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ABSTRACT: Increasing the depth of mining leads to the location
of the mine pit below the groundwater level. The entry of
groundwater into the mining pit increases costs as well as reduces
efficiency and the level of work safety. Prediction of the
groundwater level is a useful tool for managing groundwater
resources in the mining area. In this study, to predict the
groundwater level, multilayer perceptron, cascade forward, radial
basis function, and generalized regression neural network models
were developed. Moreover, four optimization algorithms, including
Bayesian regularization, Levenberg−Marquardt, resilient back-
propagation, and scaled conjugate gradient, are used to improve
the performance and prediction ability of the multilayer perception
and cascade forward neural networks. More than 1377 data points
including 12 spatial parameters divided into two categories of sediments and bedrock (longitude, latitude, hydraulic conductivity of
sediments and bedrock, effective porosity of sediments and bedrock, the electrical resistivity of sediments and bedrock, depth of
sediments, surface level, bedrock level, and fault), and besides, 6 temporal parameters are used (day, month, year, drainage,
evaporation, and rainfall). Also, to determine the best models and combine them, 165 extra validation data points are used. After
identifying the best models from the three candidate models with a lower average absolute relative error (AARE) value, the
committee machine intelligence system (CMIS) model has been developed. The proposed CMIS model predicts groundwater level
data with high accuracy with an AARE value of less than 0.11%. Sensitivity analysis indicates that the electrical resistivity of
sediments had the highest effect on the groundwater level. Outliers’ estimation applying the Leverage approach suggested that only
2% of the data points could be doubtful. Eventually, the results of modeling and estimating groundwater level fluctuations with low
error indicate the high accuracy of machine learning methods that can be a good alternative to numerical modeling methods such as
MODFLOW.

1. INTRODUCTION

The reduction of surface mineral reserves has led to an increase
in the depth of mining in open pit mining. Increasing the depth
of mining leads to the location of the mine pit below the
groundwater level.1 Due to the increased depth of mining,
excavation may be done below the water table, which leads to
the movement of water toward mining works. Excessive water
entering the mining environment may delay the project or
impede production, in addition to causing environmental and
safety problems.2 The inflow of groundwater into the mining
environment leads to increased equipment failure, destructive
impact on the stability of the pit slope, increased use of
explosives, unsafe working conditions, and lack of access to
parts of the mining area. Therefore, to overcome these
problems, it is necessary to develop an efficient dewatering
system, while groundwater level prediction can contribute
significantly to this design. Various numerical and modern

methods can be used to model and predict groundwater
fluctuations.
The numerical models are extensively used to simulate the

quantity and quality of groundwater.3 Numerical modeling of
groundwater by this model (i.e., MODFLOW) requires some
input parameters; hence, preparing proper values for these
parameters is a time-consuming and costly activity. In addition,
the disadvantages of numerical methods include difficulties in
representing irregular boundaries, nonoptimization for un-
structured meshes, slow for large problems, and tendency to
one-dimensional physics around edges.4,5 To control these
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limitations, soft computing techniques are a very valid option
for predicting groundwater levels by providing results with
high precision and less computational time.6 One of the
advantages of soft computing techniques over numerical
methods is the use of nonlinear algorithms for modeling and
predicting the complex groundwater level behavior at various
sites.7,8

To predict groundwater levels and the complexity of
subsurface conditions, novel machine learning methods based
on nonlinear dependence can be used without deep knowledge
of basic physical parameters.9,10 In recent years, artificial
intelligence methods have been widely used to predict water
system variables due to their high ability to learn complex
mathematical relationships between output and prediction
variables.11−16 One of the most common machine learning
algorithms used to predict the groundwater level is the artificial
neural network (ANN).17−22 Multilayer perceptron (MLP),
cascade forward (CF), radial basis function (RBF), general
regression (GR), and committee machine intelligence system
(CMIS) are the most widely used ANN methods based on
their different architectures.23 used MLP to predict ground-
water levels in Montgomery, Pennsylvania.24 modeled river
flow using optimized CF and MLP in the Kelantan River in
Malaysia.25 predicted trihalomethanes levels in tap water using
RBF and gray relational analysis.26 have evaluated GR neural
network models in simulating the groundwater contaminant
transport.27 have implemented the supervised intelligence
committee machine method to predict the reservoir water level
variation for the design and operation of dams. Each of the
models has its own characteristics, so it is possible to combine
models that have acceptable errors with each other to use the
characteristics of all these developed models for forecasting. In
addition to different methods for modeling and predicting
groundwater levels, different spatial and temporal data can
affect groundwater levels.28 Most studies have used spatial or
temporal parameters separately to predict groundwater levels
using machine learning, but both spatial and temporal
parameters affect groundwater levels.

The main purpose of this research is the use of powerful
spatial and temporal data to model and predict groundwater
level fluctuations using accurate machine learning methods as
an alternative to numerical methods such as MODFLOW. For
this purpose, 1542 data points including 12 spatial parameters
and 6 temporal parameters were used. Out of which 1377 data
points have been used to create different networks, and to
evaluate the performance of these developed models, 165 extra
validation data points have been used. Four MLP neural
network models and four CF neural network models were then
developed using four different optimized Bayesian regulariza-
tion (BR), Levenberg−Marquardt (LM), resilient back-
propagation (RB), and scaled conjugate gradient (SCG).
Also, the RBF neural network and GR neural network methods
have been used to model the groundwater level. After
developing models, a CMIS is combined of three candidate
models with the least error. The validity of the proposed CMIS
is evaluated through statistical and graphical error analysis. The
innovation of this research is the study of the powerful CMIS
method as an alternative to numerical methods such as
MODFLOW for groundwater level prediction. In addition, the
relevancy factor of the data relative to the groundwater level as
well as the outlier diagnosis has been identified.
The rest of this research is organized as follows: Section 2

provides information on the study area and the data used, in
addition to the developed models and optimization techni-
ques; Section 3 outlines the results and discussion of this
research, and Section 4 presents the conclusions of this
research.

2. MATERIAL AND METHODS

2.1. Experimental Data. Gol Gohar iron ore deposit, one
of the most pivot points of the mining industry in the Middle
East, with six separate anomalies and a reservoir of about 1200
million tons, is located in an area of 10 km by 4 km. In
anomaly no. 3 (Gohar Zamin iron ore mine), groundwater
enters the pit, and also water permeates through the alluvium
of the pit’s stairs. One of the probable factors of going
groundwater inflow into the Gohar Zamin iron ore mine is the

Figure 1. Study area and location of the Gohar Zamin iron ore mine.
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Kheyrabad plain with alluvial sediments situated in the
northeast of the mine at a distance of 15 km (Figure 1).
Around the Gohar Zamin iron ore mine, water pumping wells
are located around anomaly no. 1, which is considered as a
discharge area.
To estimate the spatial and temporal groundwater level as

the target and output of the neural network, two sets of spatial
and temporal data have been used as the input of the neural
network. The input spatial data set includes five piezometer
data around the Gohar Zamin iron ore mine. Besides, the input
temporal data affecting the groundwater level in the period of
March 21, 2019, to July 2, 2020. Because both sediments and
bedrock affect the groundwater level, the spatial data input to
the neural network is divided into two categories of bedrock
and sediment parameters.
In Table 1, input spatial data to the neural network including

latitude and longitude of piezometers, hydraulic conductivity
of sediments and bedrock, effective porosity of sediments and
bedrock, the electrical resistivity of sediments and bedrock, the
piezometers surface level, bedrock height, depth of sediments,
and the presence or absence of faults are shown. The input
temporal data to the neural network include day, month, year,
drainage volume, evaporation, and precipitation, which in
Table 2, statistical explanation of these parameters are shown.

2.2. Models. 2.2.1. MLP Neural Network. ANNs as a useful
computational intelligence built on analogy with human
information processing systems are widely used in distributed
processing systems.29 Each ANN has two main elements as
interconnections and processing elements. Interconnections,
weights, make connections among neurons, while the
processing elements, neurons or nodes, process information.
Although the structures of the ANN are very varied, MLP is
still one of the most dominant as well as the most extensive
structure of the ANN.30,31 The MLP shown by Cybenko’s
theorem (1989) is a universal function approximation used to
create mathematical models using the regression analysis. With
training on observation data, the network can learn specific
features hidden in the collected data samples and even
generalize what it has learned.32 MLP networks have a

multilayered structure, and the first layer is the input data to
the model, the last layer is the output data of the model, and
the layers between the input and output are called hidden
layers.19,33 The number of neurons in the input layer is the
same as the input variables, the number of outputs is usually
the same as the output parameter, and the hidden layers are
responsible for the internal appearance of the relationship
between the model inputs and the desired output.34,35 The
value of each neuron in the hidden layer or output layer is the
sum of each neuron in the previous layer multiplied in a
particular weight for that neuron. This value then is summed
with the bias and passed from an activation function. Figure 2
demonstrates the structure of the MLP neural network with
two hidden layers implemented in this study.

The following is a summary of some of the common
activation functions used for hidden and output layers.
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The output of an MLP model with two hidden layers whose
activation functions for these two layers are Logsig and Tansig,
and Purlin activation function for the output layer are as
follows36

= × × +

+ +

w w x b

b b

output Purelin( (Tansig( (Logsig( ) ))

) )
3 2 1

2 3 (5)

where w1 and b1 are the weight matrixes and the bias vectors of
the first hidden layers, w2 and b2 are the weight matrixes and

Table 1. Spatial Input Parameters of the Well Piezometer over the Gohar Zamin Iron Ore Mine

number of
well

piezometers
UTM:X
(m)

UTM:Y
(m)

hydraulic
conductivity
of sediments
(m/day)

effective
porosity

of
sediments

electrical
resistivity of
sediments
(ohm m)

depth of
sediments

(m)
surface
level (m)

hydraulic
conductivity
of bedrock
(m/day)

effective
porosity

of
bedrock

electrical
resistivity of
bedrock
(ohm m)

bedrock
level (m) fault

1 333,513 3,219,470 200 15 14.9 130.55 1724.47 19 0.09 31.6 1590.37 ×
2 332,489 3,219,947 187 20 29.4 180 1735.77 20 0.07 17.2 1645.77 ×
3 332,149 3,220,733 150 18 55.8 212 1747.5 22 0.05 5.58 1641.5 ×
4 332,861 3,221,499 160 14 9.69 139 1733.47 19 0.06 36.5 1663.97 ×
5 334,438 3,220,764 315 10 22.3 141.65 1729.92 17 0.1 13.5 1659.1 √

Table 2. Statistical Explanation of the Temporal Input
Parameters

drainage (m3/day) evaporation (m/day) rainfall (m/day)

mean 9366 0.007 0.02
median 9183 0.006 0.006
mode 9504 0.004 0
skewness 0.119 0.257 1.37
kurtosis 0.245 −1.345 0.862
minimum 0 0.002 0
maximum 17466 0.013 0.09

Figure 2. Schematic image of the MLP neural network structure.
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the bias vectors of the second hidden layers, and w3 and b3 are
the weight matrixes and the bias vectors of the output layers.
2.2.2. CF Neural Network. There is a direct relationship

between the input and output in the perceptron connection,
whereas in the feedforward neural network connection, there is
an indirect relationship between the input and output, which is
a hidden layer through a nonlinear activation function.37 If the
connection form is combined in a multilayer network and
perceptron, the network can be formed with a direct
connection and the indirect connection between the input
layer and the output layer.24 The network formed of this
connection pattern is called the CF neural network, and the
equations of this model can be written as follows

∑ ∑ ∑= + + +
= = =

y f w x f w w f w w x
i

n
i

i
i

i
j

k

j j
i

n
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1
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y
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(6)

where f i is the activation function between the input layer and
the output layer, wi

i is the weight between the input layer and

the output layer, wb is the weight from bias to output, wj
b is the

weight from bias to the hidden layer, and f h is the activation
function of each neuron in the hidden layer. A schematic
illustration of the CF neural network architecture (with two
hidden layers) and the interconnections between the input and
output parameters are illustrated in Figure 3.

The optimization algorithm used for training has an
influential impress on the efficiency of MLP and CF models,
extremely in this research, and four important BR, Levenberg−
Marquardt, RB, and SCG optimization algorithms have been
used for optimization.
2.2.3. RBF Neural Network. The RBF neural network is one

of the most powerful feedforward neural networks for solving
regression problems using the performance approximation
theory.38 Broomhead and Lowe,39 based on adaptive function
interpolation, introduced an approach to local functional
approximation. In general, an RBF neural network has a three-
layer feedforward structure in which the input layer and the
output layer are connected through a hidden layer. A
schematic illustration of the RBF neural network architecture
applied in this paper is shown in Figure 4.
The principal part of the RBF neural network is the hidden

layer, which transmits data from the input space to the hidden
space with higher dimensions.36,40 Each point of the hidden
layer with a particular radius is located at a given space, and in
each neuron, the distance between the input vector and its
center is calculated.41 Euclidean distance is used to measure

the distance between centers and inputs, which is calculated
from the following equation

∑= −
=

r x c( )j
i

p

i ij
1

2

(7)

For a model with 10 input variables, p = 10. To transfer the
Euclidean distance from each neuron in the hidden layer to the
output, a RBF has been used. The most common RBF is the
Gaussian,42 which is obtained from the following interface

σ
ϕ =r

r
Gaussian: ( ) exp

2

2

2

i
k
jjjj

y
{
zzzz

(8)

Due to its smoother and flexible behavior, the Gaussian
function has been utilized as the activation function in this
research. When x = cj, ϕ(r) is maximum, and as r increases,
ϕ(r) decreases. When |r| → ∞· ϕ(r) → 0. σ is the spreading
coefficient of the Gaussian function, which is defined
experimentally.43 The model output is estimated from the
following equation

∑ ω= ϕ − = =
=

y x c j N k M( ) 1, ..., and 1, ...,k
j

N

j kj k j
1

(9)

where ω shows the connection weight, N is the number of
neurons in the hidden layer, c denotes the center, and (∥x −
c∥) is the Euclidean distance between the center of the radial
function and the input data.44,45

2.2.4. Generalized Regression Neural Network. The GR
neural network is a memory neural network that is a variation
to the RBF neural network based on the statistical technique of
kernel regression with a dynamic network structure with
powerful nonlinear mapping and robustness (Specht 1991).
GR has a high learning speed and is very useful for function
approximation problems. For small sample data, the prediction
effect is excellent, and also unstable data can be processed.26,46

GR does not have RBF accuracy but has a major advantage in
classification and fit, especially when data accuracy is
inappropriate. A GR model consists of four layers (input,
pattern, summation, and output layer) as illustrated in Figure
5.47

For the hidden layer RBF, the number of elements is equal
to the number of training samples. The weight function of the
hidden layer RBF is dist, which is used to determine the
distance between the network input and the weight value IW11
of this layer and is calculated from the following equation

Figure 3. Architecture of the implemented CF neural network.

Figure 4. Implemented structure of the RBF neural network.
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∑= − =
=
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In the hidden layer, network product function netprod
multiplies the threshold b1 and ∥dist∥ output to get net input
n1. The net input n1 is passed to transfer function radbas. For
the GR model, the Gaussian function is used as the transfer
function, namely

α = radbas netprod dist b( ( ))j j j
1

1.

σ
= −

n
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2
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1 2
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= − =
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j Mexp

( )

2
( 1, 2, . . . , )j j

j
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2
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In the above equation, σj is a smoothing factor, also called
the spread parameter, which calculates the shape of RBF in the
jth hidden layer.
The normalized weight product function is used as the

weight function in the linear output layer, making the former
layer’s output with the weight value IW21 in this layer as the
weight output. The Purelin function is used as the transfer
function for the output of the passed weight. The network
output is calculated from the following equation

∑ α= =
=

y k SIW ( 1, 2, ..., )k
j

m

kj j
1

1

(12)

Due to the significant effect of the spread parameter on the
model’s performance, only the optimal value of this parameter
must be determined.48

2.2.5. Committee Machine Intelligent System. To achieve
the objectives of the study, the best-developed models are
chosen as candidates and other models are discarded.49 Under
these circumstances, the cost incurred for the discarded models
is wasted. For this purpose, intelligent models with their
unique features are combined with each other and a committee
machine is built.50,51 This CMIS was introduced by Nilsson in
1965; it is a kind of ANN and uses division and conquer to
solve problems.
In the committee machine method, the models are

combined to provide a more accurate solution.52 The linear
combination method can be used using simple averaging or
weighted averaging to combine the developed models.53

Because all models’ contribution in the simple averaging
method is the same, a satisfactory answer is not obtained from
this method because a more precise solution must contribute
to the final model more.54 For this purpose, the solutions are
combined based on their precision, and the sum of coefficients
of linear composition is unity. In this research, added a bias
term to the equation and an improved weighted average is
used. In the final model, any model’s contribution corresponds
to that model’s coefficient in the linear equation of the CMIS
model.

2.3. Model Comparison. To determine the error related
to the model output, various statistical measures can be used to
compare the effectiveness of the developed models. The
performance of the trained model is compared in terms of
statistical measurement of precision. During this research, the
average absolute relative error (AARE, %), average relative
error (ARE, %), root mean square error (RMSE), and standard
deviation (SD) are taken under consideration to check the
efficiency of the models as predictive tools. The mentioned
parameters are expressed as
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3. RESULTS AND DISCUSSION
3.1. Model Development. In this research, 1542 data

points of five piezometric wells have been used to model and
predict the groundwater level. The data used are divided into
spatial (sediments and bedrock) and temporal (March 21,
2019, to July 2, 2020). To apply the necessary complexity to
intelligent machine learning methods, 12 spatial parameters
(longitude, latitude, hydraulic conductivity of sediments,
effective porosity of sediments, the electrical resistivity of
sediments, depth of sediments, surface level, hydraulic
conductivity of bedrock, effective porosity of bedrock, the
electrical resistivity of bedrock, bedrock level, and fault) and 6
temporal parameters (day, month, year, drainage, evaporation,
and rainfall) have been used, which have the greatest impact
on the groundwater level. 1377 data points have been used to
develop four MLP neural network models, four CF neural
network models, one RBF neural network model, and one GR
neural network model. MLP and CF models have been each
optimized by Levenberg−Marquardt, BR, SCG, and RB
methods. In all the mentioned models, 80% of the data were
used for model training, and 20% of the data were used for
model testing.55 The data are divided into testing and training
sets using random distributions to prevent the local
accumulation of data.
The number of hidden layers, the type of transmission

function, and the number of neurons in each layer affects the

Figure 5. Schematic image of the GR neural network structure.
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efficiency of a developed model. Trial and error can be used to
identify these parameters. In this research, two hidden layers
were used for MLP and CF methods, and one hidden layer was
used for RBF and GR neural network methods. Table 4 shows
the function used and the best architecture in terms of the
number of neurons for each model. Transfer functions are
designed to correctly model the complex behavior of nonlinear
input and output data sets. The architecture for the MLP
model consists of four numbers, the first and last number being
the number of inputs and outputs of the model, and the second
and third numbers being the number of neurons in the first
and second hidden layers. Because the efficiency of the MLP
models is strongly influenced by the initial biases and weights,
the training of ANNs with each optimizer using trial and error
was executed more than 50 times with dissimilar initial biases
and weights, and the most satisfactory results were chosen. The
architecture for the CF model consists of five numbers, the first
and last number being the number of inputs and outputs of the
model, and the third and fourth numbers being the number of
hidden layer neurons in the first and second. The second
number is the number of neurons in the connection layer
between the input and output. The architecture for the RBF
model consists of three numbers, the first and last number
being the number of inputs and outputs of the model and the
second number being the number of maximum neurons in the
hidden layers. RBF models consist of two key parameters: the
number of neurons and the spread coefficient. To determine
these two parameters, trial and error have been used. In this
research, the number 5 for the coefficient of expansion and the
number 30 for the number of neurons have been used. The GR
neural network model, similar to the RBF model, has the
spread coefficient parameter, which is 0.5 for this parameter by
trial and error. To identify the optimal value for the coefficient
of expansion and the number of neurons, the RBF model was
implemented more than 100 times, and the best results were
stored.
According to the statistical results in Table 3, a MLP neural

network using the Levenberg−Marquardt (MLP-LM) opti-
mizer with AARE (%), RMSE, and SD values of about 0.0175,
0.447, and 0.00027 is the most accurate method compared to
other models. The low error of this method, both in the
training and testing phase, indicates the acceptable fit of the
developed model to the data. In addition, the small difference
between the error of the training and testing phase shows the
confirmation of the model developed for prediction. As shown
in Table 3, the RBF model with AARE (%), RMSE, and SD
values of about 0.0432, 0.934, and 0.00057 is less accurate than
other models. Giving the same weight to each attribute is one
of the disadvantages of this method and leads to the lack of
high accuracy of this method compared to other methods.
Based on the information in Table 3, the developed GR model
has values of 0.0355, 0.00053, and 0.8633 for AARE (%), SD,
and RMSE. The higher error rate of this model in the training
and testing phase than other methods indicates that this
method is underfitting. This problem can be smoothed out by
increasing the number of input features. This model similar to
RBF models requires less time (s) to run than other methods.
RBF and GR methods are faster than the MLP and CF
methods due to their monolayer. The results of Table 3 have
been used to rank the proposed models based on having the
highest accuracy T
ab
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CF LM CF RB CF SCG
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After developing different models using 1377 data points in
the previous step, 165 extra validation data points have been
used to identify the best models and their combination and to
develop the proposed CMIS model. The statistical results of
the developed models using 165 extra validation data points
are shown in Table 4.
Out of 10 developed models, RBF, MLP-LM optimizer, and

CF neural network using BR optimizer (CF-BR) have the
lowest AARE (%) value. The high error of other models for
predicting groundwater levels is due to overfitting. The close-
to-reality predictions of these three methods reflect the high
accuracy of the developed models. The three models
developed with the highest accuracy are combined with a
CMIS. To detect the optimal coefficients of this model,
multiple linear regression is used, which is shown in the next
equation

μ α μ α μ α μ α= + + +− −CMIS 1 MLP LM 2 CF BR 3 RBF 4 (17)

In the above equation, α1 to α4 are as follows

α α α α= = = −

= −

0.525543; 0.522345; 0.04743;

0.7539
1 2 3 4

CMIS model proposed in this research is show in Figure 6.

3.2. Evaluation of the Validity and Precision of the
Developed Models. Statistical parameters such as AARE
(%), ARE (%), RMSE, and SD for developed models are
shown in Table 4. A model, such as RBF, which has the highest
AARE value in Table 3, but here with one of the lowest error
values, is one of the best models to predict, indicating accurate

learning between the input and output relationships. Other
models, such as the CF neural network using SCG optimizer,
which do not have a good prediction of the groundwater level
from extra validation data, due to overtraining and memorizing
input−output rules or maybe stuck in local optimizations.
AARE (%) and SD values of about 0.1134 and 2.2218 indicate
that the proposed CMIS model is the most precise model for
groundwater level forecasting among other developed models.
A value of 0.00141 for SD indicates that the data of the
developed model are close to the mean value, thus confirming
the reliability of the developed model. To visually confirm the
precision of the developed CMIS model using 1377 data
points, the cross plot of the experimental data versus predicted
relative groundwater level is plotted in Figure 7.

The high concentration of test and train data around the
unit slope indicates the high accuracy of the CMIS model
prediction. Predicted points of the groundwater level located in
the range of 1580 (m) are related to well no. 3, located points
in the range of 1600−1620 (m) are related to wells nos. 1 and
2, located points in the range of 1630−1650 (m) are related to
well no. 5, and located points in the range of 1670 (m) are
related to well no. 4. Figure 8 shows the relative error
distribution curve for testing and training data set. In Figure 8,

Table 4. Statistical Parameters and Information of All Developed Models for the Prediction of Groundwater Level Using 165
Extra Validation Data Points

models ARE (%) AARE (%) SD RMSE (m) function used best architecture

MLP-LM −0.12983 0.16232 0.00177 2.77969 Logsig-Purelin-Purelin 18-12-8-1
MLP-BR −0.37058 0.37081 0.00396 6.20605 Elliot2sig-Purelin-Purelin 18-12-8-1
MLP-SCG −0.08426 0.20241 0.00230 3.60198 Elliot2sig-Purelin-Purelin 18-12-8-1
MLP-RB −0.30413 0.30413 0.00338 5.29602 Elliot2sig-Purelin-Purelin 18-12-8-1
CF-LM −0.55160 0.55160 0.00569 8.90091 Elliot2sig-Purelin-Purelin 18-6-20-12-1
CF-BR −0.08841 0.13097 0.00160 2.50210 Tansig-Logsig-Purelin 18-10-20-12-1
CF-SCG −0.14831 0.17299 0.00195 3.05459 Tansig-Logsig-Purelin 18-8-20-12-1
CF-RB 0.16633 0.18931 0.00217 3.40278 Tansig-Logsig-Purelin 18-8-11-7-1
RBF −0.12491 0.12945 0.00157 2.46439 Gaussian 18-30-1
GR −0.84633 0.84632 0.00873 13.6627 Gaussian
CMIS −0.10723 0.11340 0.00141 2.22181

Figure 6. Architecture of the proposed CMIS model.

Figure 7. Cross plot of the predicted relative groundwater level vs
tentative relative groundwater level for test and train data using 1377
data points.
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Figure 8. Relative error between the tentative and predicted relative groundwater level vs the tentative relative groundwater level for train and test
data using 1377 data points.

Figure 9. Prediction of the groundwater level for different models using 165 extra data points.

Figure 10. Relevancy factor for temporal and spatial parameters on the groundwater level.
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the maximum relative error of the predicted and experimental
data values is 0.15%. Most of the data set points are located
about the zero-error line for the tentative relative groundwater
level. Most points below the 0.05% error confirm the
acceptable stability between the experimental data and the
CMIS model prediction.
The actual groundwater level and groundwater level

predicted for well no. 3 in the next 165 days by the developed

models with the lowest AARE value are shown in Figure 9.
Groundwater level fluctuations have reduced over this 165-day
period, and all developed models have confirmed this correctly.
The CMIS model has the highest accuracy for estimating the
groundwater level throughout the time period in addition to
significant smoothness.

3.3. Sensitivity Analysis on Models’ Inputs. Sensitivity
analysis is important from the perspective that uncertainty in

Figure 11. AARE (%) for the developed CMIS model and best models for different electrical resistivities of sediment ranges.

Figure 12. AARE (%) for the developed CMIS model and best models for the depth of sediment ranges.

Figure 13. AARE (%) for the developed CMIS model and best models for the electrical resistivity of bedrock ranges.
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model inputs affects uncertainty in the model output.
Sensitivity analysis can be used to evaluate the correlation
between model inputs and outputs, to search for errors in the
model structure, and to simplify a developed model by
removing its inputs that do not affect its output.56 To
determine the effect of a model’s input parameter on its
output, the reliable method of relevancy factor analysis can be
used.57 The relevancy factor measures the effect of input
parameter on the output and is denoted by r. The higher the r
value, the greater the effect of the input on the output. The
relevancy factor is calculated from the following equation

μ
μ μ

μ μ
· =

∑ − −

∑ − ∑ −
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= =

r Inp
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(18)

where Inpk.i shows the ith value, and Inpave.k is the average value
of kth input, respectively (k represents the model inputs). μi
and μave show the ith value and the average value of the
predicted output.52 Figure 10 shows the value of the relevancy
factor. The obtained numbers show that spatial parameters
have a more significant effect on the groundwater surface than
temporal parameters. The most influential spatial parameters
on the groundwater level are the electrical resistivity of
sediments, depth of sediments, the electrical resistivity of
bedrock, hydraulic conductivity of the bedrock, and effective
porosity of sediments. Among the temporal parameters,

drainage volume has the most significant impact on the
groundwater level due to pumping wells in the pit mine’s
southeastern region.

3.4. Detailed Error Analysis. A detailed error analysis has
been used to more compare the efficiency of the proposed
CMIS model and other developed models for groundwater
level prediction. The AARE (%) in Figures 11−15 is drawn as
a function of the input parameters that have the most
significant impact on the groundwater fluctuations. According
to Figure 10, the highest relevancy is related to the electrical
resistivity of sediments, depth of sediments, the electrical
resistivity of bedrock, hydraulic conductivity of bedrock, and
effective porosity of sediments. For this purpose, error analysis
was performed by dividing the entire data into four groups to
indicate the models’ precision in various ranges of crucial
parameters.
Figure 11 compares the AARE, % of dissimilar models in

four ranges for the electrical resistivity of sediments. The
maximum AARE value of 0.021% for the proposed CMIS
model indicates its very high capability to predict the
groundwater level in the whole range of electrical resistivity
of sediments. As shown from this figure, all developed models
for the range of 21−32 (ohm m) have a lower AARE (%) error
than other values. Examination of the input data to developed
models shows that this range is related to well no. 5.
Figure 12 clearly shows the lower AARE (%) of the CMIS

model than all models in the four depth of sediment ranges.

Figure 14. AARE (%) for the developed CMIS model and best models for hydraulic conductivity of bedrock ranges.

Figure 15. AARE (%) for the developed CMIS model and best models for the effective porosity of sediments ranges.
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The lowest AARE (%) value is close to the surface in the range
of 130−150 m and is related to wells no. 1 and 4.
Figure 13 presents the efficiency of the developed models

over dissimilar ranges of the electrical resistivity of the bedrock.
As can be easily seen, the CMIS model has the lowest AARE
(%) in all four ranges. The lowest AARE value here is in the
range of 21−30 (ohm m) and is related to well no. 1.
Figure 14 depicts the AARE of the developed models for

dissimilar ranges of hydraulic conductivity of bedrock, and
again, the proposed CMIS is more accurate than other models
in all ranges. The minimum AARE (%) value is in the range of
18−19 (m/day) and this range is related to wells no. 1 and 4.
The effect of porosity of sediments in Figure 15 in four

ranges shows a low AARE (%) value for all models, mainly
CMIS. In all ranges, the AARE values are close to each other
models and below 0.05%. The lowest AARE (%) value is in the
range of 15−17.5 and is related to well no. 1. Therefore, it can
be concluded from Figures 8−12 that well no. 1 has the most
accurate input data compared to other wells.
To better compare the models, the cumulative frequency of

AARE for the developed CMIS model and all other models is
shown in Figure 16 .58 According to this figure, about 85.5% of
the groundwater level predicted by the developed CMIS model
has an AARE, % of less than 0.03%. Other developed MLP

neural networks using Levenberg−Marquardt optimizer, MLP
neural networks using BR optimizer, and CF neural networks
using BR optimizer models have 82.4, 83.1, and 82.9% errors.
The results of this figure further indicate the success of the
proposed CMIS method compared to other developed
methods for groundwater level prediction.

3.5. Trend Analysis of the Developed Model. Trend
analysis in a hydrogeological time series can be a practical tool
to study groundwater level fluctuations.59 By examining the
groundwater level predicted in Figure 9, significant changes are
seen on days 40−110, indicating the pumping well in the
southeastern part of the mine. For this reason, considering that
the drainage time series is a parameter affecting the
groundwater level, the physically expected trends of the
groundwater level by changing the drainage is investigated by
the models developed in Figure 17. As can be seen in this
figure, the relative groundwater level decreases with the
drainage increases. All developed models can record the
expected trend with drainage changes. This figure also shows
the accuracy of the proposed CMIS model compared to other
methods.

3.6. Outlier Diagnosis and Applicability Domain of
the Model. Outliers commonly appear in a comprehensive set
of experimental data and differ from the bulk of the data.

Figure 16. Cumulative frequency vs absolute relative error for all developed models.

Figure 17. Comparing the relative variation with drainage for the proposed CMIS model and other developed models with real data.
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Because such a data set can affect the reliability and precision
of experimental models, thus finding this type of data set is
essential in developing models.60 One of the practical
advantages of this analysis is that by carefully examining the
outlier data, a good view of the model constraint can be
provided, which may be due to the ignoring of some justifiable
effects. In this research, the leverage approach has been used to
determine and eliminate outliers, including calculating the
model deviation from the relevant experimental data. The
leverage values are diagonal elements of the projection matrix

= −H X X X X( )T T1 , where T denotes the transpose matrix
operator and X is the matrix of explanatory variables. The
leverage values higher than a particular criterion are known as
high leverage points and are associated with uncertainties. The
following expression for calculating the leverage threshold
(H*) have proposed by61

* =
+

H
3(number of inputs 1)

number of data points (19)

The computed model deviations are placed in a hat matrix
and are called “standardized cross-validated residuals”.62 This
parameter is obtained from the following expression

=
[ − ]

R
e

hMSE(1 )i
i

i
0.5

(20)

where hi is denoted for the ith leverage value, MSE stands the
mean square of error, and ei is the error value associated with
the ith record. William’s plot is plotted in Figure 18 for the
resulting by the developed CMIS model for 1542 groundwater
level predictions data. Due to the location of most of the
predicted points in the feasibility domain of the proposed
model (0 ≤ hat ≤ 0.0414 and −3 ≤ R ≤ 3), statistical validity
and high reliability of the developed CMIS model are shown.
About 2.65% of the points are outside the acceptable range of
the model, which can be ignored due to the number of data
points used in the model’s development. Points in the range of
R < −3 or R > 3 are defined as “bad high leverage” regardless
of their hat value compared to hat*.63 These data may be well
predicted, but due to the difference with a large amount of
data, but, are outside the acceptable range of the model.

4. CONCLUSIONS
In this research, the data of five piezometric wells, including
1542 data points around the Gohar Zamin iron ore mine
located in Sirjan, Iran, have been used to predict the
groundwater level fluctuations. 1377 spatial (sediment and
bedrock) and temporal data points (276 days) have been used
to develop 10 supervised learning models. These developed
models have been used to predict the groundwater level of 165
extra validation data points. Three of the best models with the
lowest AARE, % value have been combined in a single model,
and the proposed CMIS model has been developed. The
results of this research can be concluded:

1. Almost all developed models with 1377 data points can
model groundwater levels with acceptable AARE (%)
values in the range of 0.017−0.043%.

2. The running time (s) of different algorithms with similar
conditions shows that GR and RBF algorithms are
significantly faster due to these models’ monolayer.

3. Developed models using 1377 data points to predict
groundwater levels for 165 extra validation data points
showed almost similar results, except that the RBF
model has the lowest AARE (%). A lower AARE (%)
value for the RBF model indicates an acceptable fit of
the model to data and learning of the input−output
relationships. Developed models can predict ground-
water levels for these 165 extra validation data points
with AARE values between 0.12 and 0.84%.

4. The developed CMIS model has a better performance
than all other models and can predict the groundwater
level with an AARE (%) value of about 0.1134%. The
proposed CMIS model, in addition to significant
smoothness, predicts a downward trend in groundwater
levels over the entire 165-day period.

5. The electrical resistivity of sediments, depth of sedi-
ments, the electrical resistivity of bedrock, hydraulic
conductivity of bedrock, and effective porosity of
sediments of the 18 input parameters are the most
influential input parameters on the groundwater level,
respectively.

6. Trend analysis for drainage parameters shows a decrease
in the groundwater level with the increase in drainage

Figure 18. William’s plot for the resulting outputs by the proposed CMIS model.
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due to pumping wells’ activity in the southeastern part of
the mine.

7. Based on the cumulative frequency results for the CMIS
model, about 85.5% of the predicted groundwater level
has an AARE less than 0.03%, which indicates the
statistical validity of this method.

8. Data that are out of the applicability domain of the
proposed CMIS are about 2.65%, which indicates the
high accuracy of this method.

Machine learning is one of the powerful tools for prediction.
The high accuracy of machine learning methods, especially the
proposed CMIS, can be an alternative to widely used
numerical methods such as MODFLOW. It is suggested that
for a more accurate prediction of the groundwater level, widely
used methods for feature selection can be used.
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