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ABSTRACT: The asymmetric Michael reaction of methyl alkynyl
ketone and α,β-unsaturated aldehyde catalyzed by diphenylprolinol
silyl ether was developed. Although methyl alkynyl ketone is a good
Michael acceptor, it also acts as a Michael donor to afford the
synthetically important δ-oxo aldehydes with excellent enantiose-
lectivity. The products possessing several functional groups, such as
alkyne, ketone, and aldehyde moieties, are useful chiral building
blocks for further synthesis. Using this reaction as a key step, a side
chain of atorvastatin (Lipitor), an inhibitor of 3-hydroxy-3-
methylglutaryl coenzyme A (HMG-CoA) reductase, was synthe-
sized in a two-pot sequence with excellent diastereo- and
enantioselectivities.

KEYWORDS: organocatalyst, Michael reaction, diphenylprolinol silyl ether, iminium ion, Lipitor, methyl alkynyl ketone,
HMG-CoA reductase

Alkynyl ketones (conjugated ynones) are versatile building
blocks in synthetic organic chemistry1,2 because, in

addition to acting as good Michael acceptors, the ketone
moiety can be converted into several functional groups.
Moreover, the alkynyl moiety can be utilized in metal-mediated
[2 + 2 + 2] cycloadditions,3 reductive coupling reactions,4 and
alkyne−alkene and alkene−alkyne coupling reactions.5 For the
derivatization of alkynyl ketones, the addition reaction of
alkynyl ketones is a useful method. In the case of asymmetric
catalytic addition reactions of alkynyl ketones as a nucleophile,
Trost6,7 and Shibasaki8 reported the use of chiral Zn9,10 and a
Lewis acid−Brønsted base two-center catalyst,11 respectively,
to promote aldol reactions. Trost also reported the Mannich
reaction of alkynyl ketones using the same chiral catalyst and
demonstrated the synthetic utility of an alkynyl ketone
moiety.12,13

On the other hand, the Michael reaction is an important
carbon−carbon bond-forming reaction.14−16 However, an
asymmetric catalytic Michael reaction of alkynyl ketones as a
Michael donor has been regarded as a difficult reaction because
it also acts as a good Michael acceptor. To our knowledge,
there are no reports on the asymmetric metal-catalyzed
reaction with alkynyl ketones as a nucleophile.
The field of organocatalysis has developed very rapidly17,18

and many organocatalyst-mediated Michael reactions have
been reported.19 Even in the field of organocatalysis, the direct
use of alkynyl ketone as a Michael donor is difficult.
Ramachary reported the reaction of methyl alkynyl ketone
with α,α-doubly activated alkene to afford a domino Michael/
Michael product without isolation of a Michael product (eq

1).20−22 Instead of methyl alkynyl ketones, activated methyl
alkynyl ketones such as alkoxycarbonyl, aryl, vinyl, or alkoxy-
substituted methyl alkynyl ketones23−25 are reported to react
with nitroalkene, catalyzed by bifunctional Brønsted base/H-
bond catalyst, to afford the Michael products with excellent
enantioselectivity (eq 2 and 3). There are no reports of the
asymmetric Michael reaction of methyl alkynyl ketone itself as
a nucleophile, even in the field of organocatalysis.
Recently, we described a diphenylprolinol silyl ether26,27-

mediated Michael reaction of ketone,28 in which an enolate is a
reactive species.29 We thought that methyl alkynyl ketones
would act as good Michael donors to generate the
corresponding enolate in the presence of diphenylprolinol
silyl ether to react with α,β-unsaturated aldehyde to afford
synthetically useful δ-oxo aldehydes (eq 4). Here, we describe
the first asymmetric catalytic Michael reaction of methyl
alkynyl ketones and its application to the pot-economical
synthesis of a key intermediate of inhibitors of 3-hydroxy-3-
methylglutaryl coenzyme A (HMG-CoA) reductase.
First, we examined the reaction of 4-(p-nitrophenyl)-but-3-

yn-2-one and cinnamaldehyde, catalyzed by diphenylprolinol
silyl ether. Although we investigated the reaction under several
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reaction conditions, the starting aldehyde remained unchanged
in most cases. When an equimolar amount of alkynyl ketone
and a catalyst was used, the Michael adduct of the catalyst and
alkynyl ketone was isolated (eq 5). This result indicates that
alkynyl ketone is a good Michael acceptor, which reacts with

the amine catalyst. With an expectation that the bulky
substituent at the 4-position of but-3-en-2-one would suppress
this Michael reaction, we examined the reaction of 4-
triisopropylsilyl-but-3-yn-2-one (1) in the presence of several
acids (Table 1). Using strong acids such as trifluoroacetic acid,
the reaction did not proceed (entry 1). The desired product 3a
was isolated in a 10% yield when benzoic acid was employed,
and two side products, 4 and 5, were also obtained (entry 2).
Compound 4 was an aldol (1,2-addition) condensation
product, whereas 5 was derived from the double Michael
reaction of 1 and two molecules of 2a, followed by
intramolecular aldol condensation. Better yields were obtained
when acetic acid and pivalic acid were used (entries 3 and 4).
In the case of p-nitrophenol, the amount of acid was important.
In the presence of 100 mol % p-nitrophenol, the desired
product 3a was obtained in a 22% yield, along with the side
product 5 (entry 7); in the presence of 10 mol % p-
nitrophenol, however, 3a was obtained in the highest yield
(69%) with excellent enantioselectivity (entry 5).
The reaction mechanism would be similar to that of the

Michael reaction of cyclohexanone:29 An iminium ion, which
was generated from 2a and diphenylprolinol silyl ether, would
react with an enolate of methyl ketone 1 to afford Michael
product 3a.

Having established the best reaction conditions, the
generality of the reaction was then investigated (Table 2).

Table 1. Effects of Acids and Their Amounts in the Michael Reaction of 1 and 2aa

yield (%)b

entry acid (x mol %) time (h) 3a 4 5

1 CF3CO2H (10) 24 0 0 0
2 PhCO2H (10) 12 10 15 20
3 CH3CO2H (10) 8 23 11 15
4 t-BuCO2H (10) 7 39 10 9
5 p-nitrophenol (10) 3 69c 0 0
6 p-nitrophenol (50) 2.5 42 8 8
7 p-nitrophenol (100) 2 22 13 18

aUnless otherwise shown, reactions were performed by employing cinnamaldehyde 2a (0.18 mmol), ketone 1 (0.15 mmol), organocatalyst (0.030
mmol), water (0.45 mmol), and acid (indicated amount) in EtOH (0.60 mL) at room temperature for the indicated time. bIsolated yield.
cEnantiomeric excess is 95%.
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Substrates with electron-rich aryl groups such as p-methox-
yphenyl at the 3-position of propenal were suitable, affording
good yield and excellent enantioselectivity, although the
reaction was slow (entry 2). Electron-deficient aryl groups
such as p-bromo, m-bromo-, and o-bromo phenyls were also
suitable substituents, and the reaction was completed within 2
h in good yield with excellent enantioselectivity (entries 3−5).
Heteroaromatics such as furyl afforded good results (entry 6),
as did silyl-substituted propenal. In the latter case, the C−Si
bond could be converted into the corresponding C−OH bond
(see below)30,31 to provide the Michael product with 98% ee
(entry 7). The Michael reaction also proceeded in the case of
crotonaldehyde, for which moderate enantioselectivity was
obtained (76% ee, entry 8).
Inhibitors of HMG-CoA reductase are important medi-

cines,32,33 and several synthetic statins such as atorvastatin
(Lipitor),34−36 rosuvastatin,37 and fluvastatin38 are commonly
used (Figure 1). The key common unit in the side chain of

these statins is β,δ-syn-dihydroxy carboxylic acid, and a useful
synthetic intermediate of these medicines is protected δ-
alkynyl β,δ-syn-dihydroxy ester 6.39,40

One-pot operations are an effective method for carrying out
several transformations and forming several bonds in a single
pot, while simultaneously eliminating several purification steps,
minimizing chemical waste generation, and saving time.41−43

Based on this concept, we examined the pot-economical
synthesis of 6 (Scheme 1).
The first pot reaction started from the asymmetric Michael

reaction of 1 and silylated propenal 2g using an (R)-
diphenylprolinol silyl ether catalyst. After the removal of the
solvent under reduced pressure and addition of t-BuOH and
water in the same reaction vessel, the Michael adduct ent-3g
was converted into carboxylic acid 7 by Pinnick−Kraus
oxidation.44,45 Remaining oxidants were reduced upon the
addition of acetaldehyde,46,47 which was converted into acetic
acid. Generated acetic acid and excess acetaldehyde were
removed under reduced pressure. The treatment of 7 with
TMSCHN2 afforded methyl ester 8, which was reduced with
NaBH4 to afford syn alcohol 9 as a single isomer with excellent
diastereoselectivity (see below). Acetic acid was added, which
reacted with the remaining NaBH4, and the solvent was
changed from MeOH to CH2Cl2. Addition of CSA in the same
reaction vessel promoted the lactonization to afford lactone 10,
which was purified and isolated in a 42% yield from the first
Michael reaction. Five reaction steps, (1) Michael reaction, (2)
oxidation, (3) esterification, (4) reduction, and (5) lactoniza-
tion, were conducted in a single reaction vessel. It should be
noted that the one-pot reaction proceeds efficiently by suitable
quenching of the reagents in situ,42 even though both
oxidation and reduction steps are involved.
The second pot sequence started with the removal of the

TIPS group from 10 by the addition of n-Bu4NF (TBAF) to
afford 11. After neutralization of the reaction mixture by the
addition of acetic acid, the addition of HBF4·OEt2 and MgSO4
converted the Si−Ph bond into a Si−F bond,30,31 in which
MgSO4 suppressed the side reaction of alkyne and water. After
neutralization of the reaction mixture with n-Bu4NOH,

Table 2. Generality of the Michael Reaction of 1 and 2a

entry R time (h) yieldb (%) eec (%)

1 Phenyl (2a) 3 69 95
2 p-MeO-C6H4 (2b) 24 50 95
3 p-Br-C6H4 (2c) 2 71 94
4 m-Br-C6H4 (2d) 2 75 95
5 o-Br-C6H4 (2e) 2 78 95
6 2-furyl (2f) 30 76 94
7 SiMe2Ph (2g) 12 69 98
8 Me (2h) 24 55 76

aReactions were performed by employing α,β-unsaturated aldehyde 2 (0.18 mmol), ketone 1 (0.15 mmol), organocatalyst (0.030 mmol), water
(0.45 mmol), and p-nitrophenol (0.015 mmol) in EtOH (0.60 mL) at room temperature for the indicated time. bIsolated yield. cEnantiomeric
excess (ee) of the products, as determined by HPLC analysis over a chiral solid phase after conversion to α,β-unsaturated ester by the treatment
with Ph3P = CHCO2Et.

Figure 1. Synthetic statins and key intermediate 6.
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addition of H2O2, KF, and KHCO3 in a mixed solvent of THF
and MeOH30,31 afforded the dihydroxy methyl ester 14 by
opening lactone to hydroxy ester 13, followed by oxidative
conversion of the C−Si bond into the C−OH bond.
Protection of diol moiety 14 with dimethoxypropane gave
acetal 6. The latter was obtained in a 40% yield from lactone
10 in a single reaction vessel. Five reaction steps, (1) the
removal of the TIPS group, (2) conversion of the Si−Ph bond
into a Si−F bond, (3) conversion of the C−Si bond into a C−
OH bond, (4) opening of lactone to hydroxy ester, and (5)
acetal protection of 1,3-diol, were conducted in a single
reaction vessel.
It should be mentioned that the position of the Tamao−

Fleming reaction in the sequence is important. The Tamao−

Fleming reaction was successful from 11 to 14, but it did not
proceed well for compounds 8 and 9.
The useful key intermediate 6 was prepared from the

Michael reaction using only two reaction vessels with a total
yield of 16%. This is a highly diastereo- and enantioselective
synthesis. Compound 6 was further transformed into vinyl
derivative 15,39,40,48 which is also a useful chiral building block
for the synthesis of inhibitors of HMG-CoA reductase (eq 6).

Scheme 1. Two-pot Synthesis of Key Intermediate 6 of Inhibitors of HMG-CoA Reductase
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The diastereoselectivity of the reduction of 8 was notable.
When the diastereoselective nucleophilic addition of β-silyl-
substituted ketone was systematically investigated by Flem-
ing,49 moderate selectivity was obtained in most cases. In the
present reduction, excellent diastereoselectivity was observed,
which is very rare. We investigated the use of several reducing
reagents with isolated 8 (Table 3). Chiral reducing reagents
such as (−)-B-chlorodiisopinocamphenylborane ((−)-DIP-
Cl)50,51 gave excellent diastereoselectivity. Bulky reducing
reagents such as L-selectride also gave excellent selectivity. On
the other hand, a 1:1 mixture was obtained in the case of BH3·
(t-BuNH2). When NaBH4 was employed in MeOH, both an
excellent yield and diastereoselectivity were observed;
however, for similar substrate 16, without a TIPS moiety,
low diastereoselectivity was observed (the relative config-
uration was determined after conversion into the correspond-
ing lactone; eq 7). Thus, the use of a TIPS protecting group for

the alkyne is essential for the high selectivity, even though it is
far from the reacting carbonyl group. This selectivity would be
explained by the Felkin−Anh model, as proposed by Fleming
in a similar system (Figure 2). The bulky PhMe2Si and alkynyl
ketone adopt an antiperiplanar conformation. As conformer B
is unfavorable because of the repulsion caused by the bulky
TIPS group, the reaction would proceed from conformer A to
afford the excellent diastereoselectivity observed.
In summary, we developed the first asymmetric Michael

reaction of methyl alkynyl ketone and α,β-unsaturated

aldehyde, which was catalyzed by diphenylprolinol silyl ether
to afford the synthetically important δ-oxo aldehydes bearing
an alkyne moiety, with excellent enantioselectivity. Although 4-
triisopropylsilyl-but-3-yn-2-one was the only methyl alkynyl
ketone used in the present study,52 the silyl substituent can be
converted into many substituents and functional groups.
Because the products possess several functional groups such
as alkyne, ketone, and aldehyde moieties, and are generated
with excellent enantioselectivity, they would be useful chiral
building intermediates. The synthetic utility of the alkynyl
ketone moiety has already been well established by Trost’s
group.12,13 By the application of this Michael reaction, chiral
building block 6 of the inhibitors of HMG-CoA reductase can
be synthesized in two pots with excellent diastereo- and
enantioselectivities.
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