, however, no studies have been shown 
the beneficial effects of these anticoagulant properties on sys-
temic ischemia/reperfusion injury. Quite to the contrary, the 
findings from two experimental studies in rats do not support 
the effect of protein C on PCAS pathology (109, 110), and the 
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administration of antithrombin offered no positive effects on 
the cerebral circulation and reperfusion injury in piglets (111). 
Recent studies have indicated that these anticoagulants exert not 
only antithrombotic effects but also anti-inflammatory effects. In 
particular, there have been some clinical investigations showing 
the efficacy of antithrombin in the treatment of DIC associated 
with sepsis (112, 113). One possible explanation for the failure of 
previous studies to prove the effectiveness of these agents against 
PCAS pathology may be pathophysiologic differences between 
sepsis and PCAS (110). Ischemic injury and the subsequent 
inflammatory and coagulation reactions may not be of sufficient 
severity for anticoagulant agents to show a beneficial effect (109). 
Other possible reasons may include the limited intensity of 
inflammation and coagulation in the model used in these studies 
and the dose, timing, or/and duration of drug administration  
(109, 111). A clinical study should be performed to clarify the 
effects of anticoagulant agents in PCAS patients.

Others
Urinastatin, a trypsin inhibitor, suppresses the increase in elastase 
by direct proteolysis, neutrophil inhibition, and sup pression of 
elastase release from activated neutrophils. A prospective single-
center randomized trial showed that while the administration of 
urinastatin significantly inhibited the increase in elastase after 
ROSC, it failed to improve the clinical outcome (57).

Recent studies on Shen-Fu injection have produced inter-
esting findings. This is the typical form of Shen-Fu decoction, 
which has been used in China for a long time. The main active 
ingredients of Shen-Fu injection are ginsenoside and aconitine 
(114). Previous studies have reported that Shen-Fu injection 
can minimize PCAS-associated brain edema (115), myocardial 
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