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Abstract

Cryptic diversity within bumblebees (Bombus) has the potential to undermine crucial conservation efforts designed to
reverse the observed decline in many bumblebee species worldwide. Central to such efforts is the ability to correctly
recognise and diagnose species. The B. lucorum complex (Bombus lucorum, B. cryptarum and B. magnus) comprises one of
the most abundant and important group of wild plant and crop pollinators in northern Europe. Although the workers of
these species are notoriously difficult to diagnose morphologically, it has been claimed that queens are readily diagnosable
from morphological characters. Here we assess the value of colour-pattern characters in species identification of DNA-
barcoded queens from the B. lucorum complex. Three distinct molecular operational taxonomic units were identified each
representing one species. However, no uniquely diagnostic colour-pattern character state was found for any of these three
molecular units and most colour-pattern characters showed continuous variation among the units. All characters previously
deemed to be unique and diagnostic for one species were displayed by specimens molecularly identified as a different
species. These results presented here raise questions on the reliability of species determinations in previous studies and
highlights the benefits of implementing DNA barcoding prior to ecological, taxonomic and conservation studies of these
important key pollinators.
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Introduction

Pollination is a key ecosystem service for both natural and

agricultural ecosystems. While evidence for a pollination crisis is

equivocal [1,2,3], it is increasingly clear that wild pollinators, and

particularly bees, are in decline worldwide [4,5,6,7]. Consequent-

ly, a key aim in insect conservation is to understand and reverse

these declines. In northern temperate regions, bumblebees – as

ecologically and commercially important pollinators – have been

the focus of considerable conservation effort [5,8,9,10,11,12].

Conservation of any group requires an assessment of both current

status and the impact of potential interventions, and this in turn

requires accurate species identification.

While recent phylogenetic analyses have advanced our

understanding of bumblebee taxonomy [13], Bombus species are

notorious for possessing convergent colour patterns, resulting in

cryptic species [14,15]. Morphologically cryptic species pose

significant problems for field assessment of species richness and

diversity, both of which are central to understanding current and

future population trends of these important pollinators. Unfortu-

nately, in Western Europe one of the apparently most common

bumblebees, B. lucorum (Linnaeus), belongs to such a cryptic species

complex. While B. lucorum s.l. is common throughout Europe

[16,17,18], and has been commercially reared as a pollinator for

greenhouse crops [19], increasing chemical [20] and molecular

[20,21,22,23] evidence supports the idea that it actually represents

three distinct species, B. cryptarum (Fabricius), B. lucorum and B.

magnus (Vogt). The use of molecular tools in large-scale ecological

studies has revealed differences in the ecology, abundance and

distribution of these putative species [22,23], indicating the need to

reassess the conservation status and response of these species to

interventions separately.

Presently, the majority of species records are collected by members

of the public using morphological and especially colour-pattern

characters for identification (e.g., in the UK by the Bees, Wasps and

Ants Recording Scheme, www.bwars.com and the Bumblebee

Conservation Trust http://www.bumblebeeconservation.org.uk/).

Therefore, there is a clear need to assess the value of colour-pattern

characters in distinguishing these species. Both the scientific and

popular literature suggest that such characters can be used to identify
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colony-founding queens in the spring [20,24,25,26,27,28,29].

Morphology based diagnosis of B. lucorum s.l. queens principally

involves characteristics of the collar, labrum, ocelli and metasomal

terga [20,24,30,31]. Of these, the most commonly used characters for

species diagnosis are those describing the pile (‘hair’) of the collar (a

band of yellow hairs at the anterior of the thorax) [24,25,26,27],

particularly: (i) the extent of a collar extension below the tegula [24];

(ii) the presence or absence of melanisation in the collar [20]; and (iii)

the presence or absence of an ‘S-shape’ of black hairs on the side of

the collar [20]. While the extension of such traits to identifying

workers has been shown to fail [23], and despite reservations that

character variation may not be discrete [28], to our knowledge there

has been no quantitative assessment of their accuracy in identifying

queens. The main aim of this study is to use molecular tools to assess

the value of these popular colour-pattern characters in biodiversity

and conservation surveys of the B. lucorum species complex.

The DNA barcode, an approximately 650 bp region of the

cytochrome c oxidase (COI) mitochondrial gene, has become an

invaluable tool for species identification and taxonomic hypothesis

generation for both ecologists and taxonomists alike [32,33,34,35].

To date over 700,000 barcode records have been generated for

insects (http://www.boldsystems.org) and barcoding has been

utilised across major insect orders including Lepidoptera

[36,37,38,39], Coleoptera [40] Diptera [34,41,42,43], Hemiptera

[44,45,46] and Hymenoptera [47,48,49]. In many cases the

morphological characters traditionally used to describe a species or

indicate relationships among species have been re-evaluated in the

light of groupings arising from DNA barcoding studies. Evaluating

species diagnostic morphological characters of genetically discrete

units in such a way can indicate strengths and weaknesses in

current taxonomic diagnoses of the group under study and often

taxonomic revision may follow [35,44,49,50].

However, for the lucorum complex the diagnostic value of these

characters has yet to be assessed quantitatively against indepen-

dently determined specimens. Here we combine DNA barcoding

and quantitative colour-pattern analyses to address this question at

the scale of both Ireland and continental Europe.

Materials and Methods

Taxon sampling and morphological analysis
Irish specimens used in this study were obtained from a

collection originally sampled in 2005 and 2006 [22]. In order to

extend the study to a European scale, and investigate geographic

variance, specimens were obtained from the Orkney Islands of

Northern Scotland, Denmark and Finland. Field studies did not

involve endangered or protected species and no specific permits

were required for the collection of specimens included in this

study. Permission was not required for the collection of Danish,

Scottish, Finnish and the majority of Irish specimens. Collecting

unlisted insect species samples from lands of the Irish National

Parks and Botanic Gardens required only verbal permission, and

this was obtained from the National Park Rangers for each park,

and from Dr Peter Wyse Jackson, Director of the National Botanic

Gardens. Queens of B. lucorum agg. were collected in all regions,

except Denmark, without prior morphological identification.

Danish queens were initially morphologically identified to

characterise representative specimens of each putative species

prior to our genetic analyses. As such, specimens that displayed

characters at the extremes of the morphological ranges were most

likely to occur in the Danish samples. In total 67 queens were

included (Table S1) in the molecular and morphometric analyses.

The Irish and Danish groups (totaling 48 queens) were also

analysed separately, as they consisted of all three species (see

below). Using electronic Vernier calipers (Mitutoyo Absolute

Digimatic), we measured thorax width between the tegulae (body

size), breadth of the collar on top of the thorax, vertical and

horizontal extensions of the collar below the tegula, and breadth of

the collar below the tegula. We also recorded a series of qualitative

characters that have been deemed to be diagnostic for the three

species: (i) the presence or absence of a black ‘S-shape’ on the side

of the collar; (ii) the presence or absence of melanisation in the

collar; and (iii) the presence of a collar extension below the tegula.

To account for variation in quantitative morphological characters

that may be affected by animal size, relative sizes were calculated

using thorax breadth as a measure of body size. Morphological

data were analysed using either one-way ANOVAs with Tukey’s

post-hoc test for pairwise differences, or G-tests. All analyses were

conducted using SPSS v. 16.0. Data are shown as boxplots as we

are interested in the biological variation in morphological traits.

DNA extraction and amplification
Total DNA was extracted from the mid or hind legs using the

DNeasy Blood & Tissue extraction kit (Qiagen), with a modified

protocol. Legs were ground in a 1.5 ml Eppedorf tube comprising

200 ml PBS with a disposable polypropylene pestle connected to a

hand held motor (Sigma Aldrich). Then 180 ml of Buffer AL and

20 ml Proteinase K (Qiagen kit components) were added and the

sample was homogenized further prior to incubation at 70uC for

30 mins. Thereafter, 200 ml of 100% ethanol was added and the

remaining extraction followed the manufacturer’s protocol.

For amplification and sequencing of the COI region the primers

LCOHym (59–TATCAACCAATCATAAAGATATTGG–39;

[51]) and NancyShort were used (59 CCCGGTAAAATTAAAA-

TATAAAC-39; [52]. PCRs were carried out in 20 ml volumes

using 16 PCR buffer (Invitrogen), 2.5 mM MgCl2, 0.2 mM of

each primer, 0.2 mM of each dNTP, 1 U Taq polymerase

(Invitrogen) and approximately 50 ng template DNA. PCR

reaction conditions included denaturation at 94uC for 240 s

followed by 32 cycles of 60 s at 94uC, 45 s at 48uC, 60 s at 72uC
and a final extension at 72uC for 420 s in a Peltier thermal cycler

(PTC 200; MJ Research). PCR products were sequenced in the

School of Natural Sciences, Trinity College using an ABI 3130xl

capillary automated sequencers (Applied Biosystems Inc.). The

same PCR primers were used for sequencing. Forward and reverse

sequence reads were view and assembled into contiguous

sequences using BioEdit v7.0.9 [53]. All polymorphic sites were

visually inspected to ensure correct base calling and sequences

were aligned manually. The electropherogram, sequence and

specimen data were submitted to BOLD (Accessions JCLUC001-

11 to JCLUC-067-11 http://www.barcodinglife.org) and are

available in the ‘‘Irish Bombus lucorum’’ project folder of BOLD.

Sequences were also deposited in GenBank (Accessions JN872566

to JN872632).

Sequence Analysis
The final aligned matrix was imported into MEGA version 4.0

[54] for phylogenetic analysis. No gaps were present and

translations of the sequences indicated the absence of stop and

nonsense codons. After sequence trimming a total of 642 base

pairs were available for analysis. Nucleotide positions were

determined using the full COI gene sequence from the

mitochondrial genome of B. hypocrita (GenBank accession

no. NC011923; positions 1996 to 3555) and the mouse COI

reference sequence (derived from GenBank accession

no. AK166798). Sequence divergences were calculated using the

Kimura 2-parameter (K2P) distance model [55] using MEGA 4.

Bayesian analysis was set and implemented using Bayesian
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Evolutionary Analysis Utility (BEAUti) v 1.5.4 and Bayesian

Evolutionary Analysis Sampling Trees (BEAST; [56] v 1.5.4 using

the general time reversible and gamma (GTR+G) substitution

model, uncorrelated lognormal relaxed clock (UCLN) model and

coalescent tree prior. B. terrestris (Linnaeus; BOLD accession

6876C01; Williams PH, An J, Brown MJF, Carolan JC, Goulson

D, Huang J and Ito M, An unsuspected cryptic bumblebee:

consequences for conservation and the trade in greenhouse

pollinators, submitted) was chosen to root the trees based on the

results of Cameron et al., [13] and Murray et al., [22] which

indicate its sister group status with respect to the taxa included in

this study. The analysis was run for 10,000,000 generations with

sampling of trees every 1000 generations. After termination the

Markov chain Monte Carlo (MCMC) output was analysed using

TreeAnnotator v.1.5.4 (http://beast.bio.ed.ac.uk) to produce a

consensus tree from the post burn-in tree sample (burn-in 1000)

with a posterior probability of 0.5, targeting the maximum clade

credibility tree and keeping the target node heights. All trees were

opened and viewed in FigTree v 1.3 (http://tree.bio.ed.ac.uk/

software/figtree/). Haplotype variation, diagnostic sequence

distribution and inter- and intra-specific divergences were

determined using the HapMap application of the iBarcode website

(http://www.iBarcode.org/).

Results

The COI barcode was sequenced for 67 representatives of the

lucorum complex with the majority of the barcode sequence being

obtained for each. The reference DNA barcode begins 58 bp from

the 59- end of the mouse COI gene, which corresponds to position

52 of the B. hypocrita COI gene. In total, 642 nucleotides were

available for analysis. Bayesian analyses resulted in a tree (Figure 1)

with three distinct and well supported clades, each of which we

assume represents one of the three species. Of the 37 Irish

specimens, 22 were B. magnus, 8 were B. cryptarum, and 7 were B.

lucorum. The Danish B. magnus resolved as a sister group to Irish B.

magnus (Clade 1; 1.00 Bayesian Posterior Probability, (BPP)),

differentiated by two polymorphisms that represent synonymous

substitutions. Danish, Irish and Orkney Island B. cryptarum resolved

as a monophyletic group with Finnish representatives, resolving as

a sister group to the main group (Clade 2; 0.99 BPP). Finnish

specimens possessed 8 polymorphisms with respect to their Irish/

Orkney/Danish counterparts. Only a single polymorphism (C/T

at position 391) was evident within the B. lucorum clade (Clade 3;

1.00 BPP) and this polymorphism was shared by two Finnish

specimens (T904 and T909).

In total, there were 50 variable characters of which 41 were

deemed to be informative. Haplotype mapping using iBarcode

web resources indicated that 16 haplotypes were present across all

species. However, a number of these are derived from unique

nucleotide polymorphisms found in a single specimen. Such

haplotypes were discounted from further consideration and

specimens with a single polymorphism were included in the

counts for the most similar haplotype. Two distinct haplotypes are

evident for B. magnus and B. cryptarum, where the haplotypes

correspond to geographically distinct groups. Of the seven

nucleotide differences between the two B. cryptarum haplotypes,

four are shared between the Finnish B. cryptarum and both B.

magnus and B. lucorum. Although a number of diagnostic nucleotide

characters were evident for each species, when each was compared

to the other two species only two nucleotide positions can be

deemed diagnostic for species delineation across the entire

Table 1. COI haplotypes, polymorphic sites and codon positions for B. cryptarum, B. lucorum and B. magnus.

Polymorphic Site

Haplotype 1 34 40 50 65 79 97 98 124 139 169 193 203 205 211 226 262 278 280 284 293

B. cryptarum haplotype 1 (19) T T T T T A T C A A T T T A T C T C T C A

B. cryptarum haplotype 2 (3) C C T

B. lucorum haplotype 1 (16) A C T C C A T A T T

B. lucorum haplotype 2 (2) A C T C C A T A T T

B. magnus haplotype 1 (22) C C C A T A T A T A T

B. magnus haplotype 2 (5) C C G C G A T A T A T A T

continued Polymorphic Site

Haplotype 298 313 328 331 346 358 364 391 403 475 490 496 538 553 565 595 607 616 619 625 637

B. cryptarum haplotype 1 (19) T A A T T C A T A T T T C A A T T A G T T

B. cryptarum haplotype 2 (3) C T T C A C

B. lucorum haplotype 1 (16) T T C A T C C C T T T C C T A

B. lucorum haplotype 2 (2) T T C A T C C T T T C C T A

B. magnus haplotype 1 (22) T T C C T C C A C

B. magnus haplotype 2 (5) T T C C T C C A C

Number of individuals in parenthesis. Nucleotides in bold represent fixed diagnostic polymorphisms for each species.
doi:10.1371/journal.pone.0029251.t001

Figure 1. Consensus Bayesian tree generated from 642 bps of the mitochondrial COI region for 67 representatives of the lucorum
complex. Bayesian MCMC analysis was conducted using the general time reversible model, gamma distribution and 1 million generations. Numbers
below the branches indicate posterior probabilities. Scale bar relates to expected number of substitutions per site. B. terrestris (428–6876COI) was
included as an out-group and used to root the trees.
doi:10.1371/journal.pone.0029251.g001

Cryptic European Bumblebees

PLoS ONE | www.plosone.org 4 January 2012 | Volume 7 | Issue 1 | e29251



complex (Table 1). They are at position 203 (Thymine, Cytosine

and Adenine for B. cryptarum, B. lucorum and B. magnus respectively)

and position 553 (Adenine, Thymine and Cytosine for B. cryptarum,

B. lucorum and B. magnus respectively). Within species, genetic

distances for B. cryptarum, B. lucorum and B. magnus were 0.004,

0.001 and 0.001 respectively. Interspecific genetic distances were

considerably higher and ranged from 0.033 to 0.044.

Morphological analysis
Quantitative measurements and qualitative scores were ob-

tained for a range of morphological characters that have been

suggested to be diagnostic for species or of taxonomic importance

for B. lucorum s.l..

Body size
While there was considerable overlap among species in body

size (Fig. 2a), there were nevertheless significant differences among

the species in mean thorax breadth between the tegulae (Tables 2,

3). Post-hoc tests showed that B. magnus was bigger than B. lucorum

(Table 2, P = 0.035) and B. cryptarum (Table 2, P = 0.043), but there

was no difference between the latter two species (P = 0.943; Fig. 2a,

Table 2). Analysing the Irish specimens on their own, there was

still a significant difference in body size (Tables 2, 3), with post-hoc

tests showing that B. magnus was bigger than B. lucorum (Table 2,

P,0.001) but not B. cryptarum (Table 2, P = 0.438), and that B.

cryptarum was bigger than B. lucorum (Table 2, P = 0.014; Fig. 2b).

Finally, analysing the Danish specimens on their own, there was

no significant difference in body size across all species or in any of

the pairwise comparisons (Tables 2, 3, all P.0.2; Figure 2c).

Absolute collar breadth on top of thorax
There were no significant differences in absolute collar breadth

on top of the thorax among species (Tables 2, 3). This was true for

the entire data set, and for independent analyses of the Irish and

Danish specimens (Tables 2, 3). Results were the same when collar

breadth was re-scaled relative to body size (Tables 2, 3).

Length of collar extension below tegula
As with body size, despite considerable overlap among species,

there were significant differences among species for the length of

the collar extension below the tegula on the left (F2,63 = 76.059,

P,0.001, explaining 70% of the variance among specimens) and

right (F2,63 = 71.046, P,0.001, explaining 69.3% of the variance)

sides of the thorax (Table 2), as well as the average extension

across both sides (F2,63 = 93.378, P,0.001, explaining 74.8% of

the variance). All pairwise differences were significant (all

P,0.001), with the collar of B. magnus extending significantly

further below the tegula than that of B. cryptarum, which itself had a

longer absolute extension of the collar than B. lucorum (Table 2).

Results were qualitatively similar for the Irish and Danish data sets

when analysed on their own (statistics not shown, Table 2),

although in the Danish data, only B. lucorum had a consistently

significantly shorter collar extension than B. magnus. Results were

qualitatively the same when length of the collar extension was re-

scaled relative to body size (Tables 2, 3).

Breadth of collar extension below tegula
Again, despite large overlap among species in this character,

there were significant differences in the breadth of the collar

extension below the tegula on the left (F2,63 = 29.667, P,0.001,

explaining 48.5% of the variance among specimens) and right

(F2,63 = 30.492, P,0.001, explaining 49.2% of the variance) sides

of the thorax (Table 2), as well as the average breadth across both

Figure 2. Body size, measured as thorax width, in B. cryptarum,
B. lucorum and B. magnus queens (a) for all samples combined,
(b) for Irish specimens, and (c) for Danish specimens. Boxplots
show the median, upper and lower quartiles, 99% confidence limits and
outliers.
doi:10.1371/journal.pone.0029251.g002
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sides (F2,63 = 37.293, P,0.001, explaining 54.2% of the variance).

All pairwise differences were significant (all P,0.04) with the collar

of B. magnus being broader below the tegula than that of B.

cryptarum, which itself was broader than B. lucorum (Table 2).

Results were qualitatively similar for the Irish and Danish data sets

when analysed on their own (statistics not shown, Table 2),

although in the Danish data only B. lucorum had a consistently

significantly narrower collar extension than B. magnus. Results were

qualitatively similar when breadth of the collar extension was re-

scaled relative to body size (Tables 2, 3).

Table 2. Morphological measurements for molecularly identified queens of Bombus cryptarum, B. lucorum and B. magnus
(mean6SD).

All samples Ireland samples Denmark samples

cryptarum lucorum magnus cryptarum lucorum magnus cryptarum lucorum magnus

Thorax width (mm) 7.9660.50 7.9160.60 8.2860.35 8.1160.48 7.4560.38 8.1460.34 7.7060.33 7.8860.56 8.1860.41

Collar breadth – top (mm) A 2.8060.45 2.7960.42 2.8760.31 2.9460.22 2.5160.46 2.8760.31 2.4360.56 2.6260.27 2.8960.33

Relative A 0.3560.06 0.3560.05 0.3560.42 0.3660.04 0.3460.07 0.3560.04 0.3160.07 0.3360.05 0.3360.06

Length of collar below
tegula – right (mm) B

1.4360.46 0.7860.41 2.5560.56 1.6160.32 0.4660.42 2.6160.56 1.3360.77 0.8660.23 2.2560.49

Length of collar below
tegula – left (mm) C

1.6760.41 0.9360.49 2.5860.42 1.8160.24 0.4760.44 2.6060.42 2.0160.43 1.0260.09 2.4560.41

Length of collar below
tegula – average (mm) D

1.5560.38 0.8560.44 2.5660.42 1.7160.27 0.4760.43 2.6160.41 1.6760.54 0.9460.16 2.3660.41

Relative B 0.1860.06 0.1060.05 0.3160.07 0.2060.05 0.0660.06 0.3260.07 0.1760.10 0.1160.03 0.2860.07

Relative C 0.2160.05 0.1260.06 0.3160.05 0.2360.04 0.0760.06 0.3160.05 0.2660.05 0.1360.01 0.3060.05

Relative D 0.2060.05 0.1160.05 0.3160.06 0.2160.04 0.0660.06 0.3160.06 0.2260.07 0.1260.02 0.2960.06

Breadth of collar below
tegula – right (mm) E

2.1160.55 1.6660.74 2.9360.38 2.2960.24 1.3161.20 2.9560.31 1.7861.00 1.4860.08 2.8760.63

Breadth of collar below
tegula – left (mm) F

2.2160.34 1.6660.79 2.8160.32 2.1560.20 1.2761.22 2.8460.34 2.4760.13 1.4760.29 2.6760.21

Breadth of collar below
tegula – average (mm) G

2.1660.33 1.6660.75 2.8760.31 2.2260.18 1.2961.20 2.8960.29 2.1260.52 1.4760.17 2.7760.42

Relative E 0.2760.07 0.2160.10 0.3660.05 0.2860.04 0.1860.17 0.3660.04 0.2360.13 0.1960.00 0.3560.08

Relative F 0.2860.05 0.2160.10 0.3460.04 0.2760.04 0.1860.17 0.3460.04 0.3260.03 0.1960.03 0.3360.03

Relative G 0.2760.05 0.2160.10 0.3560.04 0.2860.04 0.1860.17 0.3560.04 0.2860.07 0.1960.02 0.3460.06

doi:10.1371/journal.pone.0029251.t002

Table 3. Results of the statistical analyses for differences in morphological traits between cryptic species.

Trait Overall Ireland Denmark

F2,63 P F2,31 P F2,11 P

Thoracic width between the tegula 4.446 0.016 10.794 ,0.001 1.57 0.251

Collar breadth on top of thorax (A) 0.295 0.746 3.132 0.058 1.567 0.252

A relative to body size 0.111 0.895 0.573 0.57 0.614 0.559

Length of collar extension below left tegula (B) 76.059 ,0.001 61.638 ,0.001 18.587 ,0.001

Length of collar extension below right tegula (C) 71.046 ,0.001 41.036 ,0.001 7.188 0.01

Average length of collar extension below tegula (D) 93.378 ,0.001 65.579 ,0.001 12.974 0.001

B relative to body size 64.93 ,0.001 47.209 ,0.001 16.503 ,0.001

C relative to body size 59.195 ,0.001 30.886 ,0.001 5.981 0.017

D relative to body size 77.282 ,0.001 46.915 ,0.001 10.812 0.003

Breadth of collar extension below left tegula (E) 29.667 ,0.001 19.579 ,0.001 40.088 ,0.001

Breadth of collar extension below right tegula (F) 30.492 ,0.001 22.158 ,0.001 4.892 0.03

Average breadth of collar extension below tegula (G) 37.293 ,0.001 22.913 ,0.001 11.082 0.002

E relative to body size 21.466 ,0.001 12.051 ,0.001 26.005 ,0.001

F relative to body size 21.754 ,0.001 12.77 ,0.001 3.81 0.055

G relative to body size 26.177 ,0.001 13.437 ,0.001 8.327 0.006

doi:10.1371/journal.pone.0029251.t003
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One of the key characteristics that has been suggested as a way

to identify the three species is the combination of relative breadth

and length of the collar extension below the tegula. However, a

plot of these two morphological variables against each other (Fig. 3)

shows that they cannot unambiguously differentiate between the

three species at either continental or local scales. At the European

scale, all three species overlap in this combination of characters,

with particularly strong overlap between B. cryptarum+B. lucorum

and B. cryptarum+B. magnus respectively (Figure 3a). In the Danish

samples, which were identified morphologically prior to molecular

analyses, a similar degree of overlap is observed (Figure 3c). In

contrast, the Irish samples suggest possible differentiation between

B. cryptarum and B. lucorum using this combined character, although

B. cryptarum and B. magnus still overlap (Figure 3b). Figure 4 shows

examples of this overlap, with molecularly identified specimens

from each species falling into all 3 of the colour-pattern groups.

The ‘‘S-shape’’
Queens of B. cryptarum were significantly more likely to have an

‘‘S-shape’’ than either B. lucorum or B. magnus (left-hand side of the

thorax: G = 21.544, P,0.001; right-hand side of the thorax:

G = 21.162, P,0.001). However, only 64% and 57% of B.

cryptarum queens had the ‘‘S-shape’’ on the left and right sides,

respectively (Table 4). While Irish queens were more likely to

possess the S-shape if they were B. cryptarum (left: G = 7.488,

P = 0.024; right: G = 6.678, P = 0.035), only 57% of B. cryptarum

queens exhibited this marker while up to 18% of B. magnus

possessed an S-shape, depending on thorax side (Table 4; see

Figure 4, specimen g for an example of a B. magnus queen with an

‘‘S-shape’’). Unsurprisingly, given that the animals were morpho-

logically identified on the basis of the S-shape prior to sequencing,

100% of Danish B. cryptarum queens had the S-shape on the left

and right sides of their thorax (G = 18.249, P,0.001 for both

sides), while specimens of the other two species had no S-shape

(Table 4).

Extension directly beneath the tegula
There was a significant difference among species in the

possession of a collar that extended along the thorax below the

tegula (left: G = 15.868, P,0.001; right: G = 25.490, P,0.001), a

feature which is claimed to be diagnostic for B. magnus. While both

B. magnus (48%) and B. cryptarum (22%) possessed this character

state on the left side of the thorax, only B. magnus possessed it on

the right side (44%) (Table 4). Only B. magnus queens from the

Irish data set had a collar extension below the tegula. 45% of these

queens had an extension on the left side, while 50% had it on the

right side (G = 10.878, P = 0.004; G = 12.308, P = 0.002, respec-

tively) (Table 4). There was significant variation among species in

the Danish sample for the presence of a collar extension below the

tegula on the left-hand side of the thorax (G = 12.391, P = 0.002).

While 3 out of 5 B. magnus queens had this trait, all of the B.

cryptarum queens possessed it (5/5). Only one of the Danish queens

had a collar extension below the tegula on the right side, and this

was a B. magnus (Table 4).

Melanisation within the collar
There was a significant difference among species in the presence

of melanised hairs scattered within the otherwise yellow collar

(G = 9.890, P = 0.007; Table 4), another trait suggested to be

diagnostic for B. cryptarum. Overall, 70% of B. cryptarum queens

possessed this state, as opposed to 25% of B. lucorum queens and

33% of B. magnus queens. However, in the Irish dataset there was

no relationship between melanisation and species (G = 1.738,

P = 0.419; Table 4). Again, unsurprisingly, melanisation was

present in all of the morphologically identified Danish B. cryptarum

queens, only 1 of the B. lucorum queens and none of the B. magnus

queens (G = 14.623, P = 0.001; Table 4).

Figure 3. Combining the length and breadth of the collar
extension of queens fails to distinguish between species (a) all
samples combined, (b) for Irish specimens, and (c) for Danish
specimens.
doi:10.1371/journal.pone.0029251.g003
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Discussion

Species determination is central to most assessments of

biodiversity. Here we use DNA barcoding to show that currently

recommended morphological traits for identifying a cryptic species

complex of bumblebees are unreliable at both local and European

scales. Below, we discuss these results in detail before assessing the

impact they have on bumblebee conservation in western Europe.

COI barcode analysis indicated that three distinct molecular

operational taxonomic units (MOTUs) exist within the European B.

lucorum complex, a finding congruent with previous studies based on

molecular genetics [20,21,22,23] and secretions of the male labial

glands [20]. Clade structure and genetic distances obtained in this

study were similar to those obtained in previous studies [21] with

intraspecific and interspecific genetic distance values of 0.001–0.004

and 0.033 to 0.044 respectively. Intraspecific and interspecific

values obtained by Murray (2008) and Bertsch (2009) were 0.002–

0.004 and 0.046–0.067 respectively. These distance values clearly

indicate a significantly greater level of divergence between the three

taxa and although the use of DNA sequences for species discovery

or recognition is a contentious issue [57,58,59] our results are

consistent with the view that the Northern European B. lucorum

complex is comprised of three species.

The highest amount of intraspecific COI sequence variability

was observed for B. cryptarum, a result consistent with previous

studies [22]. There is a clear distinction between Finnish B.

cryptarum and those sampled from Denmark, Scotland and Ireland.

This differentiation, which corresponds to two distinct haplotypes,

is supported by nine polymorphisms. This level of variation

warrants further attention to evaluate the systematic significance of

such divergence. A similar distinction was observed between

Danish and Irish B. magnus with both forming monophyletic

groups sister to each other. Danish B. magnus possessed two

diagnostic polymorphisms with respect to their Irish counterparts

(Table 1). B. lucorum demonstrated the lowest levels of intraspecific

variation with only a single polymorphism observed across the

Danish, Finnish, Irish and Orkney Isles specimens. These results

Figure 4. Morphological variation in queens of the three species as defined by COI barcode groups. Horizontal rows indicate species as
identified by barcoding, whilst vertical columns show how molecularly identified specimens of each species can be morphologically identified as
belonging to all 3 taxa. Specimens are identified by letters, which correspond to Table S1 as follows: a = T780, b = T773, c = T883, d = T875, e = T718,
f = T787, g = T714, h = T713, i = T781.
doi:10.1371/journal.pone.0029251.g004

Table 4. The presence/absence of morphological characters in molecularly identified queens of Bombus cryptarum, B. lucorum and
B. magnus.

All samples Ireland samples Denmark samples

cryptarum lucorum magnus cryptarum lucorum magnus cryptarum lucorum magnus

‘‘S’’-shape 14/22 1/16 4/27 4/7 0/5 4/22 5/5 0/4 0/5

Melanisation of collar 16/23 4/16 9/27 4/7 1/5 9/22 5/5 1/4 0/5

Extension beneath
tegula

5/23 0/16 14/27 0/7 0/5 11/22 5/5 0/4 3/5

doi:10.1371/journal.pone.0029251.t004
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may imply species differences in natural migration rates, and thus

population structure across Europe, but this needs to be

investigated using more appropriate markers (e.g., microsatellites).

Such differences have obvious conservation implications given the

level of habitat fragmentation in the European landscape.

The discrete differences between the three species obtained

from the DNA barcode analysis were not replicated when

morphological characters were analysed. Based on the characters

most commonly cited as distinguishing these taxa, results from the

morphological analyses failed to reveal a character that could

reliably differentiate queens of the three species. Neither of the two

most definitive character states – the presence of an S-shape on the

collar, or extension of the collar under the wings – was consistently

found in the species with which it has been associated as claimed

previously [20]. While there were clearly significant differences

among species in the presence of such traits, or in the mean values

of more quantitative traits, there was significant overlap among

species. While previous studies and bumblebee identification

guides have claimed that specific morphological features can be

used to identify queens of these three cryptic species, few [23,28]

have quantitatively examined such claims, and these studies had

no independent diagnostic of species identification. Our results

agree with Williams’ [28] suggestion that these supposedly

‘‘diagnostic’’ characters overlap considerably and vary along a

morphological continuum. Consequently, they are of limited use

for morphological diagnosis of queens of B. cryptarum, B. lucorum

and B. magnus.

The majority of characters used for bumblebee species

differentiation in ecological studies are based on patterns relating

to hair, which for bumblebees can be highly variable within

species. Moreover, hair colour patterns often demonstrate a high

degree of convergence and even Muellerian mimicry between

species [15]. This can be clearly seen in our results (Fig. 4), where

hair patterns are clearly variable and form a continuum across

species.

In contrast to our study, previous molecular studies [20,21]

report specimens identified to species using COI sequencing that

consistently display ‘‘species diagnostic’’ morphological characters.

However these studies (and others) may have suffered from

insufficient or selective sampling (it may be common for collectors

to select ‘typical’ specimens for study, either intentionally or

otherwise). The number of specimens included in the Bertsch et

al’s., study [20] was very low (n = 2 sequences per species). In total,

28 lucorum complex queens were included in the molecular analysis

of Bertsch [21] and although 18 distinct geographic regions were

represented in that study, the low sample size (max n = 4, with the

majority of locations represented by n = 1) could not result in a

conclusive evaluation of the morphological variance that exists

within a given locality. The presence of clear geographical

variation in colour patterns across species, as found in our study,

suggests that additional investigations across the range of these

species involving a randomly collected and large numbers of

queens would be highly valuable.

The ability to conduct meaningful ecological and population

genetic studies of particular taxa is reliant on our ability to

correctly identify species. The results of our study clearly indicate

that the potential for misidentification within the B. lucorum

complex is high, particularly when dealing with randomly sampled

large collections. Consequently, studies involving B. lucorum s.l.

conducted prior to the utilisation of molecular methods for species

identification may be subject to erroneous interpretation. The

work of Waters et al [23] highlights the problems associated with

field-based identifications of workers from the B. lucorum complex.

The authors recommend the accompaniment of ecological studies

with molecular methods for species identification. While this

provides a solution, it is unlikely to be one that can be used for

large-scale abundance and diversity studies. We hope that by

demonstrating the problems with current characteristics used for

queen species identification in the B. lucorum species complex, we

will motivate the discovery of accurate morphological markers.

Finally, we have shown that DNA barcoding for species

identification can provide the basis for such quantitative studies.
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30. Krüger E (1939) Die Hummeln und Schmarotzerhummeln von Sylt und dem
benachbarten Festland. Schr Naturw Ver Schlesw- Holst 23: 28–123.

31. Rasmont P (1984) Les Bourdons du genre Bombus Latreille sensu stricto en
Europe Occidentale et Centrale (Hymenoptera, Apidae). Spixiana 7: 135–160.

32. Hajibabaei M, Singer GAC, Hebert PDN, Hickey DA (2007) DNA barcoding:
how it complements taxonomy, molecular phylogenetics and population

genetics. Trends Genet 23: 167–172.

33. Hajibabaei M, Singer GAC, Clare EL, Hebert PDN (2007) Design and
applicability of DNA arrays and DNA barcodes in biodiversity monitoring.

BMC Biol 5: 24.
34. Smith MA, Wood DM, Janzen DH, Hallwachs W, Hebert PDN (2007) DNA

barcodes affirm that 16 species of apparently generalist tropical parasitoid flies

(Diptera, Tachinidae) are not all generalists. Proc Nat Acad Sci U S A 104:
4967–4972.

35. Hebert PDN, Cywinska A, Ball SL, deWaard JR (2003) Biological identifications
through DNA barcodes. P Roy Soc Lond B Bio 270: 313–321.

36. Burns JM, Janzen DH, Hajibabaei M, Hallwachs W, Hebert PDN (2008) DNA
barcodes and cryptic species of skipper butterflies in the genus Perichares in Area

de Conservacion Guanacaste, Costa Rica. Proc Nat Acad Sci U S A 105:

6350–6355.
37. Emery VJ, Landry J-F, Eckert CG (2009) Combining DNA barcoding and

morphological analysis to identify specialist floral parasites (Lepidoptera:
Coleophoridae: Momphinae: Mompha). Mol Ecol Resour 9: 217–223.

38. Hebert PDN, Penton EH, Burns JM, Janzen DH, Hallwachs W (2004) Ten

species in one: DNA barcoding reveals cryptic species in the neotropical skipper
butterfly Astraptes fulgerator. Proc Nat Acad Sci USA 101: 14812–14817.

39. Barrett RDH, Hebert PDN (2005) Identifying spiders through DNA barcodes.
C J Zool 83: 481–491.

40. Raupach M, Astrin J, Hannig K, Peters M, Stoeckle M, et al. (2010) Molecular
species identification of Central European ground beetles (Coleoptera:

Carabidae) using nuclear rDNA expansion segments and DNA barcodes. Front
Zool 7: 26.

41. Smith MA, Woodley NE, Janzen DH, Hallwachs W, Hebert PDN (2006) DNA
barcodes reveal cryptic host-specificity within the presumed polyphagous

members of a genus of parasitoid flies (Diptera: Tachinidae). Proc Nat Acad

Sci U S A 103: 3657–3662.

42. Kumar NP, Rajavel AR, Natarajan R, Jambulingam P (2007) DNA barcodes

can distinguish species of Indian mosquitoes (Diptera: Culicidae). J Med
Entomol 44: 1–7.

43. Rivera J, Currie DC (2009) Identification of Nearctic black flies using DNA
barcodes (Diptera: Simuliidae). Mol Ecol Resour 9: 224–236.

44. Fisher B, Smith M (2008) A revision of Malagasy species of Anochetus mayr and
Odontomachus latreille (Hymenoptera: Formicidae). PLoS ONE 3: e1787.

45. Foottit RG, Maw HEL, Havill NP, Ahern RG, Montgomery ME (2009) DNA
barcodes to identify species and explore diversity in the Adelgidae (Insecta:

Hemiptera: Aphidoidea). Mol Ecol Resour 9: 188–195.

46. Lee W, Kim H, Lim J, Choi H-R, Kim Y, et al. (2010) Barcoding aphids

(Hemiptera: Aphididae) of the Korean Peninsula: updating the global data set.
Mol Ecol Resour 11: 32–37.

47. Gibbs J (2009) Integrative taxonomy identifies new (and old) species in the

Lasioglossum (Dialictus) tegulare (Robertson) species group (Hymenoptera, Halicti-
dae). Zootaxa 2032: 1–38.

48. Sheffield CS, Hebert PDN, Kevan PG, PackerLaurance (2009) DNA barcoding
a regional bee (Hymenoptera: Apoidea) fauna and its potential for ecological

studies. Mol Ecol Resour 9: 196–207.

49. Williams PH, An JD, Huang JX (2011) The bumblebees of the subgenus

Subterraneobombus: integrating evidence from morphology and DNA barcodes
(Hymenoptera, Apidae, Bombus). Zool J Linn Soc-Lond 163: 813–862.

50. Pages M, Chaval Y, Herbreteau V, Waengsothorn S, Cosson J-F, et al. (2010)
Revisiting the taxonomy of the Rattini tribe: a phylogeny-based delimitation of

species boundaries. BMC Evol Biol 10: 184.

51. Folmer O, Hoeh W, Lutz R, Vrijenhoek R (1994) DNA primers for

amplification of mitochondrial cytochrome C oxidase subunit I from diverse

metazoan invertebrates. Mol Mar Biol Biotech 3: 294–299.

52. Magnacca KN, Brown MJF (2009) Tissue segregation of mitochondrial

haplotypes in heteroplasmic Hawaiian bees: implications for DNA barcoding.
Mol Ecol Resour 10: 60–68.

53. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and
analysis program for Windows 95/98/NT. Nucl A S. pp 95–98.

54. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary
Genetics Analysis (MEGA) Software Version 4.0. Mol Biol Evol 24: 1596–1599.

55. Kimura M (1980) A simple method for estimating evolutionary rates of base
substitutions through comparative studies of nucleotide sequences. J Mol Evol

16: 111–120.

56. Drummond A, Rambaut A (2007) BEAST: Bayesian evolutionary analysis by

sampling trees. BMC Evol Biol 7: 214.

57. Rubinoff D, Cameron S, Will K (2006) A genomic perspective on the

shortcomings of mitochondrial DNA for ‘‘barcoding’’ identification. J Hered 97:
581–594.

58. Brower AVZ (2006) Problems with DNA barcodes for species delimitation: ‘ten
species’ of Astraptes fulgerator reassessed (Lepidoptera: Hesperiidae). Syst Biodivers

4: 127–132.

59. DeSalle R, Egan MG, Siddall M (2005) The unholy trinity: taxonomy, species

delimitation and DNA barcoding. Phil Trans R Soc B 360: 1905–1916.

Cryptic European Bumblebees

PLoS ONE | www.plosone.org 10 January 2012 | Volume 7 | Issue 1 | e29251


