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Abstract Levels of alertness are closely linked with human behavior and cognition. However,

while functional magnetic resonance imaging (fMRI) allows for investigating whole-brain dynamics

during behavior and task engagement, concurrent measures of alertness (such as EEG or

pupillometry) are often unavailable. Here, we extract a continuous, time-resolved marker of

alertness from fMRI data alone. We demonstrate that this fMRI alertness marker, calculated in a

short pre-stimulus interval, captures trial-to-trial behavioral responses to incoming sensory stimuli.

In addition, we find that the prediction of both EEG and behavioral responses during the task may

be accomplished using only a small fraction of fMRI voxels. Furthermore, we observe that

accounting for alertness appears to increase the statistical detection of task-activated brain areas.

These findings have broad implications for augmenting a large body of existing datasets with

information about ongoing arousal states, enriching fMRI studies of neural variability in health and

disease.

Introduction
Brain function and behavior vary naturally over time. Behavioral responses can change even across

repeated presentations of the same stimulus, and altered levels of neural variability may index indi-

vidual differences in cognitive function (Dinstein et al., 2015; van Kempen et al., 2019;

Cohen, 2018). One major determinant of behavioral and neural variability is the brain’s continuously

fluctuating level of arousal, referring to the dimension of functional states linked with phenomena

including alert wakefulness, drowsiness, and sleep. Growing evidence indicates that levels of arousal

closely interact with processes underlying decision-making (van Kempen et al., 2019), visuomotor

performance (Makeig et al., 2000; Poudel et al., 2018), perception (Mather and Sutherland,

2011), and attention (Foucher et al., 2004), motivating incorporation of arousal levels into models

of healthy and pathological brain function (Lee et al., 2014; Nassar et al., 2012; Englot et al.,

2008; Motelow et al., 2015; Salomon et al., 2011; Nashiro and Mather, 2011; Jawinski et al.,

2019).

Functional MRI allows for investigating how behavioral variability may be underpinned by the

activity in distinct spatial locations, or across large-scale functional networks, in the human brain. For

example, variations in attentional (Rosenberg et al., 2016), motor, (Fox et al., 2006), and
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perceptual (Sadaghiani et al., 2009) responses, have been linked to fluctuations in spontaneous

functional magnetic resonance imaging (fMRI) signals, observed both in focal regions of the brain

(Fox et al., 2006; Sadaghiani et al., 2009; Hesselmann et al., 2008a; Hesselmann et al., 2008b)

and in large-scale network structure (Rosenberg et al., 2016; Sadaghiani et al., 2009; Kelly et al.,

2008; Thompson et al., 2013; Sadaghiani et al., 2015; Boly et al., 2007; Coste et al., 2011). Tem-

poral variation in spontaneous fMRI signals and connectivity have also been found to be altered in

neuropsychiatric disorders as well as in aging (Yang et al., 2014; Nomi et al., 2017; Calhoun et al.,

2014). However, relatively few fMRI studies have examined the specific role of dynamically fluctuat-

ing arousal states in shaping ongoing neural or behavioral variability (Dinstein et al., 2015; Liu and

Falahpour, 2020). One barrier stems from practical challenges linked with gathering established

measures of arousal (such as pupillometry and EEG) during routine fMRI scans – including the need

for additional setup time, MRI-compatible hardware, and post-processing for removal of MR-related

artifacts. Therefore, the ability to estimate fluctuations in brain arousal from fMRI data itself would

broaden the ability to study dynamic interactions between arousal, behavior, and large-scale brain

activity. It could also improve the mechanistic interpretation of fMRI analyses, particularly in popula-

tions known to have altered arousal and autonomic regulation (Cohen-Zion and Ancoli-Israel, 2004;

Hegerl et al., 2016).

Prior work on the detection of arousal states from fMRI alone has demonstrated that distinct

EEG-defined sleep stages may be classified based on fMRI correlation patterns calculated across 1–

2 min sliding windows (Tagliazucchi and Laufs, 2014; Tagliazucchi et al., 2012; Altmann et al.,

2016). Moreover, it was found that many subjects can begin to lose wakefulness even within the first

few minutes of an fMRI scan (Tagliazucchi and Laufs, 2014). Focusing on levels of arousal across the

waking state, Wang et al., 2016 identified dynamic connectivity patterns, calculated in 40 s sliding

windows, whose expression at each window tracked slow variations in subjects’ performance in an

auditory vigilance task. In a complementary line of work, we recently developed an approach for

extracting continuous fluctuations in arousal from fMRI data alone, this time at the frame-by-frame

(TR) temporal resolution of fMRI data (Chang et al., 2016). The extracted ‘fMRI arousal index’ was

found to correlate with intracranial electrophysiological arousal and spontaneous eye opening/clos-

ing in macaque monkeys (Chang et al., 2016), as well as with scalp EEG in human subjects

(Falahpour et al., 2018). It is possible that the higher temporal resolution of this approach may also

provide the opportunity of capturing arousal-dependent behavioral variability during task perfor-

mance, in a temporally localized manner. If such a measure can indeed track trial-wise neural state

changes, it may also open the possibility of incorporating arousal states into analysis of the many

task fMRI datasets that lack EEG or pupillometry measures.

To examine this possibility, here we simultaneously record EEG, fMRI, and behavioral responses

and examine whether this time-resolved marker of alertness (Chang et al., 2016; Falahpour et al.,

2018) – derived from fMRI data alone – can be harnessed to track trial-to-trial variations in responses

to sensory stimuli. We investigate whether an fMRI index of the ongoing arousal state, estimated

within a short (5 s) interval before each trial, is predictive of a subject’s response to the upcoming

stimulus. We also probe the impact of including fMRI-derived arousal covariates in standard statisti-

cal analyses of fMRI task activation.

Results

fMRI-derived alertness index tracks continuous variations in EEG
alertness
In this study, we use an approach for inferring fluctuations in alertness from fMRI data alone, at the

temporal resolution of the fMRI scan (Chang et al., 2016; Falahpour et al., 2018). Briefly, this is car-

ried out by taking the running spatial projection of a spatial map linked with alertness (‘template

map’) onto each successive fMRI volume in the new scan, resulting in a continuous time course of

estimated alertness sampled at each fMRI volume (TR). A schematic of this approach is provided in

Figure 1, with further details in Methods.

Importantly, for unbiased evaluation of the fMRI alertness index, here we derive the template

map from a set of resting-state EEG–fMRI scans (where subjects rested passively with eyes closed)

and apply it to estimate continuous alertness fluctuations in a separate set of auditory task scans (in
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which subjects were presented with binaural tones at long and unpredictable inter-stimulus intervals,

with eyes closed; see Materials and methods). Subjects were requested to press a button as soon as

possible upon hearing a tone. For all results in this study, the EEG data from the auditory task scans

is only used for validation purposes and does not enter into the creation of the template or the fMRI

alertness index.

We first determined how well this ‘fMRI alertness index’ could track an established index of con-

tinuous electrophysiological arousal during the auditory task scans. To quantify this agreement, we

calculated the temporal correlation between the estimated fMRI alertness index and a simulta-

neously measured ‘EEG alertness index’ across each of the auditory task scans (Materials and meth-

ods). Figure 2A,B depicts example time courses of the fMRI alertness index (derived independently

of these scans’ EEG data), superimposed on the measured EEG alertness index for comparison.

Figure 2C shows the temporal cross-correlation between these two waveforms across the set of task

scans, relative to a null distribution that was created by randomly permuting the fMRI alertness index

and EEG alertness index across the task scans.

To probe the across-subject reproducibility of fMRI alertness prediction within our dataset, we

performed an additional cross-validation analysis in which subjects were divided into two distinct

groups. Model training was performed on the resting-state data from one group and evaluated on

Figure 1. fMRI-based inference of alertness fluctuation. (A) A spatial template, created a priori (here, using

resting-state scans with simultaneous EEG–fMRI), is projected onto each successive volume of a different, auditory

task fMRI scan (not used in the template creation) via spatial correlation. These correlation values trace out a time

course of estimated arousal fluctuation, which we refer to as the ‘fMRI alertness index’. (B) To assess the ability to

predict electrophysiological alertness in the task scan, the estimated fMRI alertness index (red) is compared with

an established EEG vigilance index that was collected simultaneously (the alpha/theta power ratio, convolved with

a hemodynamic response function; blue). (C) The reaction time (RT) to each auditory stimulus is represented by an

‘X’ when the subject responded to a given trial and ‘O’ when they missed.
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the task data of the other group. Cross-correlations between the estimated resting-state fMRI alert-

ness index and the measured EEG alertness index were comparable to the original results (Fig-

ure 2—figure supplement 1).

Variations in trial-by-trial response times relate to arousal state and are
tracked by an fMRI alertness index
We next aimed to test whether the fMRI alertness index could provide a marker of arousal-depen-

dent behavioral variability in an auditory task. For each scan, all trials were first binned into ‘hits’ and

‘misses’, corresponding to whether or not the subject pressed the button in response to the auditory

stimulus. The event-locked EEG spectrogram showed clear evidence that hit and miss trials were

accompanied by distinct arousal states, with the hit spectrogram showing greater power in the alpha

band (8–12 Hz, consistent with increased arousal, particularly at stimulus onset) and the miss spectro-

gram showing greater power in the lower frequency bands commonly associated with increased

drowsiness or sleep (Figure 3A).

The time course of the fMRI alertness index closely mirrored the EEG response. Significant differ-

ences between hits and misses were observed in both the pre-stimulus (p=3.34e-03, effect size

[Cohen’s d] = 1.24) and post-stimulus (p=6.40e-06, d = 2.39) intervals, defined, respectively, as the

intervals 5 s before, and 10 s after, the stimulus onset (Figure 3B; two-sample t-tests). The pro-

nounced post-stimulus peak in the hits trials may again be indicative of stimulus-induced changes in

alertness, which manifests with a hemodynamic response delay. Within individual subjects, trials with

hits were associated with higher levels of the fMRI alertness index in the pre-stimulus interval com-

pared to trials with misses (Figure 3C). Of those subjects who had both hits and misses, all but two

followed the expected trend, and the differences between hits and misses were significant (t(8)

=3.35, p=0.01, paired t-test; d = 1.11). Our focus was primarily on the pre-stimulus interval, as it can

more closely represent the internal state of the brain without contribution from changes in arousal

induced by the stimulus itself.

Figure 2. Cross-correlation between estimated fMRI alertness index and measured EEG alertness index. (A, B)

fMRI alertness index (red), superimposed on the EEG alertness index (blue), for two example scans. Note that the

EEG data from these scans was not used in the creation of their fMRI alertness time courses, and are only used to

evaluate the ability of the fMRI alertness index to track electrophysiological arousal. (C) Temporal cross-correlation

between the fMRI alertness index and EEG alertness index (mean ± SE, n = 12 scans; red) together with a null

distribution (gray) constructed for statistical comparison (see Materials and methods).

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Further analysis of the reliability and across-subject generalizability of the alertness
estimation approach.

Figure supplement 2. Lasso regression model for alertness prediction.

Figure supplement 3. Model performance when trained on task data and tested on resting-state data.
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We then further aimed to determine whether the fMRI alertness index could account for variabil-

ity in reaction times to the upcoming stimulus, in trials with hits. We again focus primarily on the pre-

stimulus interval. Here, hits were further binned into an equal number of ‘slow’ and ‘fast’ trials, using

a reaction-time threshold of 565 ms (median of responses pooled across all subjects). Within the 10

subjects that had both fast hits and slow hits, fast hits were associated with higher levels of the pre-

stimulus fMRI alertness index compared to slow hits (t(9)=4.52, p=0.001, paired t-test; Cohen’s

d = 1.43; Figure 4A), and all showed higher mean values during fast compared to slow hit trials.

Similar findings were obtained when using subject-specific divisions into fast and slow trials (top and

bottom 10%, respectively; Figure 4—figure supplement 1). This finding supports the notion that

pre-stimulus patterns in spontaneous brain activity encode behaviorally relevant internal states within

individual subjects, which may be quantified using an fMRI pattern-recognition approach.

Although our initial focus was on the pre-stimulus interval, we also investigated the modulation of

alertness measures following stimulus onset. In the 10 s post-stimulus interval, there was also a main

effect of behavioral response for both EEG alpha/theta and the fMRI alertness index (EEG: F(2) =

8.82, p=0.1e-02, fMRI: F(2) = 14.12, p=5.75e-05; Figure 4C). Both EEG and fMRI showed post hoc

pairwise differences between both fast and slow responses compared to misses, and neither showed

a difference between fast and slow hits. A potential explanation is that, while a lower level of alert-

ness before the stimulus led to slower reaction times in ‘slow’ trials, the incoming auditory stimulus

led to a subsequent increase in alertness, approaching that of fast trials. We also examined the trial-

by-trial correspondence between the fMRI alertness and EEG alpha/theta power using an offset that

accounts for approximate hemodynamic delays (Figure 4—figure supplement 2).

Finally, while multi-echo independent component analysis (ICA) has proven effective in reducing

head-motion effects (Kundu et al., 2013), we also ensured that scans with frame-to-frame head

motion exceeding our voxel size (3 mm; corresponding to one resting-state and one task scan;

Supplementary file 3) did not impact the major findings of this study. Removing these high-motion

scans from the analysis had minimal impact on the correspondence between the fMRI alertness index

with EEG and behavior (Figure 4—figure supplement 4).

Figure 3. fMRI alertness index differentiates between auditory task response (hit) and misses. (A) Event-locked EEG spectrogram for hits and misses.

During hits, the elevated power in the alpha band may signify higher alertness; during misses, lower levels of alpha and increased power in lower

frequencies suggest lower alertness. Time = 0 corresponds to stimulus onset. (B) Event-locked fMRI alertness index. Within each subject, the fMRI

alertness index surrounding each stimulus was averaged across trials with hits (red) and misses (blue), and the across-subject means are represented by

solid lines (shaded area is standard error; n = 12 scans for hits, n = 9 scans for misses). Across subjects, the fMRI alertness index predicted significantly

greater levels of alertness in hits compared to misses, both within the pre-stimulus interval (5 s prior to stimulus onset; light gray region) and post-

stimulus interval (10 s after stimulus onset; striped gray region). A wider time interval is shown for more complete visualization. (C) Visualization of

individual subjects’ effects. Within individual scans, the fMRI alertness index was averaged within the 5 s pre-stimulus interval of each trial. Scans with

only ‘hits’ are marked as gray circles; no scans had only misses. Within subjects who had both hits and misses, a significant difference in the pre-

stimulus fMRI alertness index was found (p=0.01, paired t-test; d = 1.11).
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A small number of voxels may suffice for detecting alertness with fMRI
In a previous study of macaque monkeys, we demonstrated that the whole-brain vigilance template

could be reduced to its top ~1% of positive and negative voxels without considerable loss in predic-

tive power (Chang et al., 2016). In addition, despite the much larger number of negative compared

to positive voxels, retaining voxels of both signs was found to be critical (Chang et al., 2016). To

determine whether a small number of template voxels also suffices for inferring EEG and task

response variability in human subjects, we performed a similar experiment, successively thresholding

the template to include different percentages of its highest-magnitude positive and negative voxels.

Figure 4. fMRI alertness index differentiates between trials with fast and slow reaction times. (A) Within individual

subjects, the pre-stimulus fMRI alertness index was averaged across fast and slow reaction-time trials. Subjects

with only ‘slow hits’ are marked as gray circles (none had only fast hits). There was a significant difference between

fast and slow hits within subjects who exhibited both fast and slow responses (p=0.001, paired t-test; d = 1.43). (B)

Three types of behavioral responses (fast hit, slow hit, and miss) were examined for the fMRI alertness index, as

well as the EEG alpha/theta ratio for comparison. In the pre-stimulus interval, both the EEG alpha/theta ratio and

the fMRI alertness index showed a main effect of behavioral response across subjects; p<0.05, (one-way ANOVA).

Tukey–Kramer post hoc tests, controlled for multiple comparisons, indicated pairwise differences for fast hits

(orange) versus slow hits (yellow) for EEG and between fast hits and misses (blue) for both EEG and fMRI (*p<0.05).

(C) In the post-stimulus interval, a main effect of behavioral response was also found for both EEG and fMRI, and

post-hoc tests indicated significant differences in both fast hits and slow hits versus misses (*p<0.05). Error bars

represent standard error.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. fMRI alertness index differentiates between the 10% fastest and slowest reaction times in
each individual subject.

Figure supplement 2. Trial-by-trial correspondence between EEG alpha/theta power and fMRI alertness index
during pre-stimulus interval.

Figure supplement 3. Effects of regressing out low-frequency respiratory and cardiac fluctuations from the fMRI
signal.

Figure supplement 4. Evaluation of fMRI alertness index with high-motion subjects removed.

Figure supplement 5. Reaction time histogram.
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We also examined the impact of including only positive- or only negative-valued voxels from the

template. When using only positive or only negative voxels, performance was found to decline as

smaller fractions of voxels were used (Figure 5). By contrast, when jointly including positive and neg-

ative voxels, we found that there was little change in the predictive power, even at thresholds down

to 1%.

Here, the highest-magnitude (top 1%) voxels with negative sign were localized mainly to primary

visual, auditory, and sensory/motor cortices, and those with the highest-magnitude positive sign

were found in the ventricles (Figure 5b). This highly reduced template map also generated an fMRI

alertness index that replicated behavioral results obtained from the whole-brain template map. The

fMRI alertness index generated from the reduced template (top 1% positive, top 1% negative vox-

els), calculated in the pre-stimulus interval, showed a significant main effect of behavioral response

(F(2)=10.09, p=0.0005; Figure 5c). This finding suggests that despite the broad nature of arousal-

related signal changes across the brain, the information is inherently low dimensional, and a small

fraction of voxels may suffice for detecting fluctuations in alertness.

Modeling fluctuations in alertness impacts inference of task activation
Beyond providing information about the brain’s ongoing arousal levels, an fMRI-derived alertness

index may potentially allow for more reliable detection of task-evoked activation, by offering a

means for explicitly modeling state-related fMRI signal changes across an experiment. To examine

this possibility, we performed a standard general linear model (GLM) analysis of the auditory task

responses (convolved with a canonical hemodynamic response function [HRF]) and quantified the

impact of including the fMRI alertness index as a covariate of no interest. For all analyses, a regressor

capturing the onset of missed stimuli (convolved with a canonical HRF) was also included as a covari-

ate of no interest. As shown in Figure 6A, a model that included only the event-related task

responses resulted in weak activation in the expected bilateral auditory and left motor regions,

along with negative BOLD signal change in a number of cortical regions, with some resemblance to

the pattern of correlations with EEG arousal (Figure 1, Figure 6—figure supplement 1). Including

Figure 5. Effects of spatially reducing the vigilance template. (A) The template was successively reduced to retain

the indicated fraction of highest-magnitude voxels drawn from the set of negative, positive, or both negative- and

positive-signed voxels. These reduced voxel sets were used as templates for calculating the fMRI alertness index

in each scan. The x-axis indicates the fraction of voxels relative to the whole-brain template; that is, at x = 0.2, we

used the highest 20% of positive values (red) and the highest 20% of negative voxels (blue), then combined them

to make a joint positive and negative template (magenta). To focus on relative effects, all three lines were

normalized to their value at the fraction of 1.0. (B) Template map produced by retaining only the top 1% of

positive and negative voxels of the original whole-brain template, respectively. (C) The pre-stimulus fMRI alertness

index, generated from this reduced (‘1%”) template, for fast, slow, and missed trials (see Figure 4B for analogous

results using the whole-brain template).
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the fMRI alertness index as a covariate reduced the negative responses and increased t-scores in

bilateral auditory cortex, left motor cortex (the region expected to be associated with right-handed

button presses), and the contralateral cerebellum (Figure 6B). Interestingly, this covariate also

markedly increased the activation in areas associated with the ‘salience network’ (including the ante-

rior cingulate cortex and insula [Menon and Uddin, 2010], which are known to co-activate with

externally salient or oddball stimuli Crottaz-Herbette and Menon, 2006); this may perhaps to be

expected given the long and unpredictable inter-stimulus intervals in this task. Using the EEG alert-

ness index as a regressor also reduced the negative activation and increased the t-statistics in audi-

tory, motor, and salience areas (Figure 6C), though surprisingly, to a somewhat lesser extent than

with the fMRI index.

Comparison to lasso regression model
Finally, to investigate how this template-based method compares against a more conventional tem-

poral regression approach, we also constructed lasso regression models (see Materials and methods

for further details). The lasso model yielded correlations with the EEG alertness index that were simi-

lar to, though slightly lower than, those generated by the template-based approach (Figure 2—fig-

ure supplement 2). Furthermore, the lasso model that was trained on fMRI time series from a 268-

region atlas (Shen et al., 2013) was superior to that which used the time series from all voxels as

input.

Discussion
The present results indicate that ongoing variations in subjects’ alertness, as directly estimated from

fMRI data alone, may track both concurrently measured EEG and inter-trial behavioral responses.

Figure 6. Modeling alertness fluctuations in fMRI analysis impacts statistical inference of task-evoked activation.

General linear model analyses of responses to event-related auditory task. For each subject, beta maps were

calculated for event-related responses to the auditory stimuli, resulting in group-level t-statistics (voxelwise one-

sample t-test) for (A) a model that includes regressors only for the task stimuli; (B) a model that includes task

regressors along with the fMRI alertness index as a covariate; and (C) a model that includes task regressors along

with the EEG alertness index as a covariate.

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. Comparison between event-related task response and vigilance template.
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These findings are in line with a growing literature indicating that time-varying, internal state

changes may be decoded based on patterns in fMRI data, which may be harnessed to study specific

dimensions of cognitive and physiological variability such as arousal, attention, and emotion

(Rosenberg et al., 2016; Thompson et al., 2013; Chang et al., 2015). In addition, the ability to esti-

mate vigilance during fMRI tasks allows for modeling state-dependent variability in task performance

(Podvalny et al., 2019) and BOLD responses, which in turn may improve the reproducibility and

interpretation of fMRI datasets that lack EEG or other external vigilance measures.

Changes in arousal are coordinated by ascending projections from the brainstem, via regions

including thalamus, basal forebrain regions, and posterior hypothalamus (Jones, 2005; Saper et al.,

2005), and manifest in altered responsiveness to sensory stimuli (Ogilvie, 2001). During periods of

drowsiness and light sleep, large-amplitude and extensive fMRI signal changes have been observed

in which much of the cortex is modulated together, and certain subcortical structures (including the

thalamus) display opposing fluctuations (Chang et al., 2016; Falahpour et al., 2018; Olbrich et al.,

2009; Goldman et al., 2002; Moosmann et al., 2003; Ong et al., 2015; Poudel et al., 2014;

Liu et al., 2012; Feige et al., 2005). These inversely related signals may be the hemodynamic corre-

lates of subcortical arousal modulation, and perhaps reflect inhibition of incoming sensory signals to

the cortex by the thalamus in a feedback role (Sherman and Guillery, 2002). Here, we use the tem-

poral expression of an EEG arousal-linked fMRI signal pattern (‘template’) to estimate a subject’s

alertness fluctuation across the course of an fMRI scan. In addition to finding that such an fMRI-

based inference of alertness correlates with electrophysiological arousal, consistent with prior work

(Chang et al., 2016; Falahpour et al., 2018), the use of binaural tones here enabled us to investi-

gate its bidirectional interaction with sensory stimuli.

In the pre-stimulus interval, the fMRI alertness index was indicative of upcoming behavioral

responses. This finding extends a body of prior work linking fMRI spontaneous activity with behavior

and perception (e.g., Sadaghiani et al., 2009; Kelly et al., 2008; Thompson et al., 2013;

Sadaghiani et al., 2015), and it is also interesting to consider the potential links between the pres-

ent findings and large-scale network patterns that have been previously shown to predict vigilance

or tonic alertness. In particular, higher levels of pre-stimulus activity in the default-mode network

and/or salience (cingulo-opercular) network, and lower levels in task-positive/dorsal attention net-

works, have been associated with auditory stimulus detection (Sadaghiani et al., 2009) and faster

reaction times in visual psychomotor vigilance task (Thompson et al., 2013). In line with these obser-

vations, our template map – derived from EEG spectral power fluctuations – is negative in areas

spanning dorsal attention network and had weak positive correlations in the anterior cingulate cor-

tex, a key node of the salience network; however, we did not see group-level positive effects in the

default-mode network. Future work may investigate the degree to which shared and distinct physio-

logical mechanisms account for these observations, as well as the extent to which arousal interacts

with other neural sources of behavioral variability, such as mind wandering (Kucyi et al., 2016).

Given that broad regions of cortex together exhibited correlated negative responses to arousal,

we also investigated whether a much smaller set of voxels may suffice for extracting an alertness

measure from fMRI. Indeed, we found that retaining even just 1% of positive voxels and 1% of the

negative voxels produced only a 5.7% decrease in performance on average (in terms of correlation

with EEG alertness). In addition, the pre-stimulus alertness index – estimated from this highly

reduced template – replicated the main effect of behavioral response seen with that estimated from

the whole-brain template. This effect suggests that a joint pattern of positive and negative voxels

may be most critical for decoding arousal with the present approach, consistent with our prior

results in macaque monkeys (Chang et al., 2016). However, unlike in the macaque study, where the

strongest positive voxels in the template (i.e., those which had the greatest positive correlation with

alertness) were localized to thalamus, here we found the strongest positive correlations in cerebro-

spinal fluid (CSF), though weaker positive clusters were also found in mediodorsal thalamus and

anterior cingulate cortex. One potential difference may come from the manner in which the template

map was derived – here from the EEG alpha/theta ratio during eyes closed, and in the macaque

study from spontaneous eye opening/closure. Positive correlations between an arousal index and

CSF have been seen in prior human EEG–fMRI studies that use a continuous EEG power ratio (alpha

to theta and delta bands Falahpour et al., 2018) and discrete EEG-defined vigilance staging

(Olbrich et al., 2009), where ventricular signals in the latter were suggested to potentially relate to

effects of heart rate (HR) on fMRI data (de Munck et al., 2008). A pattern very similar to the reduced
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template, with opposing gray-matter and ventricular signals, was also reported to comprise the first

principal component of the global fMRI signal that is modulated by sleep depth (McAvoy et al.,

2019). An inverse relationship between CSF and gray-matter signals has also been found to corre-

late with EEG (Fultz et al., 2019), and both EEG and autonomic responses (Özbay et al., 2019),

during sleep. One mechanistic explanation offered recently is that widespread fMRI signal changes,

generated by either neuronal or autonomic activity, lead to antagonistic fMRI signal changes in the

downstream venous vasculature, in part due to a disjoint timing and amplitude relationship of blood

volume and blood oxygenation effects (Özbay et al., 2018). Further work will be necessary to estab-

lish potential links between these observations and those of studies which have observed CSF fMRI

signals in other EEG frequencies (Kiviniemi et al., 2016).

A general challenge in understanding the effects of arousal in fMRI stems from the complex

assortment of neural, metabolic, and physiological factors contributing to BOLD fMRI signals

(Liu, 2016; Duyn et al., 2020). Fluctuations in arousal are closely coupled with physiological

changes, such as changes in HR and respiratory patterns (Özbay et al., 2019; Yuan et al., 2013).

Therefore, it is hard to disentangle these various effects with certainty. However, when the goal is to

detect vigilance changes from fMRI, systemic physiological effects in fMRI signals may, in fact, con-

tribute useful state-related information. In additional experiments, we found that projecting out low-

frequency fluctuations in HR and RV generally reduced the correlation between the fMRI and EEG

alertness measures (Figure 4—figure supplement 3 and Materials and methods), suggesting that

retaining low-frequency systemic physiological components may present useful information when

the goal is to extract arousal fluctuations from the fMRI data. The whole-brain template derived here

also overlaps very closely with a spatial pattern linked with sympathetic arousal in stage-2 sleep

(Özbay et al., 2019; Özbay et al., 2018) as well as in drowsy wakefulness and stage-1 sleep

(Chang et al., 2018), whereby gray-matter regions (predominantly primary sensory cortex) are anti-

correlated with BOLD signal in deep white matter and CSF. Our template map may, therefore,

reflect in part the concurrent modulation of central and peripheral arousal, and their systemic physio-

logical correlates.

Beyond providing information about ongoing arousal levels, an fMRI-derived alertness index may

also allow for more precisely identifying task-evoked activation. While it is widely recognized that

natural drifts in wakefulness are common during fMRI, few studies explicitly model dynamic arousal

fluctuations in standard fMRI task analyses, as concurrent EEG and pupillometry is relatively uncom-

mon during routine fMRI scans. Here, we observed that including the fMRI alertness index as a

covariate increased the statistical significance of task-active sensory and motor regions as well as

canonical salience network regions (Menon and Uddin, 2010; Crottaz-Herbette and Menon,

2006), and reduced widespread cortical deactivations. Regarding the latter, it is also worth noting

that when only the task stimuli are modeled, the resulting activation map bears some resemblance

to the vigilance template itself, showing similar patterns of negative BOLD signal changes and posi-

tive signals in white matter (Figure 6—figure supplement 1). This phenomenon might be explained

by task-induced arousal and autonomic fluctuations, which are mitigated when including an arousal

covariate. However, an important caveat is that the ‘true’ activation state of the brain is not known;

for instance, here one cannot be certain whether diminishing the negative responses with an alert-

ness covariate is also removing local neural effects. We also note that this analysis was not intended

to suggest an optimal set of nuisance covariates, but to provide an indication of how covarying for

measures of alertness may impact fMRI analyses. Future work may investigate this phenomenon in a

wider range of task contexts.

A major goal of template-based alertness estimation is to provide an avenue for researchers to

infer fluctuation in alertness from fMRI data when external measures such as EEG and pupillometry

are not available in the scanner, which is the case for most existing fMRI data and publicly shared

databases. Given a template map trained on a set of EEG–fMRI data (such as this one), researchers

could apply it to other fMRI datasets to extract time courses of alertness fluctuation. The present

results suggest that, in addition to correlating with an electrophysiological alertness index, this fMRI

alertness index may be sensitive to brain states that modulate behavioral responses. Nonetheless,

the approach currently has several limitations. One is that it currently detects primarily relative,

rather than absolute, levels of alertness across a scan. Since spatial correlation is used to determine

a frame-by-frame alertness measure, the fMRI alertness index is restricted between �1 and 1. In

addition, as fMRI signals are often detrended to remove scanner artifacts, such an index may not
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detect slower baseline shifts in alertness. In addition, we and others observe inter-subject and inter-

scan differences in the performance of fMRI alertness estimation (Falahpour et al., 2018). Such dif-

ferences may partially reflect the degree of alertness fluctuation present in the fMRI data itself (with

greater modulation of alertness lending itself to better prediction), but these questions are currently

under investigation.

One key limitation of this study is the small sample size. As a result, the effect sizes of the current

results may be overestimated, and findings may not generalize well to the population from which

they are sampled. Future work should be carried out with this approach using larger sample sizes as

well as other experimental conditions. Nonetheless, there are several factors that increase our confi-

dence in the present results: our scans are long (24.5 min per scan), and the replication analyses car-

ried out in Figure 2—figure supplement 1 and Figure 4—figure supplements 1 and 4 further

support the generalizability of this approach. Furthermore, although the present study centered on

predicting task-related behavioral responses, we also performed an analysis in which the template

was constructed from the task scans, and the fMRI alertness index was evaluated on the held-out

resting-state scans, obtaining comparable results (Figure 2—figure supplement 3). Another limita-

tion is that here, we only considered a template-based approach and a lasso regression model to

predict alertness. It is possible that other approaches could be used to extract dynamic measures

from alertness from fMRI. However, our current results with these two models support the notion

that vigilance can be robustly estimated from fMRI data, and indicate that there may be multiple

approaches for extracting this information. Further investigation of alternate linear models for vigi-

lance prediction would be an interesting area to develop in future work, including the use of other

regularization methods as well as parcellation atlases for deriving input time series.

In conclusion, our results indicate that time-resolved predictions of alertness, directly estimated in

fMRI data without the need for simultaneous EEG, may capture inter-trial behavioral responses and

continuous internal state variations. These findings have implications for broadening the study of

brain arousal, and its interactions with cognitive and perceptual variability, in the large number of

fMRI studies that lack external vigilance measures.

Materials and methods

Subjects and data acquisition
Simultaneous EEG–fMRI data were acquired from 14 healthy, right-handed adult subjects (eight

females, aged 26 ± 4 years). All subjects provided written informed consent, and human subjects

protocols were approved by the Institutional Review Boards of the National Institutes of Health and

Vanderbilt University. From these subjects, scans acquired in the eyes-closed resting state and/or

with a sparse auditory task (described below) were considered for analysis. One scan was excluded

due to a buffer overflow error in the EEG data acquisition. This yielded a total of 23 scans (11 rest-

ing-state scans and 12 auditory task scans), each lasting 24.5 min. Further details about the scans

corresponding to each subject are provided in Supplementary file 1.

MRI data were acquired on a 3T Siemens Prisma scanner (Siemens, Erlangen, Germany) with a

Siemens 64-channel head/neck coil. A high-resolution, T1-weighted structural image (TR = 2200 ms,

TE = 4.25 ms, flip angle = 9 deg, inversion time = 1000 ms, matrix = 256�256, 160 sagittal slices, 1

mm isotropic) was acquired for anatomic reference. BOLD fMRI data were acquired with a multi-

echo, gradient-echo EPI sequence, with the following parameters: flip angle = 75 deg, TR = 2100

ms, echo times = 13.0, 29.4, and 45.7 ms, voxel size = 3 � 3 � 3 mm3, slice gap = 1 mm, matrix

size = 82�50, 30 axial slices, acceleration factor = 2. The duration of each scan was 24.5 min (700

volumes). Scalp EEG was acquired simultaneously with fMRI using a 32-channel MR-compatible sys-

tem (BrainAmps MR, Brain Products GmbH) at a sampling rate of 5 kHz and was synchronized to the

scanner’s 10 MHz clock to facilitate reduction of MR gradient artifacts. EEG channels were refer-

enced to FCz. Photoplethysmography (PPG) and respiration belt signals were also acquired during

the scans (Biopac, Goleta, CA). The PPG transducer was placed on the left index finger, and MRI

scanner (slice) triggers were recorded together with the physiological and EEG signals for data

synchronization.

For the resting-state scans, subjects were instructed to keep their eyes closed and to stay awake

as best as possible. For the auditory task, binaural tones were delivered (VisuaStim Digital;
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Resonance Technology, Northridge, CA) with randomized inter-stimulus intervals. For the auditory

task, data were drawn from scans having either of two versions of this task, where the two versions

differed only in the timing of tone delivery. In one version (corresponding to half of the scans), the

inter-stimulus interval (ISI) ranged between 29 and 41 s (41 trials per scan); in the other version,

tones were presented with ISI ranging from 8 to 88 s, from which we retained only those which

occurred at least 24 s after the previous stimulus (and at least 10 s prior to the subsequent stimulus),

resulting in 29 trials per scan. Subjects were asked to make a right-handed button press as soon as

possible upon hearing a tone (Lim and Dinges, 2008). Auditory tones were delivered via earbuds

placed over subjects’ ear plugs. During the task scans, subjects were also instructed to keep eyes

closed. One rationale for using an eyes-closed auditory task (e.g., as opposed to an eyes-open or

visual task) is that it avoids the possibility of subjects missing a stimulus due to variation in their

gaze.

Although the instruction was for subjects to stay awake, the long scans were designed to elicit

variability in vigilance state – particularly, reduced wakefulness and drifts between wakefulness and

light sleep. A random half of the resting-state and task data were independently sleep staged by

two certified technologists at the Vanderbilt University Medical Center. Standard sleep scoring was

carried out in 30 s epochs, according to standard AASM criteria (American Academy of Sleep Med-

icine, 2007). These ratings indicated that, across all scans combined, 85.6% of epochs were rated as

‘wake’, suggesting that subjects were mostly alert. It is therefore likely state sleep was not a major

factor in our experiments.

fMRI and EEG pre-processing
Within each scan, the time series of 700 volumes corresponding to each of the three echo times

were processed in the following way. For all three of these echo time series, the first seven volumes

were dropped to allow magnetization to reach steady state. Then, motion coregistration (six-param-

eter rigid body alignment) and slice-timing correction were carried out using the functions 3dvolreg

and 3dTshift in AFNI (https://afni.nimh.nih.gov/afni). For motion coregistration, the alignment

parameters were estimated only for the time series of the second (middle) echo, and the resulting

parameters were applied to the time series of all three echoes. Maximum frame-to-frame displace-

ment was also calculated, as shown in Supplementary file 3. Following this initial processing, multi-

echo ICA denoising was carried out using tedana 0.0.9a (Elizabeth and Salo, 2020; Kundu et al.,

2012; Kundu et al., 2013). Briefly, this procedure aims to separate fMRI signal components gener-

ated from BOLD mechanisms from those arising from non-BOLD signal sources (such as scanner

drifts and head motion). Spatial ICA is performed on the multi-echo fMRI data, and the resulting

components are sorted using automated criteria to determine those which exhibit linear scaling in

their percent-signal-change as a function of echo time (‘BOLD’ components) and those which do not

(‘non-BOLD’ components). The data are then re-constructed using only the former. A more complete

description of this approach can be found in Kundu et al., 2012, and several studies have demon-

strated its efficacy in reducing artifacts including head motion, and aliased cardiac pulsatility and

breath-to-breath respiratory artifacts (Kundu et al., 2013), the latter of which are otherwise handled

with methods such as RETROICOR (Glover et al., 2000). However, fMRI variance due to low-fre-

quency respiratory volume (RV; Birn et al., 2006) and cardiac rate (Shmueli et al., 2007) fluctuations

are unlikely to be removed by this procedure, as they arise from a BOLD mechanism (Kundu et al.,

2012). Here, we calculated RV and cardiac rate signals but did not initially project them out of the

data, as their impact was investigated in the analysis (see Methods). Following multi-echo denoising,

fMRI data were nonlinearly registered to a standard-space MNI152 template using SPM (https://

www.fil.ion.ucl.ac.uk/spm/), followed by fourth-order polynomial detrending and spatial smoothing

(FWHM 3 mm) in AFNI.

For the EEG data, reduction of gradient and ballistocardiogram (BCG) artifacts was carried out

using BrainVision Analyzer 2 (Brain Products, Munich, Germany), with parameters and procedures

described in Moehlman et al., 2019. Briefly, gradient artifact reduction followed the average artifact

subtraction technique (Allen et al., 2000) using slice triggers. Following gradient artifact correction,

EEG data were downsampled to 250 Hz. BCG artifact correction proceeded in two steps. First, an

artifact template locked to cardiac R-peaks was subtracted from the data, after accounting for an

estimated temporal offset between the R-peak and the BCG artifact. Second, independent compo-

nent analysis (ICA) was performed on the template-subtracted data, and components likely related
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to residual BCG were removed by re-constructing the data (via inverse ICA) without the artifactual

components. Putative BCG artifact components were manually determined based on the presence

of temporal deflections locked with the cardiac cycle, a spatial topography consistent with BCG arti-

fact, and a relatively large contribution to the global field power. For this study, we removed at

most two components per scan, to avoid removing potential signals of interest.

EEG-based alertness index
A measure of alertness was computed from the EEG signal (averaged over channels P3, P4, Pz, O1,

O2, Oz) within the 2.1 s interval of each fMRI time point (TR) by taking the ratio of the root mean

square (rms) amplitude in the 8–12 Hz range over the rms amplitude in the 3–7 Hz range (alpha/

theta ratio). Various EEG-based metrics have been associated with wakefulness; however, many are

related to the ratio of power in middle frequency bands (i.e., alpha, beta) to the power in lower fre-

quency bands (i.e., delta, theta) (Olbrich et al., 2009; Klimesch, 1999; Oken et al., 2006;

Jobert et al., 1994; Wong et al., 2013; Horovitz et al., 2008). The alpha/theta ratio has previously

been used in several human EEG–fMRI studies (Horovitz et al., 2008; Laufs et al., 2006).

The EEG alpha/theta time course was temporally aligned to the fMRI time course by removing

the first seven timepoints. For analyses that directly correlate EEG with the fMRI alertness index (Fig-

ures 1, 2, 5, and 6), the aligned EEG alpha/theta time course was mean-centered and convolved

with the default gamma-variate HRF provided in SPM (https://www.fil.ion.ucl.ac.uk/spm/) to account

for approximate hemodynamic delays in relating EEG to fMRI, and band-pass filtered with nominal

cutoffs from 0.01 to 0.2 Hz (using the bandpass function in MATLAB) to approximate the bandwidth

of the fMRI data. The resulting signal is referred to as the ‘EEG alertness index’. For the analyses in

Figure 4, Figure 4—figure supplement 2, we use the raw (not hemodynamically filtered) version of

the EEG alpha/theta ratio.

fMRI-based alertness index
A template-based fMRI-based estimate of alertness was calculated according to the approach in

Chang et al., 2016; Falahpour et al., 2018; Figure 1. Briefly, this approach centers on the use of a

voxelwise spatial pattern (‘template’ map), indicating the degree to which a given voxel increases or

decreases its activity in concert with fluctuations in alertness, as measured using EEG. Given such a

template map (derived from a set of scans where concurrent EEG is available), one may then apply it

to derive a time course of alertness in a new scan using the fMRI data alone (i.e., even if that new

scan does not contain simultaneous EEG). To allow for unbiased estimates of performance, the tem-

plate map was constructed using the set of resting-state scans, and its performance was analyzed in

the set of auditory task scans. To create the template, the preprocessed fMRI data from each sub-

ject’s resting-state scan was temporally correlated, on a voxelwise basis, with the subject’s corre-

sponding EEG alertness index, resulting in a voxelwise spatial map of Pearson’s correlation

coefficients. The resulting correlation maps underwent a Fisher-Z transformation, and were averaged

across subjects to create a single, average template map (‘vigilance template’). Given this group-

average vigilance template (3D spatial map), a time course of alertness (‘fMRI alertness index’) was

estimated for each auditory task scan’s fMRI data without using the EEG, as auditory task scans were

not used in forming the template map. After temporal z-scoring, a time course of alertness (‘fMRI

alertness index’) was estimated for each task scan by projecting the vigilance template, on a volume-

by-volume (TR-by-TR) basis, onto each volume of the task scan. To validate the correspondence

between the fMRI alertness index and the EEG alertness index on the task data, we calculated the

temporal cross-correlation between these two waveforms (Figure 2A,B). A null distribution was gen-

erated by taking 1000 random permutations (by shuffling the assignment of EEG and fMRI alertness

time courses between subjects) across the task scans. Their collective means and standard errors

were compared in Figure 2C.

To further investigate the reproducibility of fMRI alertness prediction, subjects were divided into

two non-overlapping subgroups for both resting and task conditions (Supplementary file 2). We

then created a template from the resting-state data of one group and applied it to the task data of

the other (non-overlapping) group (Figure 2—figure supplement 1). Furthermore, to test whether a

model trained on task data can be used to predict vigilance in resting state, we also performed the
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reverse, constructing our template this time with the task scans from each subject group, and evalu-

ating the fMRI alertness index on the held-out resting-state scans (Figure 2—figure supplement 3).

Relationship between EEG/fMRI alertness and behavioral responses
To investigate the fMRI alertness index (and its comparison to EEG) in relation to trial-by-trial behav-

ioral responses, we extracted segments of these waveforms in the [�5 s to 10 s] interval around each

stimulus onset. To achieve more precise alignment with the stimulus onsets, these time courses were

first interpolated 2.5-fold to a 0.84 s temporal grid to obtain a finer sampling axis. Each segment

was then sorted according to whether it was a ‘hit’ (button press response) or a ‘miss’ (no button

press response or a response of >5 s). This resulted in a total of 310 hits and 90 misses, pooled

across scans. The ‘hits’ were further separated based on the subject’s reaction time into a slow hit

(>565 ms, n = 155) and a fast hit (<565 ms, n = 155), where the threshold was defined by the median

across all subjects’ pooled trials. This threshold is close to the 500 ms value commonly used to

define performance lapses (Lim and Dinges, 2008).

For the time courses shown in Figure 3B, temporal segments of the fMRI alertness index corre-

sponding to ‘hits’ were first averaged across trials within each subject, and the mean and standard

error across subjects at each time point are depicted by the shaded error bars. The same was

repeated for ‘misses’. For further analyses across behavioral responses (Figure 3C, Figure 4), time

points of the fMRI (or EEG) data segments for each trial were averaged within the indicated interval

of interest (e.g., ‘pre-stimulus’); then, within each scan, these values were averaged across trials of a

given type (e.g., ‘miss’), resulting in one value per scan (per trial type). Comparison between trial

types within the pre-stimulus interval were carried out using paired t-tests. Modulation of the fMRI

alertness index (or EEG alpha/theta power) across fast, slow, and missed responses was assessed

using a one-way ANOVA, with post hoc multiple comparisons analyses using the Tukey–Kramer

method. Cohen’s d was used to assess effect sizes. An additional analysis was performed investigat-

ing the use of intra-individual threshold divisions as a comparison, considering the 10% fastest and

slowest trials for each subject (Figure 4—figure supplement 2). A histogram of all subjects’ reaction

times is provided in Figure 4—figure supplement 5.

Template thresholding experiment
Our prior work indicates that only a small fraction of the spatial template may be necessary for accu-

rate vigilance prediction in macaques (Figure S9 in Chang et al., 2016). Based on these findings, we

wanted to observe the impact of thresholding the template to smaller and smaller numbers of voxels

in human subjects. This was performed sequentially from the full template down to 1% of the voxels

with the strongest positive and negative correlation with the fMRI alertness index. Starting from the

full template map (Figure 1), at each iteration a new template was created by reducing the voxel

sets to the fraction of highest positive and negative correlations from the following percentages:

100%, 80%, 60%, 40%, 20%, 10%, 5%, and 1%. The fMRI alertness index derived from the reduced

voxel template was compared via temporal cross-correlation over all time points to the EEG alert-

ness index for all subjects, over a set of lags from �10 to 10 TRs (Figure 5). This process was

repeated using only the top percentage of negative-valued voxels in the template following the

same sequence of thresholds, as well as again with the top percentages of positive-valued voxels.

General linear model analysis of auditory-stimulus-evoked responses
To test whether explicitly modeling alertness fluctuations could improve the statistical inference of

task-evoked activation, we performed a standard GLM analysis on the auditory stimulus-evoked

responses. We tested three models: the first model contained only the task stimuli (where trials with

and without responses were separated into two regressors), the second model included task regres-

sors along with the EEG alertness index, and the third model contained the task regressors and the

fMRI alertness index as regressors. For each model, we calculated the beta map for the regressor

corresponding to trials that had responses and applied a voxelwise one-sample t-test across scans

(Figure 6).
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Impact of low-frequency physiological signals on fMRI alertness
prediction
Given that changes in alertness are accompanied by changes in systemic physiological processes

such as breathing and HR (Özbay et al., 2019; Yuan et al., 2013), we also asked how the prediction

of EEG alertness from fMRI would be impacted if low-frequency respiration and cardiac effects were

first removed from the fMRI data. We hypothesized that if changes in breathing and HR strongly co-

vary with alertness, removing these components from fMRI data might adversely impact the infer-

ence of alertness from fMRI.

To examine this question, we re-constructed the template map and the calculated fMRI alertness

index after regressing out RV and HR from all fMRI data. Specifically, following procedures in

Chen et al., 2020; Chang and Glover, 2009, an RV time course was calculated as the standard devi-

ation in a 6 s sliding window of the respiration belt waveform, and an HR time course was calculated

as the (inverse of the) mean inter-beat-interval from the PPG waveform, again in a 6 s window

around each TR. The resulting signals were zero-meaned and convolved with respiration (Birn et al.,

2008) and cardiac (Chang et al., 2009) response functions, respectively, along with their temporal

and dispersion derivatives, and band-pass filtered from 0.01 to 0.2 Hz. The basis set was then

regressed out of the fMRI signal at each voxel.

To quantify the impact on fMRI alertness estimation, the maximum temporal cross-correlation

was calculated between the fMRI alertness index and the EEG alertness index before and after physi-

ological removal (Figure 4—figure supplement 3A). To assess the degree to which the fMRI alert-

ness index is modulated with behavioral response after this physiological regression step, we

performed the same statistical analysis on the ‘fast hit’, ‘slow hit’, and ‘miss’ response types (Fig-

ure 4—figure supplement 3B). The correspondence between the fMRI alertness index and the EEG

alertness index was reduced in most subjects following physiological signal removal. Nonetheless,

the fMRI alertness index exhibited similar trial-wise modulation as the original data.

Lasso-based fMRI alertness index
While our primary analyses used a spatial template-based prediction approach, we also examine an

alternate, temporal (lasso) regression model. Just as with the template method, here we train the

lasso model on the resting-state fMRI scans and evaluate the performance on the task scans. Two

models were considered: one that uses the time courses of all fMRI voxels as input to the model and

another that uses ROI time courses extracted from 268 regions of interest (Shen et al., 2013) as an

initial dimensionality reduction step. For each approach, the resting-state scans were first temporally

concatenated across subjects. We then fit a lasso model to this concatenated resting-state time

series, using 10-fold cross-validation to choose the regularization parameter (lambda). We then

applied the resulting lasso coefficients to the task data, to estimate an alertness time course in each

task scan (Figure 2—figure supplement 2).

Statistics and software
All statistical tests are two tailed. Details of the statistical methods are provided in the sections ‘Rela-

tionship between EEG/fMRI alertness and behavioral responses’ and ‘General linear model analysis

of auditory-stimulus-evoked responses’ above. All analyses were performed in MATLAB (R2018b).
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scans and task scans were broken down into two non-overlapping subgroups so that one subject’s

rest and task scans did not cross into a different group.

. Supplementary file 3. Maximum frame-to-frame displacement for each subject’s rest and task

scans, as calculated during the motion coregistration pre-processing step.

. Transparent reporting form

Data availability

Data files supporting the main findings are available on Open Science Framework, and code is avail-

able at https://github.com/neurdylab/fMRIAlertnessDetection (copy archived at https://archive.soft-

wareheritage.org/swh:1:rev:db5f3ef49e53585412627984c44b9db9b188a868).
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The following dataset was generated:

Author(s) Year Dataset title Dataset URL
Database and
Identifier

Goodale SE,
Ahmed N, Zhao C,
de Zwart JA, Özbay
PS, Picchioni D,
Duyn JH, Englot
DJ, Morgan VL,
Chang C

2020 fMRI prediction of alertness and
behavioral variability: data files

https://doi.org/10.17605/
OSF.IO/MJ96B

Open Science
Framework, 10.17605/
OSF.IO/MJ96B
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