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Multi-arm group sequential designs with
a simultaneous stopping rule
S. Urach and M. Posch*†

Multi-arm group sequential clinical trials are efficient designs to compare multiple treatments to a control. They
allow one to test for treatment effects already in interim analyses and can have a lower average sample number
than fixed sample designs. Their operating characteristics depend on the stopping rule: We consider simultaneous
stopping, where the whole trial is stopped as soon as for any of the arms the null hypothesis of no treatment effect
can be rejected, and separate stopping, where only recruitment to arms for which a significant treatment effect
could be demonstrated is stopped, but the other arms are continued. For both stopping rules, the family-wise
error rate can be controlled by the closed testing procedure applied to group sequential tests of intersection and
elementary hypotheses. The group sequential boundaries for the separate stopping rule also control the family-
wise error rate if the simultaneous stopping rule is applied. However, we show that for the simultaneous stopping
rule, one can apply improved, less conservative stopping boundaries for local tests of elementary hypotheses. We
derive corresponding improved Pocock and O’Brien type boundaries as well as optimized boundaries to maximize
the power or average sample number and investigate the operating characteristics and small sample properties
of the resulting designs. To control the power to reject at least one null hypothesis, the simultaneous stopping
rule requires a lower average sample number than the separate stopping rule. This comes at the cost of a lower
power to reject all null hypotheses. Some of this loss in power can be regained by applying the improved stopping
boundaries for the simultaneous stopping rule. The procedures are illustrated with clinical trials in systemic
sclerosis and narcolepsy. © 2016 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd.

Keywords: multi-arm multi-stage designs; multiple treatment arms; early stopping; closed testing; multiple
comparisons

1. Introduction

Multi-arm clinical trials simultaneously compare several doses, treatments or treatment regimens to a
control while controlling the familywise error rate (FWER) in the strong sense. Group sequential ver-
sions of multi-arm clinical trials in addition include interim analyses where recruitment in some or all
arms may be stopped early, either for futility if no promising treatment effect is observed or because
the respective null hypotheses can be rejected based on the interim data. These group sequential trials
require, on average, less patients than fixed sample designs, which is particularly important in rare dis-
eases or sensitive populations as children [1]. The stopping boundaries for such group sequential designs
can be determined by simulation, the Bonferroni inequality [2] or numerical integration [3]. Recently,
these tests (which are based on single step multiple testing procedures) have been improved by the closed
testing procedure to sequentially rejective tests [4].

In this paper, we consider multi-arm multi-stage designs with two different stopping rules to achieve
two different objectives: (i) the objective to detect at least one effective treatment and (ii) the objective to
identify all effective treatments. The simultaneous stopping rule suited to accomplish objective (i) stops
the whole trial as soon as for a single treatment arm, the null hypothesis of no treatment effect can be
rejected. When the trial is stopped early, also for all other treatment arms, a hypothesis test is performed
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based on the interim data, and no additional subjects are recruited. Thus, the simultaneous stopping rule
stops recruitment in all treatment arms simultaneously at the same interim analysis. On the other hand,
to meet objective (ii), we consider the classical stopping rule for multi-arm multi-stage designs, where the
stopping decision for each experimental treatment arm depends only on the test statistics comparing the
respective arm to the control. We refer to the latter as the separate stopping rule. The critical boundaries
derived for classical multi-arm group sequential designs with the separate stopping rule control the FWER
also if the simultaneous stopping rule is applied but are typically strictly conservative and do not exhaust
the type I error rate. Therefore, we derive improved critical boundaries for closed group sequential testing
procedures using the simultaneous stopping rule. The improvement of the critical values is based on a
methodological approach that is closely related to the methods used to improve group sequential tests
with multiple endpoints [5–9]. Similar as in the multiple endpoint setting, the multiple testing procedure
can be improved by taking into account the stopping rule. However, in the setting of multi-arm trials
considered here, the correlation between test statistics is known (in contrast to test statistics for multiple
endpoints) such that sharper critical values can be derived.

Wason and Jaki [10] optimized multi-arm group sequential designs with a simultaneous stopping
rule applying single step multiple testing procedures. The testing procedures considered here uniformly
improve this single step test in two ways: first, by applying a sequentially rejective test based on the
closure principle as in [4] and second, by accounting for the stopping rule.

We illustrate the approach by improving O’Brien Fleming and Pocock type group sequential bound-
aries and compare the operating characteristics to tests with classical group sequential boundaries when
simultaneous as well as separate stopping rules are applied. Furthermore, we optimize the critical
boundaries to minimize the average sample number for the separate and the simultaneous stopping rule.

The paper is organized as follows: In Section 2, the model is introduced, and the level 𝛼 conditions
for group sequential multi-arm clinical trials with separate and simultaneous stopping are derived. In
Section 3, the operating characteristics of the improved O’Brien Fleming and Pocock type boundaries
are compared with classical multi-arm group sequential designs. In Section 4, optimal critical boundaries
for simultaneous and separate stopping are derived. In Section 5, the simultaneous stopping designs are
extended to four arm trials. The approach is illustrated by clinical trial examples with two and three
experimental treatment arms in Section 6. Finally, in Section 7, we investigate the procedure in settings
with small sample sizes.

2. Model and notation

Consider a two-stage, three-arm group sequential clinical trial comparing the means 𝜇i, i = A,B, 0 of
a normally distributed outcome of two experimental treatments (A and B) to a control (0) testing the
one-sided hypotheses

HA ∶ 𝜇A ⩽ 𝜇0 vs. H′
A ∶ 𝜇A > 𝜇0 and HB ∶ 𝜇B ⩽ 𝜇0 vs. H′

B ∶ 𝜇B > 𝜇0.

The overall FWER is to be controlled at level 𝛼 in the strong sense. Let n1, n denote the first stage and
maximum sample sizes in the two experimental treatment arms, rn1, rn the respective sample sizes in
the control group for some allocation ratio r > 0, and Zij the standard z-test statistics for treatment
group i = A,B at stage j = 1, 2. Note that Zi2, i = A,B denote the cumulative test statistics based on
the observations from both stages. Then, under the assumption of known and equal variances across
treatment groups, the vector (ZA1,ZB1,ZA2,ZB2) follows a multivariate normal distribution with mean
(𝛿A
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where 𝛿A = 𝜇A − 𝜇0, 𝛿B = 𝜇B − 𝜇0 denote the effect sizes and 𝜌 = 1∕(1 + r) the correlation because of
the common control. Next, we state the level 𝛼 conditions for the group sequential designs with separate
and simultaneous stopping rules and derive improved rejection boundaries for the latter.
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2.1. Stopping boundaries for the separate stopping rule

Following Magirr et al. [4], we apply the closure principle to define a sequentially rejective group sequen-
tial test and specify group sequential local level 𝛼 tests for the intersection hypothesis HA ∩ HB and the
elementary hypotheses HA, HB. Then, the closed test rejects an elementary hypothesis Hi, i = A,B at
multiple level 𝛼 if the intersection hypothesis HA ∩ HB, and the corresponding elementary hypothesis Hi
are rejected with the respective group sequential local level 𝛼 tests.

Let u1, u2 (which we call global boundaries) denote the rejection boundaries for the intersection
hypothesis test at the interim and the final analysis. Similarly, let v1, v2 (the elementary boundaries)
denote the rejection boundaries for the local elementary hypothesis tests of HA and HB. We assume that
the same elementary boundaries v1, v2 are applied for HA and HB. Furthermore, l1 denotes an interim
futility boundary. Then, with the separate stopping rule, recruitment stops at the interim analysis for treat-
ment arm i = A,B if Zi1 < l1 (stopping for futility) or Zi1 ⩾ v1 and maxi=A,B Zi1 ⩾ u1 (early rejection).
To control the local level 𝛼, the stopping boundaries of the intersection hypothesis test have to satisfy

PHA∩HB
(max
i=A,B

Zi1 ⩾ u1) + PHA∩HB

{(
max
i=A,B

Zi1 < u1

)
∧

[(
ZA1 ⩾ l1 ∧ ZA2 ⩾ u2

)
∨
(
ZB1 ⩾ l1 ∧ ZB2 ⩾ u2

)]}
⩽ 𝛼 ,

(1)

where PHA∩HB
denotes the probability under HA ∩ HB. Note that, as shown in [3], the least favourable

configuration (defined as the parameter configuration that maximizes the probability of an erroneous
rejection) under the global null hypothesis where 𝛿A ⩽ 0, 𝛿B ⩽ 0 is 𝛿A = 𝛿B = 0.

The stopping boundaries for the elementary tests have to satisfy

PHi
(Zi1 ⩾ v1) + PHi

(l1 ⩽ Zi1 < v1 ∧ Zi2 ⩾ v2) ⩽ 𝛼. (2)

In addition, we require the critical boundaries for the elementary hypothesis Hi, i = A,B to satisfy v1 ⩽
u1 and v2 ⩽ u2 to obtain a consonant closed test such that the rejection of the intersection hypothesis
implies rejection of at least one elementary hypothesis. Then, the closed test simplifies to a sequentially
rejective testing procedure, where first the critical boundaries u1, u2 are applied, and, if at least one of the
hypotheses can be rejected, the remaining hypothesis is tested with the critical boundaries v1, v2 [11].

Note that when directly applying the closed testing procedure, there are outcomes where the trial
continues to the final analysis and an elementary hypothesis is rejected because an interim test statistics
crosses a rejection boundary, while the final test statistics does not. Consider, for example, the outcome
where the interim test statistics for treatment B crosses the interim boundary of the elementary hypothesis
test (Z1,B ⩾ v1), both treatments are continued to the second stage because the intersection hypothesis
cannot be rejected (i.e. l1 ⩽ Z1,A ⩽ u1, l1 ⩽ Z1,B ⩽ u1), but at the final analysis, the intersection hypothesis
(and HA) can be rejected, because, for example Z2,A ⩾ u2. Now, if Z2,B < v2, then HB could be rejected
in retrospect based on the interim data only (even though the test statistics at the final analysis does not
cross the respective rejection boundary). While this does not inflate the type I error rate, it disregards the
second stage data for that treatment, which is undesirable in the application to clinical trials. Therefore, we
modify the local hypothesis tests of HA and HB in the closed testing procedure by excluding retrospective
rejections from the rejection regions. Then, for HA the rejection region of the local level 𝛼 test is given
by RA =

⋃5
i=1 Ri, where

R1 = {Z1,B < u1 ∧ Z1,A ⩾ u1}
R2 =

{
Z1,B ⩾ u1 ∧

[
Z1,A ⩾ v1 ∨

(
l1 ⩽ Z1,A ∧ Z2,A ⩾ v2

)]}
R3 = {Z1,B < l1 ∧ l1 ⩽ Z1,A < u1 ∧ Z2,A ⩾ u2}
R4 = {l1 ⩽ Z1,B < u1 ∧ l1 ⩽ Z1,A < u1 ∧ Z2,B ⩾ u2 ∧ Z2,A ⩾ v2}
R5 = {l1 ⩽ Z1,B < u1 ∧ l1 ⩽ Z1,A < u1 ∧ Z2,B < u2 ∧ Z2,A ⩾ u2} .

(3)

The rejection region RB for HB is defined by analogy with A and B exchanged. Some comments are as
follows: (i) If the modified rejection regions RA, RB are applied, this results in a strictly conservative test
for certain parameter configurations. However, the respective level 𝛼 conditions cannot be relaxed as the
test still exhausts the level 𝛼 in the least favourable configurations. The least favourable configuration for
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Figure 1. The type I error rate P0,𝛿B
(R′

A) to reject HA as function of 𝛿B when applying the simultaneous stopping
rule or separate stopping rule for boundaries v1, v2 satisfying (2) (dashed curves) or the simultaneous stopping
rule for improved boundaries v′1, v

′
2 = v2 where v′1 solves (4) (solid curves) for O’Brien Fleming boundaries (left

graph) and Pocock boundaries (right graph). No futility bound is applied (l1 = −∞). The horizontal dashed lines
show the nominal 𝛼 level and the levels corresponding to v′1 and v1.

the local hypothesis test of HA is the setting where treatment A has no effect (𝛿A = 0), and the effect size
of the other treatment approaches infinity (𝛿B → ∞) (Figure 1). The type I error rate under this parameter
configuration approaches 𝛼. Similar as in [3], one can show that scenarios where 𝛿A < 0 lead to a lower
type I error rate. (ii) The closed testing procedure based on the intersection and elementary hypotheses
tests defined previously exhausts the FWER in two scenarios: if one of the treatments has no effect but
the effect size of the other approaches infinity and under the global null hypothesis, if 𝛿A = 𝛿B = 0. For
comparison, in the single step testing procedure considered in [3] (which corresponds to a closed test
where both, the intersection and the elementary hypotheses, are tested with the boundaries u1, u2), only
𝛿A = 𝛿B = 0 is a least favourable configuration. (iii) The rejection regions RA,RB are contained in the
rejection regions of the intersection hypothesis test. Therefore, they are also the rejection regions of the
closed testing procedure. (iv) The level 𝛼 conditions (1) and (2) apply when assuming a binding stopping
for futility rule. If the futility stopping boundaries are not binding (i.e. the data monitoring committee
may override them), then the level conditions (1) and (2) have to be modified by replacing l1 by −∞. The
actually performed test will be strictly conservative if a non-binding stopping rule for futility is applied.

2.2. Stopping boundaries for the simultaneous stopping rule

If the critical boundaries u1, u2 and v1, v2 satisfying (1) and (2) derived for the separate stopping rule are
applied, but the simultaneous stopping rule is followed, the FWER will still be controlled. This holds
because the test of the intersection hypothesis HA ∩HB has the same type I error rate for the simultaneous
and the separate stopping rule. Furthermore, the tests of the elementary hypotheses will have a type I
error rate lower than 𝛼 under simultaneous stopping: if the closed test rejects only one of the elementary
hypotheses at the interim analysis, the other hypothesis will not be tested at the final analysis, even if its
interim test statistic lies in the continuation region (see Figure 1 for the actual type I error rates when
Pocock (POC) or O’Brein Fleming (OBF) boundaries are used).

Consider, for example, the local test of HA. If the test statistic for HB crosses a rejection boundary at
the interim analysis, the trial is stopped and HA cannot be rejected in the final analysis. However, the
probability to stop at the interim analysis without rejecting HA (and as a consequence the actual type
I error rate) depends on the effect size of treatment B. For example, at nominal level 𝛼 = 0.025, the
maximum type I error rate over all 𝛿B to reject HA under simultaneous stopping is 0.018 (0.019) for
the Pocock (O’Brien Fleming) design. Thus, the stopping boundaries v1, v2 can be relaxed such that the
maximum type I error rate over all effect sizes of treatment B is equal to 𝛼, and the improved stopping
boundaries v′1, v

′
2 for the test of the elementary hypothesis HA satisfy

max
𝛿B

P0,𝛿B

(
R′

A

)
= 𝛼, (4)

where P𝛿A,𝛿B
denotes the probability under 𝜇i − 𝜇c = 𝛿i, i = A,B. The rejection region for HA is modified

to R′
A =

⋃5
i=1 R′

i with R′
2 = {Z1,B ⩾ u1 ∧ Z1,A ⩾ v′1} and R′

i = Ri, i = 1, 3, 4, 5 where v1, v2 is substituted

© 2016 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd. Statist. Med. 2016, 35 5536–5550

5539



S. URACH AND M. POSCH

Table I. Pocock and O’Brien Fleming type boundaries for the inter-
section and the elementary null hypothesis if no binding futility
stopping rule is applied (l1 = −∞) and equal per arm per stage
allocation (r = 1, n1∕n = 1∕2). The global boundaries (u1, u2)
fullfill Equation (1). The elementary boundaries (v1, v2) computed
for the separate stopping rule satisfy (2), v

′

1 is calculated for the
simultaneous stopping rule to achieve (4) with v

′

2 = v2.

Intersection hypothesis Elementary hypotheses

Boundary type u1 u2 v1 v′1 v2 = v′2

Pocock 2.42 2.42 2.18 1.97 2.18
O’Brien Fleming 3.14 2.22 2.80 2.08 1.98

by v′1, v
′
2 in (3). The type I error rate is maximal for 𝛿A = 0 and decreases for negative 𝛿A, as can be

shown along the lines of [3], where the monotonicity of the type I error rate in the effect sizes is shown
for single step tests. Exchanging A and B, we obtain the rejection region RB for the test of HB.

Note that, compared with the separate stopping rule, the boundaries v1, v2 in the elementary hypotheses
tests can be improved for simultaneous stopping but the boundaries u1, u2 for the intersection hypothesis
test cannot. As the latter test exhausts the type I error rate under the global null hypothesis also under
simultaneous stopping, the same rejection boundaries as for the separate stopping rule have to be applied.

Table I gives Pocock (POC) type (where v1 = v2, u1 = u2) and O’Brien Fleming (OBF) type (where
u2 = u1

√
n1∕n, v2 = v1

√
n1∕n) boundaries for equal per arm per stage sample sizes (r = 1, n1 = n∕2)

and 𝛼 = 0.025. It also shows the improved boundaries v′1, v
′
2 for the Pocock and the O’Brien Fleming

designs, which exhaust the type I error rate in the least favourable configuration as shown in Figure 1.
Here we set v′2 = v2 (where v2 is the respective boundary in the separate stopping design) and compute
v′1 by solving (4). By this choice, given the null hypothesis for one of the treatments is rejected at the
interim analysis, the other is tested at a level as close to 𝛼 as possible. An alternative strategy to choose
improved boundaries is to fix a certain boundary shape by setting, for example v′1 = v′2 for Pocock or
v′1 = v′2

√
n1∕n for O’Brien Fleming designs, and then solve (4) for v′2.

3. Operating characteristics of group sequential designs with separate and
simultaneous stopping

For Pocock and O’Brien Fleming stopping boundary types, we investigate the reduction of the average
sample number (ASN) under the simultaneous compared with the separate stopping rule and compute
the disjunctive power, defined as the probability to reject at least one null hypothesis (for simplicity,
no distinction between correct and incorrect rejections is made which has, however, only a minimal
impact on the results as all procedures control the FWER at the nominal level). Furthermore, we compare
the conjunctive power (defined as the probability to reject both null hypotheses) of the designs with
separate and simultaneous stopping rules and quantify the gain in power by using the improved stopping
boundaries.

We consider the following: (i) the separate stopping rule with boundaries satisfying (1) and (2) (sep-
arate design); (ii) the simultaneous stopping rule with the same boundaries (simultaneous design); and
(iii) the simultaneous stopping rule with the improved boundaries satisfying (1) and (4) (improved simul-
taneous design). Note that, by construction, the improved simultaneous design has (compared with the
simultaneous design) a larger conjunctive power, but the two designs have the same average sample size
and disjunctive power.

For example, consider a trial powered to achieve a disjunctive power of at least 90% given 𝛿A =
0.5, 𝛿B = 0, that is assuming that for only one experimental treatment, the alternative holds. We assume
that n1∕n = 1∕2, r = 1 and n1 is rounded up such that the maximum sample size N = 6 ⋅ n1 is a
multiple of 6. The operating characteristics of the Pocock and O’Brien Fleming designs with separate
and simultaneous stopping rules are given in Table II.

If no futility stopping rule is applied, the simultaneous and improved simultaneous designs lead, com-
pared with the separate design, to savings in the average sample number of 11% for the Pocock and 7%
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Table II. Operating characteristics of the separate stopping design (Sep.), the simul-
taneous stopping design (Sim.) and the improved simultaneous stopping design (Imp.)
with Pocock and O’Brien Fleming type boundaries and n1 = n∕2, r = 1: disjunctive
power, conjunctive power and average sample number (ASN) under different effect
sizes. The maximum sample size N is chosen to achieve a disjunctive power of 0.9 for
𝛿A = 0.5 and 𝛿B = 0. The settings where l1 = −∞ indicate designs with no stopping
for futility boundary.

Boundary Effect size Disj. Conjunctive power ASN

Type l1 𝛿A 𝛿B Power Sep. Sim. Imp. Sep. Sim. N

Pocock −∞ 0.5 0.5 0.970 0.890 0.689 0.756 230 205
0.5 0 0.904 0.025 0.016 0.025 292 232 324
0 0 0.025 0.004 0.003 0.004 323 322

O’Brien −∞ 0.5 0.5 0.970 0.894 0.716 0.840 260 241
Fleming 0.5 0 0.906 0.025 0.012 0.024 287 261 300

0 0 0.025 0.004 0.004 0.004 300 300
Pocock 0 0.5 0.5 0.970 0.889 0.687 0.755 230 205

0.5 0 0.903 0.025 0.016 0.025 253 215 324
0 0 0.025 0.004 0.003 0.004 251 250

O’Brien 0 0.5 0.5 0.970 0.891 0.711 0.836 259 240
Fleming 0.5 0 0.905 0.025 0.012 0.024 276 238 300

0 0 0.025 0.004 0.004 0.004 233 233

for the O’Brien Fleming design if both treatments are equally effective (𝛿A = 𝛿B = 0.5). This comes at
the cost of a lower conjunctive power which drops by 20 percentage points for the Pocock and 18 percent-
age points for the O’Brien Fleming type tests. When applying the improved boundaries, the conjunctive
power increases again by 7 (12) percentage points for the Pocock (O’Brien Fleming) design, compared
with the simultaneous design. If for only one treatment arm the alternative holds (𝛿A = 0.5, 𝛿B = 0),
the simultaneous stopping rule leads to a reduction in average sample size by 21% (9%) for the Pocock
(O’Brien Fleming) design. In the setting where only one treatment is effective, the actual FWER is given
by the conjunctive power (the probability to reject both null hypotheses). Similarly, under the global null
hypothesis the actual FWER is given by the disjunctive power. According to the closed testing principle,
these FWERs are bounded by the nominal FWER 0.025.

Applying a futility boundary of l1 = 0 leads to a substantially lower average sample number under the
global null hypothesis for all designs. Everything else kept equal, the introduction of the futility bound
leads to a slightly lower power such that in general, a larger maximum sample size needs to be applied
to reach the nominal disjunctive power of 90% under the alternative that only one of the treatments is
effective. However, because of the discreteness of the sample size, for both designs the same maximum
sample size is required with and without futility stopping and the obtained disjunctive and conjunctive
power values are almost identical.

In addition, we investigated the impact of a futility bound on the operating characteristics. We applied
the critical boundaries from Table I (which were computed without a futility stopping boundary) and
account for the futility stopping only in the computation of the power and the maximum and average
sample numbers. Then FWER control is guaranteed even if the futility boundaries are not adhered to.
We find that a futility boundary of l1 = 0 (which corresponds to a stop for futility if a negative trend is
observed) leads in all considered scenarios to lower or equal average sample numbers (Table II).

Figure 2 shows the conjunctive power and average sample number as function of the effect size 𝛿B for
𝛿A = 0, 0.25, 0.5. For all considered designs, the average sample number is highest for intermediate effect
sizes 𝛿B, where the probability that the trial continues to the second stage because neither the futility
stopping bound (l1 = 0) nor the efficacy bounds are crossed is highest. As expected, the average sample
number under the simultaneous stopping rule is consistently lower than under the separate stopping rule
and approaches the first stage sample size as 𝛿B increases. The difference in average sample number
between the simultaneous and separate stopping design is maximal if the treatment effect in one treatment
arm is very large but in the other it is only moderate.

While for the separate stopping designs, the conjunctive power is monotonically increasing in 𝛿B; this
does not hold for the designs under the simultaneous stopping rule. For the latter, the probability to stop
in the interim analysis increases with 𝛿B, and, as a consequence, the conjunctive power for the test of
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Figure 2. The average sample number and conjunctive power for different values of 𝛿A and 𝛿B, l1 = 0.
The average sample number is the same for the simultaneous stopping design as for the improved stopping
design (dashed lines). The maximum sample size N is chosen to achieve a disjunctive power of 90% under
𝛿A = 0.5, 𝛿B = 0. For the settings where 𝛿A = 0 and only one alternative hypothesis is true, no conjunctive

power is shown.

HA begins to decrease at a certain point. For large 𝛿B, the trial will practically always stop at the interim
analysis, restricting the test for treatment A essentially to a fixed sample test with sample size n1 and
applying the interim significance level. This leads to a smaller conjunctive power compared with designs
using the separate stopping rule. Using the improved boundaries can regain some of the lost conjunctive
power because a relaxed significance level is applied. This gain is larger for the O’Brien Fleming than
for the Pocock design.

4. Optimized group sequential boundaries

The Pocock and O’Brien Fleming type stopping boundaries considered previously are frequently con-
sidered for group sequential trials but do not satisfy specific optimality properties. In this section, we
derive optimized boundaries for the separate, the simultaneous and the improved simultaneous designs as
defined in Section 3. In all scenarios, for given stopping boundaries, the maximum sample size N is cho-
sen such that the disjunctive power is 90% if only one of the treatments is effective (𝛿A = 0.5, 𝛿B = 0 ) and
we set r = 1, n1∕n = 1∕2. Optimization is performed with the R-function optimize for one dimensional
and optim with the L-BFGS-B method for multidimensional optimization.

4.1. Designs with optimized rejection boundaries (no futility stopping)

For the separate design (where the average sample number depends on the global and the elementary
boundaries), we choose u1, u2, v1, v2 (satisfying (1) and (2)) to minimize the ASN under a specified
alternative hypothesis. For the simultaneous and improved simultaneous designs (where the average sam-
ple number depends on the global boundaries only), we also choose the boundaries u1, u2 to minimize
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Table III. Characteristics of the optimized separate (sep.), simultaneous (sim.) and improved simul-
taneous (imp.) designs: stopping boundaries, average sample number (ASN) under H0 (𝛿A = 𝛿B =
0), H1 (𝛿A, 𝛿B), maximum sample size (N) and the conjunctive and disjunctive power under H1. The
power and, for designs with no futility stopping (where l1 = −∞), the ASN are optimized under the
alternative H1 specified in the table. For designs with futility stopping, ASN, defined as the mean of
the ASN under H1 and the ASN under the global null hypothesis, is optimized. The maximum sam-
ple size N is chosen such that the disjunctive power is 90% given 𝛿A = 0, 𝛿B = 0.5. The columns
vi(v′i), i = 1, 2 denote the stopping boundary vi for the separate and simultaneous design and the
boundary v′i for the improved simultaneous design.

Effect size Stopping boundaries ASN Power

Design 𝛿A 𝛿B l1 u1 u2 v1

(
v′1
)

v2

(
v′2
)

H1 H0 N conj. disj.

Sep. 0.50 0.50 −∞ 2.47 2.38 2.05 2.38 225 317 318 0.85 0.97
Sim. 0.50 0.50 −∞ 2.41 2.43 2.06 2.37 205 322 324 0.71 0.97
Imp. 0.50 0.50 −∞ 2.41 2.43 2.00 2.06 205 322 324 0.76 0.97
Sep. 0.50 0.00 −∞ 2.79 2.26 2.11 2.26 279 300 300 0.02 0.90
Sim. 0.50 0.00 −∞ 2.42 2.42 2.04 2.42 232 322 324 0.02 0.90
Imp. 0.50 0.00 −∞ 2.42 2.42 2.00 2.06 232 322 324 0.02 0.90
Sep. 0.50 0.50 0.91 2.55 2.33 2.07 2.33 228 200 330 0.84 0.97
Sim. 0.50 0.50 0.91 2.51 2.35 2.10 2.28 211 203 336 0.71 0.97
Imp. 0.50 0.50 0.91 2.51 2.35 1.98 2.12 211 203 336 0.76 0.97
Sep. 0.50 0.00 0.94 2.68 2.28 2.10 2.28 235 199 330 0.02 0.90
Sim. 0.50 0.00 0.89 2.58 2.32 2.10 2.28 216 200 330 0.02 0.90
Imp. 0.50 0.00 0.88 2.58 2.32 1.97 2.20 216 201 330 0.02 0.90

the average sample number for a given alternative hypothesis 𝛿A, 𝛿B. Furthermore, we choose bound-
aries v1, v2 satisfying (2) (simultaneous design) or improved boundaries v′1, v

′
2 satisfying (4) (improved

simultaneous design) such that the conjunctive power is maximized under this alternative hypothesis. The
resulting optimized boundaries and operating characteristics for the separate, the simultaneous and the
improved simultaneous designs with no futility stopping rule (setting l1 = −∞) are given in Table III. If
both treatments are equally effective (𝛿A = 𝛿B = 0.5), the simultaneous stopping designs have a 9% lower
average sample number, slightly larger maximum sample size and the conjunctive power is reduced by
14 percentage points for the simultaneous but only 9 percentage points for the improved simultaneous
design. If only one treatment is effective (𝛿A = 0.5, 𝛿B = 0), the reduction in average sample number is
17%. In this case, the conjunctive power corresponds to the FWER.

4.2. Designs with optimized rejection and futility boundaries

As for the Pocock and O’Brien Fleming designs, we do not account for futility stopping for the compu-
tation of the stopping boundaries and set l1 = −∞ in the level 𝛼 conditions (1), (2), (4) such that the tests
control the level 𝛼 even if the futility stopping rule is not adhered to. For the computation of power and
sample sizes, however, we account for the futility boundary.

Because the benefit of futility stopping in terms of average sample number is most substantial under
the global null hypothesis, we optimize the mean average sample number ASN (instead of the average
sample number under the alternative), taking the mean of the average sample number under a specified
alternative and the global null hypothesis. Besides the different objective function, the optimization strat-
egy is analogous to the case without futility stopping: For the separate design we choose l1, u1, u2, v1, v2

(satisfying (1) and (2)) to minimize ASN. For the simultaneous and improved simultaneous designs, we
choose the boundaries l1, u1, u2 to minimize ASN. Furthermore, we choose boundaries v1, v2 satisfying
(2) (simultaneous design) or improved boundaries v′1, v

′
2 satisfying (4) (improved simultaneous design)

such that the conjunctive power is maximized under the assumption that both treatments have effect sizes
𝛿A, 𝛿B.

The simultaneous stopping designs have a 3% to 4% lower mean average sample number ASN and 7%
to 8% lower ASN under the considered alternative then the separate stopping design (Table III). In the
scenario 𝛿A = 𝛿B = 0.5, this comes at the cost of a drop in conjunctive power of 13 percentage points for
the simultaneous but only 8 percentage points for the improved simultaneous design.
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5. Four arm trials

To extend the designs to the comparison of three experimental treatment arms A, B, C to a control, by
the closed testing principle local group sequential tests for all intersection hypotheses need to be defined
(see Figure 3). For simplicity, we consider the case without futility stopping. For the separate stopping
design, rejection boundaries v1, v2 for the elementary null hypotheses and u1, u2 for the intersections of
two null hypotheses can be computed similarly as for the case of three arm trials (see the Appendix
for computational details). For the global null hypothesis HA ∩ HB ∩ HC, boundaries w1,w2 are defined
such that

PHA∩HB∩HC

(
max

i=A,B,C
Z1,i ⩾ w1 ∨ max

i=A,B,C
Z2,i ⩾ w2

)
= 𝛼 .

As in the case of three arm trials, the actual type I error of the closed test may be lower than 𝛼, if null
hypotheses are not rejected retrospectively.

Tables IV and V show Pocock and O’Brien Fleming boundaries as well as the operating characteris-
tics for the separate, the simultaneous and the improved simultaneous designs. As in the three arm trial
setting, we improved only the first stage boundaries. In addition, we applied as lower bound the 1 − 𝛼

standard normal quantile to avoid critical values falling below this threshold. In the four arm trial, the
savings in average sample size with the simultaneous stopping rule is more pronounced compared with
the separate stopping rule. In addition, in the scenario where all three treatments are effective, the gain in

Figure 3. Closure principle for testing three hypotheses

Table IV. Pocock and O’Brien Fleming type boundaries for the intersection of
three and two hypotheses and the elementary hypothesis if no binding futility
stopping rule is applied l1 = −∞, r = 1 and n1∕n = 1∕2.

Hi ∩ Hj ∩ Hk Hi ∩ Hj Hi

Boundary type w1 w2 u1 u′
1 u2 = u′

2 v1 v′1 v2 = v′2

Pocock 2.56 2.56 2.42 2.21 2.42 2.18 1.96 2.18
O’Brien Fleming 3.33 2.36 3.14 2.23 2.22 2.80 1.96 1.98

Table V. Operating characteristics of the different three-arm designs for Pocock and O’?Brien
Fleming design types with equal allocation: disjunctive power, conjunctive power and average
sample number (ASN) under different parameter configurations and maximum sample size N
for a disjunctive power of 0.9 under 𝛿A = 0.5 and 𝛿B = 𝛿C = 0.

Boundary Effect size Disj. Conjunctive power ASN

Type l1 𝛿A 𝛿B 𝛿C Power Sep. Sim. Imp. Sep. Sim. N

Pocock −∞ 0.5 0.5 0.5 0.99 0.72 0.49 0.60 330 279
0.5 0.5 0 0.97 0.011 0.008 0.014 395 297
0.5 0 0 0.90 0.003 0.001 0.003 431 336 464
0 0 0 0.025 0.0007 0.0005 0.0010 463 461

O’Brien −∞ 0.5 0.5 0.5 0.98 0.80 0.54 0.76 373 334
Fleming 0.5 0.5 0 0.97 0.015 0.004 0.019 398 351

0.5 0 0 0.90 0.003 0.0008 0.003 412 376 424
0 0 0 0.025 0.0008 0.0007 0.0009 424 424
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Table VI. Operating characteristics of the group sequential designs in the systemic scle-
rosis example. The average sample number and conjunctive power are computed for
𝛿A∕𝜎 = 𝛿B∕𝜎 = 0.4. The maximum sample size N is chosen such that the disjunc-
tive power is 80% given 𝛿A∕𝜎 = 0.4, 𝛿B = 0. The rejection and futility boundaries are
optimized as in Section 4.

Boundaries Sample size Power

Design u1 u2 l1 v1 v2 ASN H1 H0 N conj. disj.

Sep. 2.64 2.30 0.94 2.09 2.30 265 295 235 390 0.70 0.91
Sim. 2.51 2.35 0.97 2.10 2.28 256 272 239 402 0.58 0.92
Imp. 2.52 2.35 0.97 1.99 2.07 256 272 239 402 0.64 0.92

conjunctive power (defined as the probability to reject all three null hypotheses) by the improved simulta-
neous design (compared to the simultaneous design) is substantial. In all other scenarios, the conjunctive
power is bounded by the FWER.

6. Applications

6.1. Example: A three-arm trial in systemic sclerosis

We illustrate the approach in a setting along the lines of a randomized, double-blind, placebo-controlled
clinical trial in patients with diffuse cutaneous systemic sclerosis [12] to compare two doses of recom-
binant human relaxin (10 and 25 𝜇g/kg/day for 24 weeks) with a placebo. The objective of this fixed
sample trial was to show clinically efficacy in improving skin disease and reducing functional disabil-
ity. The primary endpoint was the modified Rodnan skin thickness score measured at week 24, which is
based on a clinical evaluation of skin thickness in 17 body surface areas and ranges from 0 to 51. The
original trial was powered to detect a difference of 4 points in the score assuming a standard deviation of
10 points but did not account for multiple testing to control the FWER.

To account for multiplicity, assume a single stage Dunnett test at a one-sided level of 2.5% is applied.
Then, to achieve a disjunctive power of 80% if only one of the two treatment arms is effective, a total
sample size of 354 patients, 118 per group, is required. We compare this single stage design with opti-
mized separate, simultaneous and improved simultaneous designs with futility stopping and assume an
interim analysis is performed after half of the patients have been observed. The designs are optimized as
described in Section 4 assuming standardized effect sizes of 0.4.

Compared with the fixed sample design, the maximum sample size of the optimized group sequential
design increases by a factor of 1.10 (1.14) for the separate (simultaneous) stopping rule, but the saving
in mean average sample number (taking the mean over the null hypothesis and the alternative scenario
with equal effect sizes) is 89 (98) patients. If the treatment is equally effective in both dose groups (𝛿A =
𝛿B = 0.4), the ASN under simultaneous stopping is 23 patients lower than under separate stopping. This
comes at the cost of a loss of 12 percentage points in conjunctive power, which reduces to 6 percentage
points if the improved simultaneous stopping boundaries are used.

Note that in this example, because the endpoint is measured only at 24 weeks, the benefit of early
stopping may be limited, especially if the recruitment speed is high. Unless recruitment is halted before
the interim analysis, at the time of the interim analysis, only part of the responses of the patients recruited
in the first stage will be observed. This reduces the savings in average sample number that can be obtained
by the group sequential design and leads to the problem of potential reversals of test decisions once the
complete data becomes available (see [13] for an approach to address this issue in two-armed trials).
Potential reversals of test decisions are of special concern for the simultaneous stopping rule, because
early rejection of a single null hypothesis stops the whole trial and makes it difficult to start recruitment
again, once a reversal has been observed.

6.2. Example: A four-arm trial in narcolepsy

The second example is motivated by a randomized, double blind, placebo-controlled multicenter trial to
compare three doses (3, 6 or 9g) of sodium oxybate with placebo in the treatment of Narcolepsy, a chronic
debilitating disease of the central nervous system leading to sleep disorder characterized by attacks of
excessive daytime sleepiness [14]. With a prevalence of 25 to 50 per 100 000 people, it is considered as

© 2016 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd. Statist. Med. 2016, 35 5536–5550

5545



S. URACH AND M. POSCH

Table VII. Operating characteristics for a clinical trial for narcolepsy with stan-
dardized effect sizes of 𝛿A = 𝛿B = 𝛿C = 0.86 and sample size for a disjunctive
power of 90% if only one treatment is effective (𝛿A = 0.86, 𝛿B = 0, 𝛿C = 0)

Boundaries Sample size Power

Design w1 w2 u1 u2 v1 v2 ASN N conj. disj.

Sep. 2.63 2.50 2.36 2.50 2.02 2.50 108 152 0.81 0.98
Sim. 2.40 2.88 2.24 2.88 1.97 2.88 101 184 0.59 0.99
Imp. 2.40 2.88 2.22 2.50 1.96 2.20 101 184 0.63 0.99

a rare disease. The primary endpoint was the change from baseline of weekly cataplexy attacks after a
4-week treatment period. The trial included 136 patients, but no power calculation was reported in the
publication. However, we note that a fixed sample size Dunnett test with disjunctive power of 90% for
standardized effect sizes 𝛿A = 0.86, 𝛿B = 𝛿C = 0 at a one sided level of 0.025 requires a total sample size
of 136 patients, that is 34 per group, and use this standardized effect size in the example.

We derive optimized group sequential boundaries along the lines of Section 4, setting the maximum
sample size such that, given the treatment is efficient in only one arm, the disjunctive power is 90%
(Table VII). The maximum sample size is larger than in the fixed sample test (inflation factor 1.12 for
separate and 1.35 for simultaneous stopping). If there is a homogeneous effect size in all treatment arms
(𝛿A = 𝛿B = 𝛿C = 0.86), the group sequential test with separate (simultaneous) stopping requires, on
average, 28 (35) patients less than the fixed sample test. Under the same alternative, the conjunctive power
to reject all three null hypothesis is 22 (18) percentage points larger in the separate than in the (improved)
simultaneous stopping design.

7. Type I error rate control in trials with small sample sizes

The derivations of the stopping boundaries are based on z-tests and are valid for t-statistics only asymp-
totically. For small sample sizes, however, the type I error rate of group sequential tests is substantially
inflated if critical boundaries based on the normal approximation are applied to t-statistics [15]. To bet-
ter control the type I error rate in the small sample case, a nominal p-value approach has been proposed
[15–18] to adjust for the unknown variance case: the group sequential boundaries computed for the z-test
are transformed to significance levels (by applying the cumulative distribution function of the standard
normal distribution). These significance levels are then applied to p-values of the t-test. While this pro-
cedure improves the type I error rate control, it is not exact and still leads to a small inflation of the type
I error rate (a minor inflation persists because the correlation of the cumulative t-statistics is lower than
the correlation of the corresponding z-statistics because the variance estimates in the t-statistics introduce
additional variability). Note that the type I error rate of the nominal p-value approach depends only on
the stage-wise sample sizes and not on the unknown variance [19].

To investigate the type I error rate of the multi-arm group sequential tests considered here, we per-
formed a small simulation study for three-arm trials applying the z-test boundaries ui, vi, v

′
i either directly

to the t-statistics or the corresponding significance levels 1 − Φ(x), x = ui, vi, v
′
i to the p-values of the

t-test (Figure 4). Applying the nominal p-value approach, the type I error rate is overall well controlled,
and we observe only a minimal inflation in the worst case scenarios. The z-test generally leads to a larger
type I error rate than the nominal p-value approach, with one exception: For the simultaneous stopping
rule with the non-improved boundaries and intermediate values of 𝛿B, the type I error rate of the nomi-
nal p-value approach and the z-test are almost identical. While this is at first sight surprising, there is a
simple explanation. With the nominal p-value approach the trial is more likely to continue to the second
stage compared with the z-test and rejections after the second stage become slightly more likely because
for intermediate 𝛿B, the increased probability to reach the second stage dominates the impact of the more
conservative test. On the other hand, the probability to reject in the interim analysis with the nominal
p-value approach is lower than with the z-test. For the simultaneous stopping with the non-improved
boundaries, however, the difference is very small (because both probabilities are very small) and the dif-
ferences in type I error probabilities at the first and second stage cancel out. The difference is larger for
the improved boundary, and therefore, we observe a larger overall type I error rate.
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Figure 4. The FWER as function of 𝛿B if 𝛿A = 0 for the separate (green), simultaneous (blue) and improved
simultaneous (red) designs using z-test O’Brien Fleming boundaries (dashed) or the nominal p-value approach
(solid) applied to t-statistics. No futility bound is applied. 106 simulation runs for each scenario. The FWER under
the global null hypothesis 𝛿A = 𝛿B = 0 for the nominal p-value approach (z-test) represented by the full (empty)
dot is the same for all three designs. The dashed horizontal line denotes nominal level 𝛼 = 0.025. Left graph for

maximum total sample size N = 60, right graph N = 120.

8. Discussion

In this manuscript, we consider multi-arm clinical trials with separate and simultaneous stopping rules.
We derive improved critical boundaries for designs with a simultaneous stopping rule that uniformly
improve the group sequential boundaries with separate stopping for multi-arm trials. Furthermore, we
optimize the boundary shape and determine the operating characteristics of the resulting designs.

If the separate or the simultaneous stopping rule should be chosen for a multi-arm, clinical trial will
depend on the trial objectives: For the objective to demonstrate a treatment effect for all experimental
treatments that are effective, the separate stopping design is favourable, because it has the largest con-
junctive power. If the objective is, however, to identify at least one effective treatment, designs with a
simultaneous stopping rule may be preferred because they can lead to a saving in the average sample
number. The improved stopping boundaries can alleviate the reduction in conjunctive power, which the
simultaneous stopping rule entails. However, this comes at the cost that the simultaneous stopping rule
must be adhered to in order to control the FWER. If a Data Monitoring Committee overrules the stopping
rule and continues the trial after a hypothesis has been rejected in an interim analysis, the type I error
rate will be inflated. For example, in the setting of Section 2.2, with improved Pocock (O’Brien Flem-
ing) type boundaries, the maximum type I error rate increases to 0.033 (0.036) instead of 0.025 and is
achieved if the separate instead of the simultaneous stopping rule is applied.

We defined disjunctive power as the probability to reject at least one null hypothesis, making no distinc-
tion between correct and incorrect rejections. With this simplification the disjunctive power only depends
on the group sequential boundaries of the intersection (but not the elementary) hypothesis test and is
the same for the simultaneous, improved simultaneous and the separate stopping designs. If, instead,
only correct rejections are considered, the improved boundaries for simultaneous stopping also lead to a
slightly improved disjunctive power. While for Phase III designs, where very small significance levels are
applied, this difference is negligible; it can be more pronounced if larger significance levels are applied,
as in some Phase II trials.

The computation of the stopping boundaries relies on the assumption of normally distributed test statis-
tics. However, for small clinical trials with low sample sizes, we demonstrated that the FWER can be
controlled by applying t-tests and the nominal p-value approach.

Several extensions of the proposed designs can be considered. Improved stopping boundaries for
designs with simultaneous stopping rules can be computed also for more than three treatment arms by
considering all relevant intersection hypotheses in the closed test. Another extension are group sequential
trials with more than two stages. If a binding simultaneous stopping rule is applied, the critical bound-
aries of the corresponding group sequential design with separate stopping can be improved similarly as
in the two stage setting. To this end, the rejection regions for the local tests for the elementary hypothe-
ses (3) are generalized for three stage designs, accounting for the possibility that the trial can stop at the
first, second or final analysis. Then the corresponding improved stopping boundaries are chosen as in (4)
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such that the maximum type I error rate across all effect sizes where the elementary hypothesis holds is
bounded by 𝛼. A further extension of the proposed designs is to define the first stage stopping bound-
aries based on an error spending function such that the first stage sample size need not to be fixed in
advance. Such a strategy will control the FWER as long as the first stage sample size does not depend on
the trial outcomes. Furthermore, the multi-arm group sequential designs can be generalized to adaptive
designs with unblinded interim analyses where the sample size may be reassessed. This can be imple-
mented either with a combination function approach [4,20] or the conditional error rate principle [21,22].
Finally, a further improvement of the critical boundaries could be achieved by applying the confidence
intervall approach by Berger and Boos [23]. Instead of controlling the familywise error rate for the least
favourable configuration (as for the 𝛿B that maximizes the type I error rate in the test of HA, see Figure 1),
a 1 − 𝜖 (for some 𝜖 > 0) confidence interval for the relevant nuisance parameter is computed, and the
FWER is controlled at level 𝛼 − 𝜖 for the least favourable configuration within that confidence interval.
The resulting procedure then has an overall FWER bounded by 𝛼.

Appendix A

A.1. Rejection regions for the four-arm designs

For both stopping rules, the level 𝛼 condition of the test of HA ∩ HB ∩ HC (which defines a condition on
w1,w2) is

PHA∩HB∩HC

(
max

i=A,B,C
Z1i ⩾ w1

)
+ PHA∩HB∩HC

{(
ZA1 < w1 ∧ ZA2 ⩾ w2

)
∨
(
ZB1 < w1 ∧ ZB2 ⩾ w2

)
∨
(
ZC1 < w1 ∧ ZC2 ⩾ w2

)}
⩽ 𝛼 .

(A.1)

Boundaries for the Separate Stopping Rule The level 𝛼 conditions on u1, u2 for the intersection
of two hypotheses and on v1, v2 for the elementary tests are given by (1) and (2). Again, the critical
boundaries, in addition, have to satisfy the monotonicity condition v1 ⩽ u1 ⩽ w1 and v2 ⩽ u2 ⩽ w2 to
obtain a sequentially rejective test.

Improved Simultaneous Design For the test of the intersection of two hypotheses, say, HA ∩ HB, we
write the rejection region of the simultaneous stopping design as the union of the first and second stage
rejection regions given by RA∩B = R1A∩B ∪ R2A∩B where RiA∩B =

⋃
j Rij for i, j = 1, 2 and

R11 = {Z1,C < w1 ∧ (Z1,A ⩾ w1 ∨ Z1,B ⩾ w1)}

R12 = {Z1,C ⩾ w1 ∧ (Z1,A ⩾ u1 ∨ Z1,B ⩾ u1)}

R21 = {Z1,A < w1 ∧ Z1,B < w1 ∧ Z1,C < w1 ∧ Z2,C < w2 ∧ (Z2,A ⩾ w2 ∨ Z2,B ⩾ w2)}

R22 = {Z1,A < w1 ∧ Z1,B < w1 ∧ Z1,C < w1 ∧ Z2,C ⩾ w2 ∧ (Z2,A ⩾ u2 ∨ Z2,B ⩾ u2)} .

Note that the rejection regions for the other two way intersection hypotheses are obtained by exchanging
the treatment labels. Now, the level 𝛼 condition for the improved stopping boundaries (u′1, u

′
2) is given by

max
𝛿C

P0,0,𝛿C
(RA∩B) = 𝛼. (A.2)

Similarly, the rejection regions for the elementary hypotheses, for example. HA, can be written as the
union of the first and second stage rejection regions RA = R1A ∪ R2A, where RiA =

⋃
j Rij, i = 1, 2 and

R11 = {Z1,B < w1 ∧ Z1,C < w1 ∧ Z1,A ⩾ w1}

R12 = {Z1,B ⩾ w1 ∧ Z1,C < u1 ∧ Z1,A ⩾ u1} ∪ {Z1,B < u1 ∧ Z1,C ⩾ w1 ∧ Z1,A ⩾ u1}

R13 = {Z1,B ⩾ w1 ∧ Z1,C ⩾ u1 ∧ Z1,A ⩾ v1} ∪ {Z1,B ⩾ u1 ∧ Z1,C ⩾ w1 ∧ Z1,A ⩾ v1}

R21 = {Z1,B < w1 ∧ Z1,C < w1 ∧ Z1,A < w1 ∧ Z2,B < w2 ∧ Z2,C < w2 ∧ Z2,A ⩾ w2}
R22 = {Z1,B < w1 ∧ Z1,C < w1 ∧ Z1,A < w1 ∧ Z2,B ⩾ w2 ∧ Z2,C < u2 ∧ Z2,A ⩾ u2}∪

{Z1,B < w1 ∧ Z1,C < w1 ∧ Z1,A < w1 ∧ Z2,B < u2 ∧ Z2,C ⩾ w2 ∧ Z2,A ⩾ u2}
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R23 = {Z1,B < w1 ∧ Z1,C < w1 ∧ Z1,A < w1 ∧ Z2,B ⩾ w2 ∧ Z2,C ⩾ u2 ∧ Z2,A ⩾ v2}∪

{Z1,B < w1 ∧ Z1,C < w1 ∧ Z1,A < w1 ∧ Z2,B ⩾ u2 ∧ Z2,C ⩾ w2 ∧ Z2,A ⩾ v2}.

The level 𝛼 condition for the improved boundaries
(
v′1, v

′
2

)
for the elementary hypothesis test of HA is

given by

max
𝛿B,𝛿C

P0,𝛿B,𝛿C
(RA) = 𝛼. (A.3)

Because the rejection region of HA contains the rejection regions of HA∩HB, HA∩HC and HA∩HB∩HC,
it follows by the closed testing principle that applying the rejection regions RA,RB,RC to test HA,HB,HC
leads to a test that controls the FWER at level 𝛼.

Rejection regions for the separate stopping rule Note that we do not allow for ‘retrospective rejec-
tions’, where a null hypothesis is rejected because a test statistic crosses a rejection boundary in the
interim analysis, but the respective treatment arm is continued to the second stage, because some inter-
section hypothesis containing it cannot be rejected at interim, and the test statistics does not cross the
boundary in the final analysis. Therefore, the actual rejection regions for the separate stopping rule are
smaller than the rejection regions that are used in the level 𝛼 conditions (A.1), (1) and (2). This has to be
considered when computing the power of the procedure (unfortunately it cannot be exploited to obtain
improved boundaries because the test still exhausts the level in the least favourable configuration).

Under separate stopping, the rejection region of the intersection hypothesis, for example HA ∩HB, can
be constructed by adding to the region RA∩B (defined for the aforementioned simultaneous stopping rule)
the events where HC is rejected in the interim analysis and HA ∩ HB is rejected in the final analysis, that
is by adding R2,3 = {Z1,A < u1 ∧ Z1,B < u1 ∧ Z1,C ⩾ w1 ∧ (Z2,A ⩾ u2 ∨ Z2,B ⩾ u2)}.

The rejection region of the elementary tests, for example HA, is obtained by adding to RA, defined
previously, the events where one or two arms are stopped at interim and HA is rejected after the second
stage. Therefore, the rejection region in addition contains the rejection regions

R2,4 = {Z1,B ⩾ w1 ∧ Z1,C < u1 ∧ Z1,A < u1 ∧ Z2,C < u2 ∧ Z2,A ⩾ u2}∪

{Z1,B < u1 ∧ Z1,C ⩾ w1 ∧ Z1,A < u1 ∧ Z2,B < u2 ∧ Z2,A ⩾ u2}

R2,5 = {Z1,B ⩾ w1 ∧ Z1,C < u1 ∧ Z1,A < u1 ∧ Z2,C ⩾ u2 ∧ Z2,A ⩾ v2}∪

{Z1,B < u1 ∧ Z1,C ⩾ w1 ∧ Z1,A < u1 ∧ Z2,B ⩾ u2 ∧ Z2,A ⩾ v2}

R2,6 = {Z1,B ⩾ w1 ∧ Z1,C ⩾ u1 ∧ Z1,A < v1 ∧ Z2,A ⩾ v2}∪

{Z1,B ⩾ u1 ∧ Z1,C ⩾ w1 ∧ Z1,A < v1 ∧ Z2,A ⩾ v2} .
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