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Abstract: Gut microbiota (GM) play a role in the metabolic health, gut eubiosis, nutrition, and
physiology of humans. They are also involved in the regulation of inflammation, oxidative stress,
immune responses, central and peripheral neurotransmission. Aging and unhealthy dietary patterns,
along with oxidative and inflammatory responses due to gut dysbiosis, can lead to the pathogenesis
of neurodegenerative diseases, especially Alzheimer’s disease (AD). Although the exact mechanism
between AD and GM dysbiosis is still unknown, recent studies claim that secretions from the gut can
enhance hallmarks of AD by disturbing the intestinal permeability and blood–brain barrier via the
microbiota–gut–brain axis. Dietary polyphenols are the secondary metabolites of plants that possess
anti-oxidative and anti-inflammatory properties and can ameliorate gut dysbiosis by enhancing the
abundance of beneficial bacteria. Thus, modulation of gut by polyphenols can prevent and treat
AD and other neurodegenerative diseases. This review summarizes the role of oxidative stress,
inflammation, and GM in AD. Further, it provides an overview on the ability of polyphenols to
modulate gut dysbiosis, oxidative stress, and inflammation against AD.

Keywords: antioxidants; anti-inflammation; neurodegeneration; microbiota-gut-brain axis; gut dys-
biosis

1. Introduction

The imbalance between oxidants and antioxidants in living organisms that occurs
due to the inappropriate functioning of the antioxidant system or excess level of reactive
oxygen species (ROS)/reactive nitrogen species (RNS) is known as oxidative stress [1]. On
the other hand, inflammation is a complex set of interactions between cells and soluble
factors. It arises in any tissue as a protective and adaptive response of the innate immune
system during injury to re-establish the homeostasis of damaged tissues [2,3]. The proper
regulation of the inflammation mechanism is necessary to avoid uncontrolled amplification
and prevent the change from the normal tissue repair toward diseases onset and collateral
damage [4]. An uncontrolled generation of reactive species triggers the production of
more highly reactive species (a condition of oxidative stress) and ensuing perpetuation
of inflammation. The excessive reactive species can damage the structure of DNA, lipids,
and protein and can lead to aging [5]. In addition, it can promote cell death that activates
necrosis, apoptosis, and extracellular matrix breakdown and releases various intracellular
and extracellular factors to hyperactivate the inflammatory cascade, resulting in increased
oxidative stress and free radical production in a vicious circle [6]. Both oxidative stress
and inflammation give rise to the etiopathogenesis of many chronic disorders including
cancer, diabetes, metabolic syndromes, and cardiovascular and neurodegenerative dis-
eases [7]. However, under normal physiological conditions, free radicals and inflammation
are important for the prevention of chronic degenerative diseases and the maintenance
of human well-being. In addition, ROS and RNS take part in the regulation of many
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molecular pathways such as differentiation, metabolism, survival, proliferation, and iron
homeostasis [4,5].

Human intestines comprise an intricate ecological colony of microorganisms known
as gut microbiota (GM), and approximately 100 trillion microorganisms live in the human
gut [8]. Recently, research has been shifted from the diversity and abundance of GM to
their functional aspects. Shabbir et al. [9] stated that GM take part in metabolic, neural,
immune, and defence mechanisms and have an impact on the host in health and disease.
Moreover, GM ferment resistant starch and dietary fibres, releasing short-chain fatty
acids (SCFA: acetate, butyrate, and propionate), gamma-aminobutyric acid, serotonin,
dopamine, glutamate, and acetylcholine. The impairment of GM composition, known as
dysbiosis, can lead to several metabolic disorders such as ulcerative colitis, type 2 diabetes,
obesity, colorectal cancer, and cardiometabolic and metabolic liver disease. Other than
metabolic diseases, dysbiosis also contributes to neurological disorders, including anxiety,
bipolar disorder, depression, obsessive-compulsive disorder, epilepsy, and Parkinson’s
and Alzheimer’s disease (AD) through the microbiota–gut–brain axis (MGBX). However,
the actual relationship and mechanism between gut dysbiosis and neurodegeneration is
elusive [10].

Studies are revealing that complex interactions between GM influence oxidative stress
and inflammation and resists counter-regulatory mechanisms of antioxidants. Nutritional
interventions can be an effective approach to treat gut dysbiosis. Additionally, dietary
polyphenols and their metabolites (via metabolism of GM) may regulate the oxidative and
inflammation state of the central nervous system and can be potent agents against AD
and other neurodegenerative diseases. The current paper offers an overview on the role of
oxidative stress, inflammation, and GM in the pathogenesis of neurodegenerative diseases,
especially AD. Additionally, the potential implications of polyphenols on GM modulation
to reduce oxidative stress and inflammation to prevent and treat AD are addressed.

2. Inflammation and Oxidative Stress

Inflammation and oxidative stress are closely associated in the pathophysiological
events where redox homeostasis (endogenous capacity of cells to deal with challenges
that generate electrophiles [10] perpetually) is disrupted due to the imbalance of oxidants
and reductants [11]. The leading factors that enhance chronic inflammation are the uncon-
trolled production of pro-inflammatory cytokines, oxidative stress, chronic infections, and
alterations in the metabolism of adipose tissues. The NADPH oxidases (NOXs) and mito-
chondria are the primary cellular sources of ROS throughout the mitochondrial electron
transport chain. Moreover, Complexes I and III of the electron transport chain are the main
source of ROS production in mitochondria [12]. Parra-Ortiz et al. [13] stated that oxidative
stress instigates several modifications in lipids that generate oxidized- specific products
(e.g., oxidized low-density lipoprotein or cholesteryl-esters that stimulate macrophages
via toll-like receptor-4 (TLR4) and spleen tyrosine kinase) that excite inflammation and
induce immune responses [14]. Further, generation of ROS in adipocytes perpetuates
chronic inflammation and stimulates pro-inflammatory adipokines in the target tissue [13].
Additionally, modulation of macrophages activities due to the bioenergetics and metabolic
alteration increase phospholipid oxidation in tissues that leads to the modification of
membrane properties and stimulate inflammation [15]. Moreover, secretions from acti-
vated macrophages such as interleukin (IL)-6, tumor necrosis factor-α (TNF-α), and other
pro-inflammatory molecules (such as NO, NO synthase, cyclooxygenase-2, and ROS) can
damage DNA via oxidation [16].

Regarding molecular mechanisms, Battino et al. [7] reported that ROS activate redox-
sensitive transcription factors, activator protein-1, their up-regulating kinases (especially
posphoinositide 3-Kinase, extracellular signal-regulated kinases, c-Jun N-terminal kinase,
and mitogen-activated protein kinases), and nuclear factor kappa-light-chain-enhancer of
activated B cells (NF-κB) have a significant contribution in the pro-inflammatory responses.
Studies have been reported that NF-κB, chemokines, and pro-inflammatory cytokines
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(e.g., IL-1β, IL-6, IL-2, IL-12, and TNF-α) recruit the neutrophils and the macrophages to
the inflammation site, reinforcing the formation of oxidative species by neutrophils and
macrophages which lead to the inflammation [17]. Moreover, Raucci et al. [6] and Shah
et al. [18] stated that endoplasmic reticulum and mitochondrial dysfunction might be due
to the excessive production of ROS that activates necrosis and apoptosis. Due to the release
of high mobility group box-1 (HMGB1) through various receptors of the TLR4-dependent
pathway, the necrotic tissues are responsible for the inflammation. HMGB1 as a repre-
sentative damage associated molecular pattern (DAMP) protein has been documented
to be involved in inflammatory diseases related to brain including stroke, epilepsy, trau-
matic brain injury, and hypoxic-ischemic brain injury [19,20]. Hatayama and Stonestreet
et al. [19] revealed that HMGB1 translocate in damaged neurons from nucleus to cyto-
plasm and is released to extracellular as DAMP. They bind to receptors such as TLR4 or
receptors for advanced glycation end products on astrocytes and activate them, releasing
ROS, pro-inflammatory cytokines, matrix metalloproteinases, and chemokines, resulting in
endothelial activation neutrophil attraction and damaging the blood-brain barrier (BBB).
Neutrophils in blood vessels of the brain are activated and migrate to brain parenchyma
through the damaged BBB. The activated neurological cells and migrated neutrophils
release ROS, NO, and pro-inflammatory cytokines that lead to neural cell death. Figure 1
represents the role of oxidative stress is neuroinflammation and neurodegenration.
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Figure 1. The oxidative stress leads to neuroinflammation and neurodegenration. In homeostatic conditions, astrocytes
release antioxidants by degrading reactive oxygen species, uptake and metabolism of neurotransmitters, provide energy and
neurotrophin. In pathological conditions, astrocytes could be activated via stimulation from activated microglia. Therefore,
high levels of oxidative stress activate signalling pathways that activate microglia and astrocyte (major glial inflammatory
characters). Pro-inflammatory factors secreted by glial cells induce a neuroinflammatory response that disrupts the blood
brain barrier’s integrity and infiltrates into the brain, secreting factors that lead to neurodegeneration, in which the
most characteristic feature is neuron injury and death. iNOS: inducible nitric oxide synthase, COX-2: cyclooxigenase-2,
NOX: NADPH oxidase, IL: interleukin, TNF-α: tumor necrosis factor alpha.
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Furthermore, HMGB1 with extracellular ATP, phagocytosis, NOX, Cathepsin B, and
phagolysosomes disruption activate nucleotide-binding oligomerization domain leucine-
rich repeat containing protein 3 (NLRP3) inflammasome, which enhances ROS produc-
tion, thioredoxin, thioredoxin-interacting protein, and spark inflammasome activating
signals that increase the agglomeration of inflammasome. The NLRP3 inflammasome
also contributes to systematic inflammation and increases age-related diseases (especially
neurodegenerative diseases) [21,22].

3. GM, Oxidative Stress and Inflammation

GM play several roles in the host, such as immune responses (as independent produc-
tion of IgA antibodies, induction of T cell-dependent, promotion of IL-10, and mucosal
Th17 cell response from intestinal macrophages), protection against pathogen colonization,
and intestinal epithelial barrier protection. Among other functions of the GM, the produc-
tion/regulation of oxidative stress is the most interesting one. It has been reported that the
epithelial lining of the gut and other cell types in the presence of microbiota generate ROS.
Additionally, intestinal tissues, commensal anaerobes, and leukocytes are a rich source
of NO (the neurotransmitter of the non-cholinergic and non-adrenergic nervous system
that exerts a neuroprotective function). Gut bifidobacteria and lactobacilli convert nitrite
and nitrate in NO and increase the release of NO by host epithelial cells [23]. In addition,
gut bacilli and streptomycetes produce NO via NO synthetase from L-arginine. Aberrant
production of NO generates ROS associated with cellular damage, neuroinflammation,
neurodegenerative disorders, and axonal degeneration [24]. Moreover, Salmonella, E. coli,
and other bacteria break sulphur amino acids and produce hydrogen sulphide in the
gastrointestinal tract (GIT). Higher levels of hydrogen sulphide inhibit cyclooxygenase
activity, shift the metabolism towards glycolysis, increase lactate, decrease ATP production,
and decrease mitochondrial oxygen consumption and overexpression of pro-inflammatory
effects [25]. Other than that, He et al. [26] disclosed that trimethylamine N-oxide (TMAO;
GM metabolite) is involved in oxidative stress and associated with aging and exhibited
increased plasma levels of monocyte chemoattractant protein-1, IL-1β, and TNF-α, along
with higher and lower plasma concentration of malondialdehyde and glutathione per-
oxidase/superoxide dismutase activities (implying oxidative stress). Loffredo et al. [27]
and Kesika et al. [28] revealed that gram-negative bacteria (such as E. coli and Shigella)
increase the production of amyloids and lipopolysaccharides (LPS) that induce local sys-
tematic inflammation and give rise to dysfunction in the permeability of GIT and BBB
function during dysbiosis. GM dysbiosis increases pro-inflammatory bacteria such as
Escerchia/Shigella, Verrucomicrobia, Pseudomonas aeruginosa and Proteobacteria and decrease
the anti-inflammatory bacteria such as Bifidobacterium, Bacteroides fragilis, Eubacterium hallii,
Eubacterium rectale, Bacillus fragilis, and Faecalibacterium prausnitzii that promote inflamma-
tion and contribute to neurodegenration [29]. Table 1 represents the neurodegenerative
diseases induced by oxidative stress and inflammation due to gut dysbiosis.

Table 1. Neurodegenerative diseases influenced by the change of GM (induced by oxidative stress and inflammation).

Disease Study Change in GM Findings Reference

Major Depressive
Disorder

Human (n = 36)

Phylum Firmicutes and
Actinobacteria were

overrepresented, ↑Bifidobacterium
and Blautia at the genus level.

Sucrose, starch and pentose
phosphate metabolism were

important pathways for
depression via GM functions.

[30]

Human (n = 90)

Paraprevotella showed positive
correlation while Clostridia,

Clostridiales, Firmicutes, and the
RF32 order negatively correlated

with depression.

Integrity intestinal and
inflammation markers were
linked with the response to

treat the MDD.

[31]
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Table 1. Cont.

Disease Study Change in GM Findings Reference

Anxiety

Human (n = 9)
↑Fusobacterium, Ruminococcus

gnavus, and Escherichia/Shigella
↓Microbial richness and diversity.

Enhanced gut permeability
and the abundance of

pro-inflammatory bacteria
linked with

neuroinflammation.

[32]

Human (n = 36)

↑Bacteroidaceae, Bacteroides,
Betaproteobacteriales,

Burkholderiaceae, Tyzzerella 3,
Escherichia/Shigella, Hungatella,

Enterobacteriales, and
Enterobacteriaceae.

The abundance of
Ruminococcaceae_UCG-014,

Eubacterium_coprostanoligenes
group, and Prevotella_9 was
negatively associated with

anxiety severity and positively
with anxiety reduction,

whereas Escherichia/Shigella
and Bacteroides was positively

correlated with
anxiety severity.

[33]

Obsessive-Compulsive
Disorder Human (n = 43)

↓species richness, evenness, and
abundance of Anaerostipes,

Odoribacter, and Oscillospira.

C-reactive protein was
increased that demonstrated
mild to strong linkage with

psychiatric symptomatology.

[34]

Parkinson’s Disease

Human (n = 40)

↑relative abundance of
Ruminococcaceae and

Rikenellaceae family and
Barnesiella, Alistipes, Odoribacter,

and Butyricimonas genera.

Significant enhancement in
genera from the

Porphyromonadaceae family
and decrease in the abundance

of genera Blautia and
Ruminococcus was observed in
PD patients with compromised

cognitive ability.

[35]

Human (n = 111) ↑Firmicutes enterotype
↓Prevotella enterotype

Increased intestinal
inflammatory responses,

reduced SCFA level, and shifts
in microbiota-host interactions

between earlier PD onset.

[36]

Schizophrenia Human (n = 194) ↑Bacteroidetes, ↓Firmicutes
and Actinobacteria

Metabolic disturbance (levels
of glucose, low-density

lipid-cholesterol, high-density
lipid-cholesterol, triglyceride,

and homeostasis model
assessment of insulin

resistance) was observed in
the patients.

[37]

Bipolar Disorder

Human (n = 46) ↓microbiota diversity,
↑Clostridiaceae and Collinsella

Differences in GM colonization
may modulate metabolic and
metabolomic alterations and

other biological processes such
as inflammation.

[38]

Human (n = 53) ↓Bacteroidetes, ↑Actinobacteria
and Firmicutes

Change in GM can be a
potential biomarker. [39]

Dementia Human (n = 77)
↓Clostridia, Clostridiales

Ruminococcaceae, Firmicutes, and
Ruminococcus

Decrease in indole-3-pyruvic
acid and SCFA producing
bacteria as a signature for

discrimination and prediction
of dementia.

[40]
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Table 1. Cont.

Disease Study Change in GM Findings Reference

Epilepsy

Human (n = 40)

↑Delftia, Campylobacter, Lautropia,
Haemophilus, and Neisseria genera
among Proteobacteria phylum and

Leptotrichia and Fusobacterium
genera among

Fusobacteria phylum

Inflammation and
autoimmune mechanisms due

to the taxonomic drift and
differences in the intestinal

microbiota have a role in the
etiology of epilepsy.

[41]

Human (n = 44)

↑Ruminococcus_g2 and Bacteroides
finegoldii in drug-resistant group,
Negativicutes from Firmicutes in

drug-resistant group and
Bifidobacterium in all patients.

Alteration in GM can be a
biomarker to evaluate and

diagnose the treatment
response in patients.

[42]

Huntington’s Disease R6/2 HD mice ↑abundance of Bacteroidetes
and ↓Firmicutes

Different compositions of
Bacteroides, Coprobacillus,

Enterobacteriaceae, Lactobacillus,
and Parabacteroides were found

in diseased animals.

[43]

↑: Higher/increased, ↓: Lower/decreased, PD: Parkinson’s disease, SCFA: short-chain fatty acids, MDD: Major depressive disorder,
GM: gut microbiota, R6/2 HD mice: expressing exon 1 of the Huntington’s disease gene, n: number of total patients taken part in the study
but the columns of change in GM and findings are only representing the data of diseased ones.

4. Alzheimer’s Disease

Dementia is a general term for loss of memory, thinking ability, language, judgement,
and behaviour that can deteriorate daily life activities [44]. According to Alzheimer’s
Disease International, someone in the world develops dementia in every 3 s. About
50 million people have dementia globally, and this figure is expected to double in the next
20 years. Low and middle-income countries suffer the most and have around 60% of cases,
which is supposed to increase (71%) by 2050 [45]. AD is the most progressive disease of the
brain, comprising about 60–80% of cases of dementia and posing difficulties for families
and society and a severe burden on the economy [46]. People suffering from AD may
have difficulty in remembering names and recent conversions, and can have anxiety or
depression in the early stages. The conditions continue to worsen over the years, leading to
confusion, behavioral changes, disorientation, and ultimately facing problems in speaking,
walking, swallowing, and needing extensive care [47]. The development of amyloid-beta
(Aβ) plaques (Aβ-oligomers and Aβ peptides), neurofibrillary tangles, oxidative stress,
neuroinflammation in the nerve cells, mitochondrial dysfunction, and insulin resistance
are the hallmarks of AD [46,48,49].

4.1. Microbiota-Gut-Brain Axis and AD

More than 2000 clinical trials have targeted Aβ plaques, neurofibrillary tangles, and
other biomarkers but have been failed to treat AD [50]. Thereby, recent findings claim
that MGBX is the bidirectional pathway that communicates through vagal and spinal
nerves between gut and brain via endocrine, immune, metabolic, and neural pathways
(Figure 2) and take part in the pathophysiology of AD [51]. The pro-inflammatory cytokines
and bacterial metabolites (TMAO, SCFA, amyloids, LPS, and peptidoglycans) can enter
into circulation via leaky gut, and can reach the brain and contribute to brain aging and
cognitive decline [52,53]. Furthermore, they can interfere with Aβ1-40 and Aβ1-42 peptide
interactions and hyperphosphorylation of tau, and activate glial cells leading to neurotoxic
Aβ plaque formation, neuroinflammation, and neuronal degradation [54,55].
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Figure 2. The microbiota-gut-brain axis is the bidirectional pathway between intestinal microbiota, the gut, and the central
nervous system. It can be modulated by gut microbiota through endocrine (cortisol), neural (enteric and vagus nervous
system), and immune (cytokines) systems. Microbial metabolites (LPS, GABA, SCFA, and PPG) and other neurotransmitters
also participate in GM modulation. Gut dysbiosis can alter the tryptophan levels, hormones, SCFA, immune system, and
gut permeability. Furthermore, release of cytokines and chemokines contribute to neuroinflammation and activate HPA axis
(affecting gut permeability, barrier function, and immune cells through the secretion of cortisol). HPA axis: hypothalamic-
pituitary-adrenal axis, ACTH: adrenocorticotropic hormone, CRF: corticotropin-releasing factor, LPS: lipopolysaccharides,
GABA: y-aminobutyric acid, PPG: peptidoglycans, SCFA: short-chain fatty acids.

4.2. Oxidative Stress, Inflammation and AD: The Role of GM

Although AD is a neurodegenerative disease, preclinical and clinical studies evidently
suggest altering GM is linked with AD development. The involvement of oxidative stress
in the key events to initiate neural loss is clear, but determination of the immediate role of
oxidative stress in the neurodegeneration process is still elusive. Markers of lipid perox-
idation and high levels of protein oxidation markers (e.g., carbonyl) have been detected
in both AD animal and human studies [27,56]. In this context, eubiosis in GM compo-
sition can exhibit a positive role in the reduction of reactive species through SCFA such
as butyrate, while dysbiosis may contribute to systematic inflammation, activation of
microglia, and BBB damage [46]. Moreover, trimethylamine is metabolized by GM, then
conveyed to the liver and broken into TMAO upon oxygenation, and has been found in
the cerebrospinal fluid of AD and mildly cognitively impaired (MCI) patients [53]. Addi-
tionally, Botchway and colleagues suspected that increased circulatory levels of TMAO can
instigate overexpression of cytokines to elevate oxidative stress and endothelial function
that results in AD and other neurodegenerative diseases [56]. A recent study on ADLPAPT

mice (carry amyloid precursor protein (APP), tau, and presenilin-1, with six mutations)
disclosed that daily transfer of fecal microbiota alleviated a myriad of AD-related patho-
logical signs and features, including gliosis, Aβ accumulation, tau-pathology, and MCI. In
addition to that, alteration in GM aggravated the gut permeability which resulted in system-
atic and intestinal inflammation [57]. Another study disclosed that inflammation-related
taxa such as Blautia, Desulfovibrio, Escherichia-Shigella, and Akkermansia were distinctly
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changed in the APP/PSI transgenic mice (a chimeric mouse with human APP and a mutant
human presenilin 1 [58]) [59]. Further, a clinical study by Wu et al. [40] revealed that
alteration in GM composition is linked with pre-onset amnestic MCI and dementia AD.
Saji et al. also found that higher levels of Enterotype I and III bacteria are associated with
the occurrence of dementia [60]. Additionly, the abundance of Bifidobacterium, Blautia,
Lactobacillus, and Sphingomonas was found higher than Anaerobacterium, Papillibacter, and
Odoribacter in AD patients [61]. Furthermore, the abundance of Firmicutes, Proteobacteria,
and Tenericutes at phylum, Enterobacteriaceae, Coriobacteriaceae, and Mogibacteriaceae at fam-
ily, Phascolarctobacterium and Coprococcus at genus levels was observed higher in the pa-
tients with MCI [62]. Nagpal et al. [63] revealed that not only gut bacteria contribute to
AD markers but fungal-bacterial co-regulation networks also. The higher proportion of
Phaffomyceteceae, Sclerotiniaceae, Cystofilobasidiaceae, Togniniaceae and Trichocomaceae families,
Botrytis, Cladosporium, Kazachstania, and Phaeoacremonium genera and lower abundance
of Meyerozyma were observed in the patients with MCI. Above-mentioned studies are
corroborating GM as a unique factor that has the potential to affect cognitive health and
can contribute to AD. Thus, diet or specific bioactive components that have the ability to
modulate GM can act as potential therapeutics in MCI and AD.

5. Polyphenols

Dietary polyphenols) are a group of phytochemicals that are naturally present in
fruits and vegetables with potential health-promoting effects (e.g., anti-inflammatory, an-
tioxidant, and anti-mutagenic [64,65]). Polyphenols exist in the following forms, (1) free
form (such as aglycones), (2) polymers or oligomers (i.e., macromolecules), and (3) deriva-
tives (e.g., glycosylated aglycones, acylated, or esterified). They are classified as either
flavonoid (anthocyanins, flavones, flavonols, flavanones, flavanols, and isoflavones) or
non-flavonoid (stilbenes, lignans, tannins, phenolic acids, and hydroxycinnamic acids) [66].
Polyphenols exert positive effects and have a broad spectrum of biological activities against
many human diseases such as type-2 diabetes mellitus, cancer, cardio-metabolic diseases,
and neurodegenerative diseases, as well as having potential to modulate gut dysbiosis
(Figure 3) [67]. However, due to the extensive metabolism by phase-I and II enzymatic
reactions and poor absorption, their bioactivity on targeted organs is significantly less.
Moreover, their transformation into another chemical structure before reaching the site
of action may affect their health benefits [68]. Additionally, structural stability, the im-
pact of food matrices, solubility, interaction with GM, etc., also affect the bioavailability
of polyphenols. To overcome the bioavailability issues and utilization of the beneficial
properties of polyphenols, different techniques can be used, such as nanoencapsulation,
microencapsulation, fermentation, or germination [8,69].

5.1. Anti-Oxidative Properties of Polyphenols

In the human diet, the most abundant antioxidants are dietary polyphenols. They
can neutralize free radicals through transferring electrons/hydrogen atoms and decrease
cell apoptosis via modulation of mitochondrial dysfunction. Further, they can reduce the
production of hydroxyl radicals (metal-dependent) along with the chelation mechanism
and instigate the nuclear factor erythroid 2-related factor 2 by inducing endogenous
antioxidant enzymes [70]. They can scavenge expression of genes, ROS and RNS and
activate redox-responsible transcription factors to modulate coding antioxidants, pro-
survival neurotrophic factors, and anti-apoptotic Bcl-2 protein family. In addition, they
can modulate the mitochondrial apoptosis system in promoting or preventing ways and
can regulate mitochondrial biogenesis, autophagic degradation, and dynamics (fission and
fusion) [71]. The ability of polyphenols to scavenge radicals primarily depends on the
position and number of the OH groups connected with the aromatic rings [72]. In addition
to OH groups, polyphenols with two or more groups –NR2, –PO3H2, –COOH, –O–, –SH,
C=O, and –S– groups can enhance the chelation of metal ions [73]. For instance, the SH-
SY5Y cells were pre-treated with butein, scopoletin, and isoliquiritigenin that protected the
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cell death induced by H2O2 and decreased ROS and apoptotic cells [74]. Table 2 summarizes
the effects of different polyphenols on oxidative stress and inflammation (biomarkers).

1 
 

 
Figure 3. Potential health-promoting effects of dietary polyphenols and their role in gut microbiota modulation. ↑increase, ↓decrease.

5.2. Anti-Inflammatory Properties of Polyphenols

Many studies have stated that an increased level of pro-inflammatory molecules can
act as aging indicators. However, the particular mechanisms to relate age-related diseases
with inflammation and the reason why old age people are vulnerable to inflammation
are still elusive [70]. As an anti-inflammatory agent, polyphenols (such as galangin,
luteolin, quercetin, and epigallocatechin-3-gallate) can modulate or suppress the NF-κB
activation pathway at different steps that entirely depends on the chemical structure of
polyphenols [75]. Further, sirtuins 1 (family of mono-ADP-ribosyltransferase and NAD+-
dependent deacylase) can inhibit and deacetylate transcription of p65 subunit of NF-κB at
lysine 310 and as a result, attenuate NF-κB induced inflammatory signalling transductions.
Polyphenols including quercetin [76], caffeic acid phenylethyl ester [77], hydroxycinnamic
acids [78], and ferulic acid [79] activated sirtuins 1 in different study models and identified
to protect against the senescence-associated secretory phenotype via NF-κB pathway
inhibition. Other than NF-κB, polyphenols can also modulate the NLRP3 inflammasome,
e.g., apigenin (flavone class) decreased the LPS-induced IL-6 and IL-1β production via
inhibition of caspase-1 activation by interfering with the NLRP3 inflammasome assembly
in mouse J774A.1 macrophages [80]. Rutin [81], quercetin [82], and anthocyanins [83]
in rats or cultured cells suppressed NLRP3 inflammasome activation that restricted the
related inflammatory pathways (Table 2).

Table 2. Summary of the effects of polyphenols on oxidative stress and inflammation (biomarkers).

Polyphenols Study Findings Reference

Anthocyanins
Mouse microglial cells ↓IL-1β, TNF-α, and NO release, NF-κB nuclear

translocation, COX-2 and iNOS expressions. [84]

Human ↓IL-6, IL-18, and TNF-α [85]

Quercetin

Mouse BV2 microglial cells
and mice

↓Oxygen glucose deprivation induced expression of
inflammatory factors and TLR4/MyD88/NF-κB

signalling. Ameliorated cognitive, cerebral infarct
volume and motor function in mice.

[86]

Wistar rats
↑Activity of enzymatic antioxidants and sirtuin 1,
↓NF-κB and IL-1β levels, increased IL-10 and

modulated AMPK/SIRT1/NF-κB signaling pathway.
[87]
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Table 2. Cont.

Polyphenols Study Findings Reference

Resveratrol SH-SY5Y neuronal cells
↓TNF-α, IL-1β, mitochondrial, and cytosolic ROS,

improved the intracellular Ca2+ responses and
mitochondrial function.

[88]

Curcumin Sprague-Dawley rats ↓iNOS, COX-2 expression and inflammatory factor [89]

Epigallocatechin Gallate

SPF Wistar rats
↓Acetyl-CoA carboxylase, NF-κB, and free fatty acid
synthase and ↑fatty acid binding protein-1, carnitine

palmitoyltransferase II and sirtuin 1.
[90]

WI-38 cells ↑Antioxidant enzymes, superoxide dismutase 1 and 2
and ↓IL-32 and TNF-α expression. [91]

Luteolin Wistar rats
↓ Oxidative stress parameters, levels of NF-κB,
malondialdehyde, and hydrogen peroxide and

↑glutathione S-transferase.
[92]

Kaempferol C57 BL/6J mice
↓TNF-α and IL-6, and the activation of NF-κB and

↑NRF2/HO-1 signaling pathway and
level antioxidants

[93]

Myricetin Wistar rats

↓Markers of inflammation such as NF-κB, IL-6, TNF-α,
and NRF2, ↑xanthine oxidase activity and phase-II
detoxifying enzyme activity and ameliorated lipid

peroxidation

[94]

Green Tea polyphenols C57BL/6 mice
↓NLRP3 inflammasome expression, NRF2 pathways,

hepatic inflammatory damage and
immunological reaction

[95]

Grape Seed Extract
Human colorectal

adenocarcinoma cell line
Caco-2

↓Pro-inflammatory cytokine gene expression,
intracellular ROS and mitochondrial superoxide
production, ↑anti-inflammatory cytokines, and

mitochondrial membrane potential.

[96]

↑: Higher/increased, ↓: Lower/decreased, NRF2: Nuclear factor-erythroid factor 2-related factor 2, NF-κB: nuclear factor kappa-light-
chain-enhancer of activated B cells, IL: interleukin, TNF-α: tumor necrosis factor-α, NO: nitric oxide, iNOS: inducible nitric oxide synthase,
ROS: reactive oxygen species, COX-2: cyclooxygenase-2, NLRP3: Nod-like receptor family, pyrin domain containing 3.

5.3. GM and Polyphenols

The relationship between GM and polyphenols is bidirectional as GM bio-transform
polyphenols and polyphenols modulate GM. Very low (5–10%) absorption of polyphenols
takes place in the small intestine while 90–95% absorption occurs in the large intestine, but
bio-transformation of polyphenols in the body is dependent on the GM composition and
the structure of polyphenols [8]. Lactase-phlorizin hydrolase hydrolyses the free and sim-
ple polyphenols in the small intestine, and the resulting aglycones enter the enterocyte by
passive diffusion. Recycled aglycones and the polyphenols gather in the colon, where GM
degrade them and facilitate absorptivity [97]. For instance, the sugar moiety of quercetin that
intestinal β-glucosidases cannot hydrolyse, but GM (e.g., Enterococcus, Blautia, and Bacteroides)
deglycosylation can, yields quercetin aglycon. Strains of Bacteroides, Clostridium perfringens,
fragilis, Escherichia coli, Enterococcus gilvus, Lactobacillus acidophilus, Streptococcus S-2, and
Weissella confusa can transform quercetin and other polyphenols into bioavailable metabo-
lites [98]. Furthermore, Clostridium saccbarogumia and Eubacterium ramulus can catalyse
cyaniding-3-O-glucoside into DHBA, THBAld and other products [99]. On the other
hand, Wu and colleagues [70] stated that polyphenols not only act as classic prebiotics to
enhance beneficial bacteria (for example Akkermansia, Bifidobacterium, Christensenellaceae,
Lactobacillus, and Verrucomicrobia) but also inhibit pathogenic bacteria. Further, Peng et al. [100]
documented that long-term consumption of anthocyanins can increase the growth of
SCFA-producing bacteria such as Barnesiella, Faecalibacterium, Odoribacter, Prausnitzii,
Ruminococcaceae, and Roseburia. Moreover, the consumption of neohesperidin, resveratrol
combined with curcumin, green, oolong, and black tea can significantly restrain the growth
of pathogenic bacteria (e.g., Clostridiumm, Prevotella, Proteobacteria, and Desulfovibrionaceae)
[101–103]. Another study by Li et al. [104] documented that the ratio of Firmicutes to
Bacteroidetes (positively correlated with many diseases) was increased after the feeding of
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tea polyphenols in canines. Liu et al. [105] declared that epigallocatechin-3-gallate treatment
stimulated the abundance of beneficial bacteria such as Bacteroides, Bifidobacterium, and
Christensenellaceae and inhibited pathogenic bacteria including Bilophila, Enterobacteriaceae,
and Fusobacterium varium. Above-mentioned studies are suggesting that GM modulation
by dietary polyphenols can affect MGBX and can be used as nutraceutical to treat AD and
other neurodegenerative diseases.

5.4. Polyphenols and AD

Polyphenols have anti-oxidative and anti-inflammatory properties that abrogate ROS
and RNS and sequester the production of Aβ plaques (Aβ-oligomers and Aβ peptides)
and tau protein hyperphophorylation to prevent the development of neurofibrillary tan-
gles [106]. Moreover, polyphenols (e.g., hesperidin, neohesperidin, hesperetin, and citrus
flavanones) restrict neuronal disintegration by interacting with major signal transduction
pathways, cerebral vasculature, and the BBB [106,107]. In addition, quercetin (RVG29-
nanoparticles) showed permeability across the BBB and inhibited Aβ aggregation in
thioflavin T binding assay [108]. Anthocyanins were found in the cerebellum and cortex of
the mice that significantly reduced the loss of neuronal cells and memory impairment [109].
In addition, curcumin and its derivatives can pass the BBB and have neuroprotective effects
against mitochondrial dysfunction, damage, and nitrosative stress [46]. Moreover, resvera-
trol significantly decreased the Aβ-42 peptide toxicity toward SH-SY5Y cells that resulted
in the cleavage of Aβ1-42 peptides into smaller fragments [110]. Metabolism of flavan-3-ols
by GM result in various arylvaleric acid, and aryl-γ-valerolactone derivatives that can
selectively detoxify Aβ oligomers and prevent AD symptoms in mice [111]. Secondary
metabolites of valerolactones such as hydroxybenzoic acid, (hydroxyaryl)valeric acid,
(hydroxyaryl)propanoic acid, (hydroxyaryl)cinnamic acid, and (hydroxyaryl)acetic acid
derivatives have more permeability across the BBB to reduce neuroinflammation and are
comparatively more bioavailable than the dietary flavonoids or flavanoids [112]. Moreover,
metabolites of epicatechin, 5-(4′-Hydroxyphenyl)-γ-valerolactone-3′-O-glucuronide and
5-(4′-Hydroxyphenyl)-γ-valerolactone-3′-sulfate modulate cellular pathways such as focal
adhesion, cell adhesion, signalling pathways, and cytoskeleton organization to preserve
brain vascular endothelial cell integrity [113]. Therefore, polyphenols, including those
derived from GM metabolism, can be effective therapeutics to treat neurodegenerative
diseases such as AD. Several in vivo and in vitro examples are illustrated in Table 3.

Table 3. Potential role of polyphenols in AD and related findings.

Polyphenols Study Findings Reference

Curcumin APP/PS1 double
transgenic mice

Change in Lactobacillaceae, Rikenellaceae, Prevotellaceae,
and Bacteroidaceae at family level, and Bacteroides,

Prevotella, and Parabacteroides at genus level. Curcumin
reduced the Aβ plaques burden and improved the

cognitive abilities.

[114]

Quercetin-3-O-
Glucuronide Mice and SH-SY5Y Cells

Ameliorated tau phosphorylation, and Aβ plaques.
Restored CREB and brain-derived neurotrophic factor

levels in the hippocampus, and gut dysbiosis.
[115]

Quercetin Adult male albino rats Protected and prevented neuronal damage in the
hippocampus. [116]

RSV, QCT and API Human SK-N-BE and
SH-SY5Y cells

Reduced mitochondrial and peroxisomal dysfunction,
7KC-induced toxicity and cell death. [117]

Luteolin Sprague-Dawley rats

Down-regulated the expression of BASE1 and NF-κB
and reduced Aβ levels in the hippocampus and cortex.

Moreover, increased antioxidant potential, and
suppressed inflammation and lipid peroxide

production.

[118]
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Table 3. Cont.

Polyphenols Study Findings Reference

Palmitoylethanolamide
and Luteolin Sprague-Dawley rats

Up-regulated the gene expression of enzymes,
pro-inflammatory cytokines, and reduction of mRNA
levels.Moreover, inhibited the Aβ-induced astrogliosis

and microgliosis.

[119]

Bilberry Anthocyanins

Sprague-Dawley rats

Enhanced the growth of Aspergillus oryzae,
Bacteroidales-S24-7-group, Bacteroides, Clostridiaceae-1,

Lactobacillus, and Lachnospiraceae_NK4A136_group and
inhibited the growth of Verrucomicrobia and

Euryarchaeota in aging rats.

[120]

APP/PSEN1 transgenic
AD mice

Down-regulated the expression of inflammatory factors,
chemokine receptor CX3CR1, serum and brain LPS.

Reversed the brain, kidney, and liver injury caused by
AD.

[121]

Tea Polyphenols Aging model rats

Prevented memory decline and TLR4/NF-κB
inflammatory signal pathway. Besides, significantly

improved the composition and diversity of intestinal
microflora, shape and function of epithelium, and brain

inflammation.

[122]

Epigallocatechin-3-
Gallate Sprague-Dawley rats

Decreased the tau hyperphosphorylation in
hippocampus and expression of BACE1 and Aβ1-42 by

improving the antioxidant system, learning and
memory function.

[123]

Resveratrol AD transgenic 5XFAD Prevented memory loss and reduced the amyloid
burden and tau pathology. [124]

Berberine Sprague-Dawley rats
Production of COX-2, TNF-α, IL-12, IL-6 and IL-1β was

normalized, inhibited the production of Aβ42 and
evoked the formation of antioxidant Aβ40.

[125]

AD: Alzheimer’s disease, RSV, QCT and API: Resveratrol, Quercetin, and Apigenin, BACE1: β-site amyloid precursor protein cleav-
ing enzyme, NF-κB: nuclear factor-κB, Aβ: amyloid beta, TNF-α: tumor necrosis factor-α, IL: interleukin, LPS: lipopolysaccharide,
COX-2: cyclooxygenase-2, CREB: cyclic AMP response element binding protein.

6. Research Limitations

Although polyphenols have demonstrated anti-oxidative and anti-inflammatory prop-
erties in vitro and in vivo animal studies, there is still inconclusive evidence regarding their
effects in human studies. Moreover, the possible interaction between cognitive function,
GM composition, and polyphenols has been studied well in animal studies. However,
clinical studies have been carried out with a small number of samples that are lacking the
comprehensive profiling in GM composition and functionality. Besides, the inconsistency
in the results of GM has been observed, which may be due to the difference in the species
and nutrients status of animals, treatment time and method, and composition and con-
centration of polyphenols in the diet. The health benefits of the polyphenols are derived
from the GM metabolites that are bioavailable to the host and the interplay between the
reshaping of GM, whereas, the mechanism of the GM reshaping is still elusive and may
occur either by the parent compounds alone or microbial-derived polyphenolic metabolites.
Thus, accurate microbiome studies are needed for future clinical diet interventions [10].
Additionally, more studies are required to check the appropriate concentration of polyphe-
nols for their beneficial and adverse effects [126]. Furthermore, the implementation of
artificial intelligence, machine learning algorithms, and use of large datasets are required
to understand the complex network of interactions amongst the polyphenols, GM, and
host metabolome.

7. Conclusions

There is a close interrelationship between oxidative stress and inflammatory pathways.
Each may appear before or after the other and take part in the progression of several chronic
diseases [14]. Moreover, gut dysbiosis has been reported to exert regulatory functions on
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oxidative stress and inflammation and play a role in neurodegenerative diseases, especially
AD via MGBX. A balanced diet enriched in antioxidants such as polyphenols can be
helpful in maintaining gut homeostasis (eubiosis) by counteracting oxidative stress and
inflammation. In this study, we explored the possible role of polyphenols in scavenging
free radical species, inhibiting the formation of pro-inflammatory cytokines, increasing anti-
inflammatory cytokines, and maintaining gut dysbiosis. Despite the mentioned benefits,
they have low bioavailability due to their complex absorption and metabolic process to
enter into the bloodstream and succeeding to the target location. Thus, further studies
are required to develop methods to improve the stability, permeability, and solubility of
dietary polyphenols for their usage in nutraceutical and pharmaceutical applications to
develop an efficient approach for preventing and treating neurodegenerative diseases.
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GM Gut microbiota
AD Alzheimer’s disease
ROS Reactive oxygen species
RNS Reactive nitrogen species
SCFA Short-chain fatty acids
MGBX Microbiota-gut-brain axis
NOXs NADPH oxidases
NO Nitric oxide
TLR4 Toll-like receptor-4
IL-6 Interleukin
GIT Gastrointestinal tract
APP Amyloid precursor protein
TNF-α Tumor necrosis factor-α
HMGB1 High mobility group box-1
DAMP Damage associated molecular pattern
NF-κB Nuclear factor kappa-light-chain-enhancer of activated B cells
NLRP3 Nucleotide binding oligomerization domain leucine rich repeat containing protein 3
TMAO Trimethylamine N-oxide
LPS Lipopolysaccharides
Aβ Amyloid-beta
MCI Mild cognitive impaired
MDD Major depressive disorder
PD Parkinson’s disease
BBB Blood-brain barrier
NRF2 Nuclear factor-erythroid factor 2-related factor 2
iNOS Inducible nitric oxide synthase
COX-2 Cyclooxygenase-2
CREB Cyclic AMP response element binding protein.
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