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Abstract

A “credible” computational fluid dynamics (CFD) model has the potential to provide a

meaningful evaluation of safety in medical devices. One major challenge in establishing

“model credibility” is to determine the required degree of similarity between the model and

experimental results for the model to be considered sufficiently validated. This study pro-

poses a “threshold-based” validation approach that provides a well-defined acceptance

criteria, which is a function of how close the simulation and experimental results are to the

safety threshold, for establishing the model validity. The validation criteria developed fol-

lowing the threshold approach is not only a function of Comparison Error, E (which is the

difference between experiments and simulations) but also takes in to account the risk to

patient safety because of E. The method is applicable for scenarios in which a safety

threshold can be clearly defined (e.g., the viscous shear-stress threshold for hemolysis in

blood contacting devices). The applicability of the new validation approach was tested on

the FDA nozzle geometry. The context of use (COU) was to evaluate if the instantaneous

viscous shear stress in the nozzle geometry at Reynolds numbers (Re) of 3500 and 6500

was below the commonly accepted threshold for hemolysis. The CFD results (“S”) of

velocity and viscous shear stress were compared with inter-laboratory experimental mea-

surements (“D”). The uncertainties in the CFD and experimental results due to input

parameter uncertainties were quantified following the ASME V&V 20 standard. The CFD

models for both Re = 3500 and 6500 could not be sufficiently validated by performing a

direct comparison between CFD and experimental results using the Student’s t-test. How-

ever, following the threshold-based approach, a Student’s t-test comparing |S-D| and |

Threshold-S| showed that relative to the threshold, the CFD and experimental datasets for

Re = 3500 were statistically similar and the model could be considered sufficiently vali-

dated for the COU. However, for Re = 6500, at certain locations where the shear stress is

close the hemolysis threshold, the CFD model could not be considered sufficiently vali-

dated for the COU. Our analysis showed that the model could be sufficiently validated

either by reducing the uncertainties in experiments, simulations, and the threshold or by

increasing the sample size for the experiments and simulations. The threshold approach
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can be applied to all types of computational models and provides an objective way of

determining model credibility and for evaluating medical devices.

Introduction

In spite of the wide adoption of computational fluid dynamics (CFD) in medical device design

and research, these tools have not realized their full potential in the regulatory process [1]. In

general, the influence of modeling and simulation on regulatory decision-making has been

fairly minimal, with companies relying primarily on bench testing, animal testing, and clinical

trials as evidence of device safety [2]. One of the main reasons for the limited use of CFD (and

other physics-based simulations) is the challenge of adequately establishing credibility for

making safety claims.

The key aspects for establishing model credibility are to perform appropriate verification,

validation, and uncertainty quantification (VVUQ) to ensure that the model results are suffi-

ciently accurate for the prescribed context of use (COU), which refers to the specific role and

scope of the computational model and the simulation results used to inform a decision [3].

Good VVUQ practices are prevalent and well-documented in other engineering fields such

as the aerospace and automotive industries [4–11]. Sandia National Laboratories and other

research groups have also published reports on VVUQ approaches for various applications

[12, 13]. Additionally, the American Society of Mechanical Engineers (ASME) has a standards

committee devoted to verification and validation (V&V); they have published two standards,

V&V 10–2006 and V&V 20–2009, that outline steps for performing VVUQ in solid and fluid

mechanics, respectively [14, 15].

Researchers in the biomedical industry have begun to perform rigorous validation of their

CFD models and codes by comparing with in vitro [16–19], in vivo [20, 21] or clinical data [22,

23]. In recent years, few researchers have applied VVUQ techniques in the development of

more credible CFD models. Sankaran et al. [24] described a stochastic collection method for

uncertainty quantification in cardiovascular simulations. They applied the stochastic method

to samples problems including an abdominal aortic aneurysm and idealized and patient-spe-

cific Fontan surgery problems. Schiavazzi et al. [25] used uncertainty quantification approach

for predicting the clinical outcome during single ventricle palliation surgery. The input param-

eters for their CFD model, such as the pulmonary pressure and flow split ratio, and their

associated uncertainties were determined from preoperative clinical data using an inverse

problem. The input parameter uncertainties were than propagated to the CFD output (e.g.

pressure, velocity and wall shear stress) using sparse grid stochastic collection. Tran et al. [26]

used a similar Monte Carlo sampling method to study coronary artery stenosis and quantified

patient-specific uncertainties in hemodynamic parameters such as time averaged wall shear

stress (TAWSS) and oscillatory shear index (OSI) based on fluctuations in the non-invasively

measured clinical input data. Similar types of uncertainty quantification methods have been

used by a few other research groups for cardiovascular and intracranial aneurysm modeling

[27–29].

While the application of rigorous VVUQ methods is beginning to receive attention in the

biomedical industry, the application of these methods in regulatory submissions is not wide-

spread. The medical device community including academia, industry, the FDA and software

developers, has been pursuing efforts to improve and standardize the process for establishing

model credibility requirements. Several groups have sponsored round-robin studies to
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evaluate the ability of commercial and open-source CFD codes to accurately simulate fluid

flow in various benchmark medical devices and physiological geometries [30–34]. These

benchmark geometries and the corresponding validation data are increasingly being used by

modelers to test their new and existing CFD codes [35–40]. Additionally, FDA has recently

published a guidance document that provides detailed methodology on how to report compu-

tational modeling studies as a part of regulatory submissions [41]. Finally, FDA and industry

are collaborating on the development of a risk-informed credibility assessment framework

through the ASME V&V 40 subcommittee, which is devoted to verification and validation of

computational modeling as applied to medical devices [3].

The most common type of validation approach seen in the medical device literature is the

comparison of mean data from validation experiments with a single representative simulation

(which aims to mimic the mean experimental conditions). Typically, the comparison between

these data is qualitative and statements like “reasonable agreement” are used to describe the

comparison. This approach does not provide sufficient validation for a majority of use cases

because variation and uncertainty in the input parameters, such as device geometry, fluid

properties, and inlet and outlet boundary conditions, have not been accounted for but are cru-

cial for simulating the validation experiments. Depending on the problem, many, if not all, of

these input parameters will have uncertainties which can significantly affect the model output

(s). Similarly, there are uncertainties associated with the equipment and procedures used in

the experiments that provide the validation data [14], [42]. Consequently, in addition to com-

paring the mean data from experiments and simulations, a quantitative estimation of all the

uncertainties is also required to determine the level of confidence with which the difference

between the experiment and computation can be estimated.

Even in the presence of rigorous quantification of the relevant uncertainties, a decision on

whether a model is sufficiently validated is often subjective. The process of establishing the

credibility of computational models awaits both improved adherence to rigorous error quanti-

fication, and the development of objective mechanisms for determining that the model has sat-

isfied the validation criteria for a specific COU. For example, an objective evaluation of the

validation criteria should take into account the model risk. Model risk, as defined by ASME V

& V 40 standard [3], is the possibility that the computational model may lead to an incorrect

decision that might result in patient harm or undesirable non-patient related impacts. The val-

idation criteria, i.e., allowable difference between the computational model and experimental

results should be dependent on the model risk.

As an example, the COU for the computational model in this study is to predict the instan-

taneous viscous shear stress and determine if it is low enough to avoid red blood cell damage

(hemolysis) in the nozzle device (a flow channel of variable diameter) for throat Reynolds

numbers of 3500 and 6500 (Table 1). For this COU, the validation criterion, which is the

acceptable difference between the experimental and the CFD shear stresses, can be determined

by assessing the magnitude of the difference between CFD and experimental data as compared

to the difference between CFD and the hemolysis threshold. Previous experimental studies

have reported threshold viscous shear-stress values for causing instantaneous hemolysis in

medical devices [43]. If the CFD and experimental shear values are far from the threshold, the

model risk is low and a less stringent validation criterion can be used for validating the CFD

Table 1. Context of use.

Use CFD modeling to predict the instantaneous viscous shear stress and determine if it is low

enough to avoid red blood cell damage in the nozzle device for throat Reynolds numbers of 3500

and 6500

https://doi.org/10.1371/journal.pone.0178749.t001
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results. As the CFD and experimental shear stresses get closer to the threshold shear stress, the

model risk increases, and a more stringent validation criterion needs to be applied for compar-

ing the CFD model to the experiment. In order to account for model risk in the validation pro-

cess, there is a need to use a threshold-based approach, in which the validation criteria is non-

arbitrary and is determined by how close/far the CFD results are from the safety threshold.

This paper describes a study in which bench tests and computational analyses of the FDA

nozzle model [30] are used to illustrate techniques for rigorous error quantification. Additionally,

we introduce a threshold-based method for determining that the model is sufficiently validated

for the COU. For the prescribed COU (Table 1), techniques in the ASME V&V 20–2009 stan-

dard are applied to estimate i) the comparison error (E = |S-D|), which represents the difference

between the mean experiment (D) and simulation (S) results, and ii) the validation uncertainty

(Uval), which is a summation of the uncertainties in the numerical simulations, input parameters

and the experimental data. Our study then takes the analysis one step further by computing a test

statistic based upon the uncertainties in shear-stress measurements and computations, and the

assumptions of a two-tailed t-test. The statistic is used to compute a confidence interval for the

difference between computations and measurements. Comparing the width of this confidence

interval to the difference between the computational shear stress and the available thresholds for

red blood cell damage (due to viscous shear) permits an objective determination of the credibility

of the computational model for predicting the potential for blood-damage.

The COU for this study only covers the viscous shear stress and does not include the risk of

hemolysis due to turbulent stresses [44]. Consequently, the viscous shear threshold used in this

study (and hence the COU) is not applicable for scenarios where turbulence is expected to play

a major role in causing blood damage in the device.

A brief outline of this paper is as follows. The details of the flow geometry and CFD solver

are provided in the Methods section along with the steps involved in quantifying the validation

uncertainty as described in the ASME V&V 20–2009 standard. Results from the uncertainty

analysis and the subsequent discussion on threshold-based validation are provided in the

Results and Discussion sections, respectively.

Methods

Details of the computational model, numerical framework and the uncertainty quantification

procedure are provided in this section.

Nozzle model

The FDA benchmark nozzle model represents a simplified medical device; it is shown in Fig

1a and 1b with all relevant dimensions. The details regarding the nozzle geometry are provided

in prior publications [30, 31, 33]. The nozzle has characteristics similar to blood contacting

devices such as catheters, cannulae, and syringes. Geometrically, the model includes a gradu-

ally converging section, a throat region and a sharp-edged sudden expansion. These geometric

features induce complex flow phenomena including adverse pressure gradients, recirculating

flow and high and low shear stress zones, which mimic flow features of cardiovascular devices

such as those found in the diffuser regions of blood pumps and ventricular assist devices. Such

phenomena have been commonly linked to the occurrence of hemolysis and thrombosis in

blood contacting devices [30].

Computational model overview

A 3D geometric model of the nozzle was created using the commercial geometry creation soft-

ware package (DesignModeler v.15.0, ANSYS, Inc., Canonsburg, PA). Assuming axisymmetric
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flow through the nozzle i.e., no variation in flow parameters in the circumferential (theta)

direction, the numerical computations were performed for a 1˚ sector of the nozzle. The

domain was discretized into finite volumes represented by hexahedral elements (Fig 1c) using

the ANSYS Meshing Platform v.15.0 (ANSYS, Inc., Canonsburg, PA). Mesh density was

increased in regions exhibiting complex flow dynamics such as high velocity gradients, adverse

pressure gradients, separated flow, jet breakdown, and flow reattachment. The grid adjacent to

the nozzle wall was refined by adding an inflation layer consisting of a higher number of hexa-

hedral elements in comparison to the nozzle core. A grid convergence study was conducted in

order to obtain a grid-independent solution, minimize the numerical error, and estimate the

numerical uncertainty due to finite volume discretization.

Input parameters

Input parameters for the CFD simulations were determined from an inter-laboratory particle

image velocimetry (PIV) study, consisting of 5 datasets from 3 laboratories. This study ana-

lyzed the flow patterns of a blood analog solution flowing through the FDA nozzle [30]. Mean

values and the uncertainty bounds for the inlet/outlet boundary conditions are summarized in

Table 2. The blood analog solution was assumed to behave as a Newtonian fluid with a mean

density,ρ, of 1056 kg/m3 and a mean dynamic viscosity, μ, of 0.0035 Pa-s. A mean Reynolds

number of Re (= (4�ρ�Q)/(π�d�μ)) = 3500 or 6500 was used in this study, where Q is the inlet

flow rate and d is the nozzle throat diameter (4 mm). A parabolic axial velocity profile (Eq 1),

representing a fully-developed steady pipe flow condition, was imposed at the inlet boundary

Fig 1. a) Schematic of the FDA nozzle model b) Cross-sectional cuts identify validation locations along the nozzle axis c) An

image of the three grids (inside the red oval region) used for the grid convergence study (snapshot taken at the sudden

expansion location).

https://doi.org/10.1371/journal.pone.0178749.g001

Table 2. Values of the input parameters used for the input parameter uncertainty analysis.

Input parameter (X) Throat Re~ 3500 Throat Re~ 6500

Nominal value uncertainty (%) Nominal value uncertainty (%)

Volumetric flow rate, Q 3.59E-05ml/min 6.53% 6.89E-05 ml/min 7.86%

Dynamic viscosity, μ 3.50E-03 Pa.s 5.00 3.50E-03 Pa.s 5.00

Turbulent Intensity, TI 1.6% 65.07 5.45% 85.84%

https://doi.org/10.1371/journal.pone.0178749.t002
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of the nozzle.

UzðrÞ ¼ 2:Uz 1 �
r
R

� �2
� �

ð1Þ

where R is the nozzle inlet radius and Uz is the average axial velocity calculated from flow rate,

Q. The turbulent intensity, TI, obtained from the PIV experiments, was also specified at the

inlet. A stress-free boundary condition was applied at the nozzle outlet boundary. The nozzle

wall was modeled using a no-slip velocity condition. A symmetry condition was applied to the

two lateral (side) surfaces of the sector geometry model. Steady-state numerical computations

were conducted using the finite-volume commercial CFD solver CFX v. 150.0 (ANSYS, Inc.,

Canonsburg, PA). Based on the Reynolds number of 3500 and 6500, a shear-stress transport

(SST) k-ω turbulence model was used for solving the mass and momentum conservation

equations. The advection terms in the discretized conservation equations were solved using a

second-order accurate scheme. The convergence criteria for the residuals of the mass and

momentum conservation equations were set to 1e-06. The simulations were conducted using a

Dell T7400 workstation (4 GB RAM, 500 GB Hard drive) with a Windows 7 64-bit OS and a

2.49 GHz dual-core processor. Numerical uncertainty (Unum) was estimated from the results

of a mesh convergence study consisting of a series of three computational meshes (shown in

Fig 1c). Grid #1 was used for obtaining the final results and conducting an input parameter

uncertainty analysis.

Estimation of uncertainties

The uncertainties in the output quantities of interest (i.e. velocity and shear stress) due to the

numerical error associated with the discretization process, and uncertainty in the input param-

eters, were estimated using the following methodology [14].

i) Numerical uncertainty (Unum). The Grid Convergence Index (GCI) method [14],

based on Richardson extrapolation theory, was adopted for conducting the grid convergence

study and for obtaining the numerical uncertainty due to discretization of the flow domain

into finite volumes. Firstly, a representative grid size was defined as h ¼ ½ð
PN

i¼1
DViÞ=N�

1=3
,

where N is the total number of grid elements and ΔVi the volume of the ith grid element. Subse-

quently, a grid refinement factor was defined as w21 = h2/h1, where h2 and h1 are grid sizes that

result in medium-density and high-density grids, respectively. Three grid sizes were chosen

for the grid convergence study (grid #3—coarse, grid #2—medium, grid #1—fine) and were

generated using a constant w value (i.e. w21 = w32 = w) of 2. The details of the three grids,

including the total number of grid elements and nodes, are provided in Table 3.

The axial velocity, Uz, at the nozzle centerline and the wall shear stress, τw, were selected as

output variables of interest for assessing grid convergence. The centerline Uz was monitored at

three axial locations, z = 0.0 m, z = 0.008 m and z = 0.06 m (Fig 1b) and τw was monitored at

two axial locations, z = -0.04 m and z = -0.02 m, the latter corresponding to locations where

the shear stress was assumed to be maximum. Finally, the numerical uncertainty was estimated

Table 3. Details of the grids used for the grid convergence study.

Grid # Refinement factor Number of elements Number of nodes

1 (fine) - 486600 979636

2 (medium) 1.5 134700 272648

3 (coarse) 1.5 35250 72132

https://doi.org/10.1371/journal.pone.0178749.t003
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using the GCI formula [14]:

Unum ¼ GCI21

fine ¼
Fs � j

φ2 � φ1

φ1
j

wy � 1
ð2Þ

where θ = [1/ln (w)][ln|ε32/ε21|], and ε is the absolute error in the output variable of interest,

φ, which was computed using two subsequent grids (for example, grids #1 & #2), e.g., ε21 =

φ2−φ1. A factor of safety, Fs, value of 1.25 was selected based on previous empirical studies for

a three-grid convergence study [14].

ii) Input parameter uncertainty analysis. The uncertainty in the quantities of interest

(i.e. simulation outputs) due to uncertainty in the simulation input parameters was estimated

using the sensitivity coefficient method for uncertainty propagation [14]. This method is a

local approach which assesses the effect of a small perturbation in the input parameter(s) on

each simulation output parameter. While not performed here, the ASME V&V20-2009 recom-

mends using Monte Carlo analysis to provide a global estimate of the input parameter uncer-

tainty [14]. From the experimental measurements, volumetric flow rate, Q, dynamic viscosity,

μ, and turbulent intensity, TI, were selected as the input parameters for the uncertainty analysis

(Table 2). Inter-laboratory variability in other input parameters, such as the device dimensions

and the fluid density, were not significant enough to warrant their inclusion in the uncertainty

analysis. The output quantities of interest are identified based on the COU of the computa-

tional model. The quantities of interest for the COU of this analysis are axial velocity, Uz, and

shear stress, τ, which are the primary variables used to predict hemolysis potential. For each

case, the overall uncertainty in each simulation output parameter due to uncertainty in the

input parameters was calculated using Eq 3.

U2

inp ¼
X3

i¼1

@S
@Xi

uxi

� �2

ð3Þ

where S represents an output parameter, Xi represents the ith input parameter, @S
@Xi

is the sensi-

tivity coefficient for output parameter S, and uxi
is the experimental uncertainty in the ith input

parameter. The sensitivity coefficient was obtained using a second-order accurate central dif-

ference Taylor series expansion, @S
@Xi
¼

SðX1 ; X2 ;...; XiþDXi ;...; XnÞ� SðX1 ; X2 ;...; Xi � DXi;...; XnÞ

2DXi
þ OðDXi

2Þ.

Each input parameter (Xi) was perturbed above and below its nominal (mean) value by a

relative perturbation size, ΔX/X, of 7.5e-04. This perturbation size was chosen in order to mini-

mize the truncation and round-off errors [14]. The uncertainty bounds for the input parame-

ters were obtained from the experimental PIV study and are tabulated in Table 2. A total of

seven simulations (2n+1, where n = 3 is the number of input parameters considered in the sen-

sitivity study) were performed. In order to conduct a comprehensive uncertainty analysis that

spanned the entire length and radius of the nozzle, Uinp for each simulation output parameter

was estimated at multiple locations (Fig 1b). All results were analyzed using CFD-Post v. 15.0

(ANSYS, Inc., Canonsburg, PA) and custom developed codes (Matlab, MathWorks).
iii) Experimental uncertainties (Uexp). The velocity and shear stress measurements were

collected at three different laboratories with the measurements repeated thrice at one labora-

tory. Therefore, a total of 5 datasets were available for calculating the mean and standard devia-

tion of the experimental data. The experimental uncertainty was estimated as the standard

deviation in the measurement data from these 5 datasets.

iv) Validation uncertainty (Uval). The validation uncertainty combines the uncertainties

due to numerical errors (Unum), input parameters (Uinp), and experimental measurements

Threshold-based validation for computational modeling
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(Uexp) and is calculated as

Uval ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U2

num þ U2
inp þ U2

exp

q
ð4Þ

As per ASME’s V&V 20–2009 standard, Uval provides uncertainty limits for the comparison

error, E, which is the difference between the mean experimental and simulation results. Unum

(due to discretization error) was calculated at select locations. However, Unum is negligible

(<1%) at the region of peak shear-stress when compared to input parameters and experimen-

tal uncertainties. The modeling error (δmodel), which is the error in the simulation due to

modeling assumptions and approximations, is bounded using Uval as follows

dmodel � ½E � Uval; E þ Uval� ð5Þ

Additionally, the comparison between Uval and E provides a metric for deciding whether

the validation data can be used for reducing the model-form error and improving the model

accuracy. If Uval<< E, then δmodel� E and the validation data can be used to guide changes

to the model and minimize the comparison error to an acceptable level. On the contrary, if

Uval>> E, then δmodel is of the order of Uval, which means the noise level in the comparison

error is too large to guide improvements to the computational model without first minimizing

the various uncertainties.

Threshold-based validation approach

In addition to calculating Uval, we developed an alternate approach for establishing validation

criteria which accounts for the COU of the computational model and is applicable for situa-

tions where threshold values for safety are available. For the COU in this paper, which is to

evaluate the potential for hemolysis due to viscous shear stress in the flow nozzle, there are

widely accepted threshold values available that relate viscous shear stress and hemolysis [43],

[45]. For situations where threshold values for safety are available, our hypothesis is that a

model can be considered “sufficiently validated” if the difference between the simulation

results and validation experiments (defined as the comparison error, E, in this study) is less

than the difference between the simulation results and the threshold. Accordingly, the allow-

able value for E is a function of how close the simulation results are to the safety threshold. As

the simulation results approach the value of the safety threshold, the allowable limit for E is

refined, so as to ensure that the model is sufficiently validated.

To present the threshold approach mathematically, we begin by defining the “proximity”

O as the magnitude of the difference between the simulation result and the threshold:

O = |Threshold-S|. If the uncertainties in the experiments, CFD model and threshold are prop-

erly quantified, then both E and O can be expressed in terms of confidence intervals as CIE and

CIO. We propose that a model can be considered sufficiently validated if E is less than O and

CIE and CIO are non-overlapping (max(CIE)<min(CIO)). The limits of the confidence inter-

vals for E and O can be determined using the expression for the difference of two normally dis-

tributed random variables with unequal variance. The confidence interval CIO for O is given

by [46]:

CIO ¼ ½O � td00
1
;1� a=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

B2
1
=n1 þ B2

2
=n2

q

; Oþ td00
1
;1� a=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

B2
1
=n1 þ B2

2
=n2

q

� ð6Þ

where t is critical values of the Student’s t-distribution [46], the degrees of freedom

d00
1
¼

ðB2
1
=n1þB2

2
=n2Þ

2

ðB2
1
=n1Þ

2=ðn1� 1ÞþðB2
2
=n2Þ

2=ðn2 � 1Þ
, n1 and n2 are the number of samples associated with each vari-

able (n1 = 5 and n2 = 2 to 4 in this case), α = 0.05 (for 95% CI limit), B1
2 is U2

sim ¼ U2
num þ U2

inp
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and B2
2 is U2

th, with Uth being the uncertainty in the threshold. An analogous expression holds

for CIE and can be written as

CIE ¼ E � td00
2
;1� a

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

B2
1
=n1 þ B2

3
=n2

q

; Eþ td00
2
;1� a=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

B2
1
=n1 þ B2

3
=n2

qh i
ð7Þ

where the degrees of freedom, d00
2
¼

ðS2
1
=n1þS2

3
=n3Þ

2

ðS2
1
=n1Þ

2=ðn1 � 1ÞþðS2
3
=n3Þ

2=ðn3 � 1Þ
, For the current example n1 = n3 = 5

(number of trials), B1 and B3 are the variances for the CFD (Usim) and PIV (Uexp) datasets.

Fig 2 illustrates the threshold-based validation approach qualitatively for two different sce-

narios. In the first scenario (Fig 2a), the uncertainties for CFD and experiments (represented

by green and blue square brackets, respectively) are non-overlapping. However, E is less than

O and the CIE and CIO are non-overlapping suggesting that the computations still provide

valid data for shear stress. In the second scenario (Fig 2b), the CFD and the experimental

results are closer to each other with overlapping uncertainties. However, the CFD result is

closer to the threshold than to the experiments. In addition, CIE is overlapping with CIO sug-

gesting that the simulations do not provide sufficient validation at the prescribed level of sig-

nificance (α = 0.05).

In addition to Eq 7, CIE can also be obtained using Uval following the ASME V&V 20 stan-

dard as

CIE ¼ ½E� jUvalj; Eþ jUvalj� ð8Þ

For this study, we evaluated both the threshold-based (Eq 7) and Uval-based validation (Eq 8)

approaches for the FDA nozzle model.

The threshold value for shear (in Eq 6) which varies as a function of residence time was

obtained from previous studies [43], [45]. Raghunathan et al. [45] compiled and presented the

threshold shear stress obtained from multiple studies for exposure times ranging from 10−5 s

to 200 s. Depending upon the exposure time, the threshold shear for hemolysis varied from

100 Pa to 5000 Pa. The uncertainty values for the shear threshold (Uth in Eq 6), which are

needed for the Student’s t-test statistics, were obtained from interpolating the data reported by

Raghunathan et al.

Fig 2. Qualitative explanation of the threshold approach for two different scenarios Black—Threshold; Green—CFD simulation and Blue—

Experiment. [] represent mean±uncertainty. a) Model is valid and b) Model not necessarily valid. In scenario (a), both the experiments and simulations are

far away from the threshold and CIE smaller than CIΩ. In scenario (b), the simulations are closer to the threshold than to the experiments and CIE is larger

than CIΩ.

https://doi.org/10.1371/journal.pone.0178749.g002
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Results

The COU in this study is to evaluate the potential for hemolysis due to viscous shear stress in

the nozzle geometry at Re = 3500 and 6500. Therefore, the results will focus on comparing and

validating velocity and viscous shear at locations where the viscous shear stress is the greatest.

The region where the quantitative comparison is made is marked in Fig 1b.

Velocity vs. axial and radial distances

Figs 3 and 4 compares the axial velocities from CFD and PIV as a function of axial (Figs 3a and

4a) and radial distances (Figs 3b–3d and 4b–4d) for Re = 3500 and 6500, respectively. The

error bars accompanying the CFD data represent input parameter uncertainties while the

experimental data includes the inter-laboratory variability. A qualitative comparison of the

velocity data showed that the CFD results matched reasonably well with the experimental

results at the entrance, throat, and sudden expansion of the nozzle geometry for both

Re = 3500 and 6500 (Figs 3a and 4a). For Re = 3500, at the entrance and the throat regions, the

mean velocity along the centerline and near the wall (Fig 3b and 3c) matched the experimental

value within ~12% (Fig 3). For Re = 6500, the center-line velocity in the throat and the down-

stream regions matched within ~11%. Overall, the root mean square difference between the

PIV and experiments for comparison locations (Fig 1b), normalized by the average velocity,

was ~20% and ~15% for Re = 3500 and 6500, respectively. Of all the input parameters, flow

rate is predicted to be the dominant source for uncertainty at the entrance with ~100%

Fig 3. Velocity vs axial and radial distances with uncertainty bars for both CFD and PIV for Re = 3500.

https://doi.org/10.1371/journal.pone.0178749.g003
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contribution, while the viscosity was the major contributor (~58%) at the reattachment region

for Re = 3500.

Shear stress vs. radial distance

Fig 5 shows the shear stress data obtained at three different axial locations along the length of

the nozzle. For the PIV experiments, the maximum shear stress (~55 Pa and 110 Pa for

Re = 3500 and 6500, respectively) was observed in the throat region. Similar results were

observed in the CFD simulations, with the peak viscous shear stresses estimated in the throat

region of the model (Fig 5). However, the mean CFD data at the peak shear locations (Fig 5b

and 5e) deviated from the experiment by ~33% and 20% for Re = 3500 and 6500, respectively.

Validation

CFD vs PIV shear stress. Having estimated the comparison error, numerical uncertain-

ties and input-parameter uncertainties, the next step is to determine if the computational

model can be considered sufficiently validated for the COU. To help with the validation pro-

cess, a two-tailed Student’s t-test with unequal variance was performed to evaluate if the exper-

imental and CFD datasets for shear stress, both represented by independent mean and

standard deviation (Fig 5), were statistically different from one another. The standard devia-

tion for the CFD and PIV shear-stress data is represented by Usim and Uexp, respectively. The

CFD and PIV data were compared at three axial locations resulting in an independent p-value

Fig 4. Velocity vs axial and radial distances with uncertainty bars for both CFD and PIV for Re = 6500.

https://doi.org/10.1371/journal.pone.0178749.g004
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for each spatial location. In order to obtain the p-values, the t-test statistic is obtained for

each spatial location as
jEjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðS2
1
=n1ÞþðS2

3
=n3Þ

p . The corresponding degrees of freedom is obtained as

ðS2
1
=n1þS2

3
=n3Þ

2

ðS2
1
=n1Þ

2=ðn1 � 1ÞþðS2
3
=n3Þ

2=ðn3 � 1Þ
, n1 and n3 are the number of samples associated with each variable

(n1 = n3 = 5) and S1 = Usim and S3 = Uexp. Based on the t-test statistic and degrees of freedom,

the corresponding p-values at each spatial location were computer using the standard TDIST

function available in MS Excel (Microsoft Inc., Redmond, WA). Fig 6 shows the p-values

obtained for the t-test as a function of radial distance for multiple axial locations. For

Fig 5. Shear stress vs radial distance with uncertainty bars for both CFD and PIV.

https://doi.org/10.1371/journal.pone.0178749.g005
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reference, a straight line depicting p = 0.05 is drawn in the same figure. If the estimated p-val-

ues at different comparison locations are less than 0.05, then the CFD and PIV means are sta-

tistically different at a confidence level of 95%. The statistical comparison of the shear stress

data obtained from CFD simulations and PIV measurements yielded p-values less than 0.05 at

several locations (more for Re = 6500 (Fig 6b) than for Re = 3500 (Fig 6a)) in the throat and

shear layer regions of the nozzle. These findings suggest that location-dependent differences

exist between computational and experimental datasets and no general conclusions on model

validity can be made based on direct comparison of shear stresses.

Threshold-based validation approach. Figs 7 and 8 shows the confidence interval for E
and O (estimated for shear stress) at the nozzle entrance and throat obtained from Eqs 6–8 for

Re = 3500 and 6500, respectively. For all three locations, the CIE was an order of magnitude

below CIO when Re = 3500 (Fig 7). Similar to Fig 6, another Student’s t-test was performed for

E and O with the variance for the E and O represented as Uval and
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U2

sim þ U2
th

p
, respectively.

The p-values from the t-test are significantly less than 0.05, suggesting that the two datasets are

statistically different from one another (Fig 9a). Stated another way, even when taking the

Fig 6. p-value vs radial distance at three axial locations i) entrance, z = 0.088m, ii) throat, z = -0.02 m,

and iii) throat, z = -0.008 m. For reference, a straight line depicting p = 0.05 is shown in the figure. The p-

values where obtained after performing a student’s t-test comparing the CFD and PIV shear stress datasets.

https://doi.org/10.1371/journal.pone.0178749.g006
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simulation uncertainties into account, the shear stress predicted by the CFD model is

extremely unlikely to exceed the threshold for blood damage; i.e. the potential for viscous

shear-induced blood damage is unlikely at Re = 3500. On the contrary, for Re = 6500, the con-

fidence interval for E overlapped with the CIO especially at the peak shear locations (Fig 8).

Accordingly, the p-values at these locations were above 0.05 (Fig 9b), and a conclusion that the

shear stress predicted by the CFD model is below the threshold for blood damage cannot be

made.

Sensitivity to the turbulence model. In order evaluate how the accuracy of the CFD results

are affected by the choice of the turbulence model, additional simulations were performed at

Re = 6500 for different Reynolds Averaged Navier Stokes (RANS) turbulence models. The

RANS models used by the modelers during the FDA round-robin study of the nozzle geometry

[33], namely SST k-ω, standard k-ω, and realizable k-ε turbulence models, were considered in

this sensitivity study. The center-line velocity predicted in the throat and sudden expansion

regions were within ~11%, 12%, and 39% of the mean experimental data for SST k-ω, k-ω, and

k-ε models, respectively (Fig 10a). Fig 10b compares the Comparison error, E for all the three

models with the proximity, O at one representative radial cross-section (z = -0.02m). The value

Fig 7. Confidence interval for |threshold-S| represented as CIΩ and Error, E expressed as CIE for a) entrance b) and c) throat for Re = 3500.

Two lines for each CI represent the upper and lower bound values.

https://doi.org/10.1371/journal.pone.0178749.g007
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for E at the peak-shear location was ~17%, 34%, and 80% for SST k-ω, k-ω, and k-ε models,

respectively. The upper limit of E for SST k-ω and k-ω models overlapped slightly with the

proximity. On the contrary, the confidence interval for K-ε overlapped entirely with the prox-

imity interval. A similar trend was observed in other radial cross-sections in the throat and the

sudden expansion regions.

Discussion

The objective of this study is to develop a quantitative approach to evaluate the validity of a

computational model in the presence of a known and measurable safety threshold. As an

example, we chose the FDA nozzle model to determine if the instantaneous viscous shear stress

is large enough to cause hemolysis at Re = 3500 and 6500.

The difference between experimental and computational measures of viscous shear stress

was quantified statistically in terms of p-values derived from a t-test. The p-value increased

with radial distance, partly due to the difficulty in making measurements near the wall.

Based solely on whether a statistically significant difference existed between experimental

and CFD values of velocity and shear stress, the model could not be considered validated in

certain regions (Fig 6). Consideration of the differences between PIV and CFD values might

also lead to the conclusion that the model is more accurate at Re = 6500 than Re = 3500,

because the RMS error obtained from all measurement locations was lower for Re = 6500 than

Fig 8. Confidence interval for |threshold-S| represented as CIΩ and Error, E expressed as CIE for a) entrance b) and c)

throat for Re = 6500. Two lines for each CI represent the upper and lower bound values.

https://doi.org/10.1371/journal.pone.0178749.g008
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Re = 3500. In addition, the peak shear predicted at the throat region (Fig 5) was more accurate

for Re = 6500 (~17%) compared to Re = 3500 (~33% difference). However, for the purpose of

predicting the likelihood of blood damage, the model is more useful at the Reynolds number

of 3500, in the following sense.

For Re = 3500, our PIV and CFD results showed that the peak shear stress predicted by

both techniques did not exceed 60 Pa, which is significantly below the shear stress threshold

for red blood cell damage (> 100 Pa, [45]). Using our threshold-based approach, we were able

to conclude that the difference between CFD and PIV is less than the difference between the

CFD and the hemolysis threshold. In the throat region (Fig 7b), the upper limit of the 95%

confidence interval for the comparison error, CIE (for wall shear stress) is 3 times lower than

the lower limit for the proximity to the threshold (CIO). In addition, the mean values for E are

an order of magnitude less than O in the high shear regions (Fig 7b). A Student’s t-test per-

formed between comparison error and the proximity to threshold also showed that the two

datasets are statistically different (Fig 9a). In other words, the safety threshold is far enough

Fig 9. p-value vs radial distance at three axial locations i) z = 0.088m, ii) z = -0.02 m, and iii) z = -0.008 m

for a) Re = 3500 and b) Re = 6500. For reference, a straight line depicting p = 0.05 is shown in the figure. The

p-values where obtained after performing a Student’s t-test forΩ = |threshold—S| and E = |S-D|.

https://doi.org/10.1371/journal.pone.0178749.g009
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away from the shear values encountered for this flow condition that the CFD model at

Re = 3500 can be considered sufficiently validated based upon a safety-threshold criterion.

For Re = 6500, our threshold-based approach showed that the upper limit for E exceeds the

lower limit for O in the throat region (Fig 8). Similarly, the p-values at the peak shear locations

exceeded 0.05 suggesting that there is not enough evidence to indicate that the two datasets are

statistically different. In other words, taking in to account the simulation, experimental, and

threshold uncertainties, the CFD model cannot be considered sufficiently validated for pre-

dicting hemolysis arising from viscous shear stress at Re = 6500.

The lack of validation at Re = 6500 arises from the fact that, as threshold for safety is

approached (O! 0), even if the mean CFD and PIV shear-stress are close (E�0), the large

Uth, Usim, and Uexp values will cause the upper limit for E to exceed the lower limit for O. In

order to adequately validate the CFD model at Re = 6500, the experimental, numerical and

Fig 10. Sensitivity of center-line velocity (a) and Comparison error, E (b) to the choice of the turbulence model.

https://doi.org/10.1371/journal.pone.0178749.g010
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threshold uncertainties can be reduced. Alternatively, for the same level of uncertainty, the

sample size can be increased. At the Reynolds number of 6500, if the level of uncertainty is

maintained and the number of samples are increased, overlap between CIE and CIO no longer

occurs when the number of samples exceeds 8, at the location z = -0.02 m. For close enough

proximity to the damage threshold (O� 0), it becomes impractical to reduce the uncertainty

further, or increase the sample size, and the model cannot be validated at a sufficiently high

level to credibly predict damage in this regime. If it is desired to continue to operate the device

extremely close to the damage threshold, blood-damage predictions can be derived from meth-

ods other than computational models, e.g. in-vivo experiments. The strength of our threshold

approach is that it imposes a more stringent validation acceptance criterion as the CFD shear-

stress approaches the safety threshold. This enhanced scrutiny is warranted since the risk to

patient safety increases as the threshold is approached. On the other hand, for Reynolds num-

bers significantly greater than 6500, as the CFD shear stresses become significantly larger than

the threshold value, the validation criteria will become less stringent again. However, for large

Reynold numbers (>6500), even if the model is sufficiently validated the device will be deemed

hemolysis-prone.

The uncertainty estimates derived in the paper constitute a measure of credibility of the val-

idation process. The uncertainty limits for the computational data (Fig 5) are not just an indi-

cator of the model accuracy, but also for how well the experimental input parameters were

controlled and numerical errors in the simulations were minimized. Consequently, the infor-

mation from the uncertainty study can be used to identify the key input parameters that affect

the accuracy of the model output. Subsequently, the validation process can be made more

credible by improving the experimental protocol and minimizing the uncertainties in the key

input parameters.

We also evaluated how the uncertainties in the CFD data were influenced by the choice of

the turbulence model. Our results showed that of all the models used in the FDA round-robin

study [33], SST k-ω was the closest to the experimental results. In the future, this sensitivity

study should be expanded to include more turbulence models including large eddy simulation

(LES) [36]. For each turbulence model, the Uval and E values need be calculated again since the

uncertainties in the variable of interest will vary with the choice of the turbulence model used

in the CFD simulations.

It should be noted that the CFD model was validated with the experimental data only at

Re = 3500. Because the validation was performed for the turbulent flow regime, additional vali-

dation experiments are needed before the model can be used for a broader COU. For example,

if one additional validation experiment was performed at Re = 1500 (assuming laminar flow

was observed experimentally at this Re), then the laminar CFD model would be applicable to

all Reynolds number below 1500. This is possible because the viscous shear stress values in the

throat region will decrease with the Reynolds number and the difference between CIE and the

CIO will be wider than what was estimated at Re = 1500. The turbulent CFD model could be

extended for Reynolds number greater than 6500 as long as the modelers show that the com-

parison error proportionally scales with the Reynolds number and that CIE remains non-over-

lapping with CIO. Similarly, the model can also be used for different flow geometries for

comparable flow rates, without further validation, as long as the flow field created in the new

flow geometry is similar to the validation model.

Any significant change in the question of interest or the COU requires a new set of valida-

tion metrics or even new validation thresholds. For example, because the model was not able

to accurately predict the reattachment location and reattachment length for Re = 3500 (Fig

3a), the model may not be valid for evaluating the risk of platelet aggregation and thrombosis

initiation in the device, unless the predicted values are sufficiently far from the established
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thresholds where undesired effects occur. Such a determination would require a threshold

appropriate for those bioeffects. Similarly, for Re = 6500, the current COU focused on deter-

mining if the CFD model is valid to estimate if instantaneous viscous shear can cause localized

hemolysis in the nozzle. However, the COU could be changed to evaluate the total amount of

hemolysis caused by the device at this Reynolds number. Under such a scenario, the validation

experiments should involve measuring the overall hemolysis caused by the device in addition

to measuring the shear stress. The CFD model will also involve two parts i) fluid flow modeling

to determine the velocity and shear stress and ii)hemolysis modeling to predict the free-hemo-

globin concentration. Since the shear-stress exceeded the threshold only in few spots on the

nozzle geometry, the total amount of free hemoglobin released from the nozzle could poten-

tially be negligible [31]. Consequently, the CFD model could be validated for Re = 6500 by

changing the COU and comparing with in vitro hemolysis results.

Our study showed that the threshold-based approach is applicable in situations where the

experimental and input parameter uncertainties are relatively large for the variable of interest

(Figs 3 and 4). Such situations are common during the testing of implantable medical devices

where accurate characterization of boundary conditions is often difficult to perform, creating

situations where modelers have to manage large uncertainties in input parameters. It should

be noted that other forms of evidence used for evaluating device safety such as animal testing

or clinical trials carry potentially larger uncertainties compared to the simulation results. So, it

is critical to use all forms of evidence in a collective manner while evaluating the safety of med-

ical devices. The validation criteria developed following the threshold approach will not only

be a function of Comparison error, E, but also takes in to account the risk to patient safety

because of E. We believe that such a validation approach has the potential to enhance the cred-

ibility and influence of computational modeling in the medical device regulatory process.

Our threshold-based validation approach works well for scenarios where the modeler is

able to thoroughly quantify the validation uncertainty and differentiate the model-form error

and the uncertainties from experiments, input parameters, and numerical discretization. In

order to quantify the numerical and input parameter uncertainties, we used the sensitivity

coefficient method prescribed by the ASME V&V 20–2009 standard. The sensitivity method

was used for illustrative purposes, but other well-established uncertainty quantification meth-

ods could be used in lieu of the sensitivity coefficient approach. The sensitivity coefficient

method approach was justified since our goal was to obtain the uncertainty values for well-

defined flow conditions (Re = 3500 or 6500) and the uncertainties in the most sensitive param-

eters (flow rate and viscosity) occupied only a small neighborhood (less than 8%) around the

nominal value. The main drawback of this local approach is that it assumes a linear relation as

the parameter range is expanded and will not capture any non-linear behavior of the system

response. The ASME V & V 20–2009 standard also outlines a Monte-Carlo method for global

uncertainty quantification. In addition, as discussed in the Introduction, several researchers

have proposed other types of global approaches for estimating the input parameter uncertain-

ties [23–26, 29]. These alternate uncertainty quantification techniques, should also be compati-

ble with the threshold-based validation approach.

It should be noted that the existing V&V standards [14, 15], while providing a detailed

methodology for quantifying the comparison error, do not provide a quantitative approach for

deciding when a computational model is considered validated or credible. Such a determina-

tion is left to the practitioner’s judgement. However, our study describes an approach and pro-

vides quantitative methodology for evaluating the validity of a proposed computational model

when a threshold value is available for evaluating device safety.

The subjective part of our threshold-based validation approach is the selection of appropri-

ate ‘p-value’ from the Student’s t-test for estimating the confidence interval for the comparison
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error. For this study, we selected a p-value of 0.05 (95% confidence interval). Other p-values

can be selected, depending in part on the model risk. Model risk, as defined by the (draft)

ASME V & V 40 standard, is a combination of two factors: the influence of the computational

model on the decision-making process, and the consequence of that decision on the patient or

other non-patient related impacts. For situations where the model risk is high (high influence

and high consequence) more conservative values for the validation criteria (‘p-value’) might be

selected. In addition, a safety factor (SF) could be used to reduce the proximity value (O�1/SF)

and ensure that the confidence intervals for CIO and CIE are far apart from one another. On

the contrary, less stringent validation criteria might be selected when the model risk is low,

such as in situations where the computational model has negligible or minor influence in the

decision making process, and/or the safety claims are mainly based on significant contribu-

tions from other sources of data.

The credibility of the threshold-based validation method is dependent on the accuracy of

the threshold value. In general, the safety thresholds are not obtained directly from the valida-

tion experiments or CFD simulations but from prior experiments and published literature.

Consequently, including the uncertainty values for the threshold (and not just for experiments

and simulations) is required for credibility of the validation process. To derive the uncertainty

in the threshold, the variability between different studies of the threshold can be used, as in

our approach. If only a single threshold study is available, the measurement uncertainty for the

study can be used for the threshold uncertainty, perhaps magnified using a factor of safety.

While applying the threshold approach, there is a risk of validating an inadequate model

because the threshold is far away from the values predicted by the simulations. For example,

Fig 11 shows the center-line velocity and the confidence intervals for E and O for the nozzle

geometry at Re = 2000. By comparing E and O, one could conclude that the SST k-ω model is

valid enough to predict shear stress at transitional flow regime (Re = 2000). However, a closer

evaluation of the center-line velocity shows that the simulations results deviate from the exper-

iments by as much as 100%. The excessive dissipation introduced by the RANS turbulent

model was causing premature jet reattachment in the sudden expansion region when com-

pared to the experiments. Therefore, the use of a RANS turbulence model may not be appro-

priate in the transitional flow regime and an LES model might be more appropriate at

Re = 2000. However, applying the threshold approach before evaluating the velocity data could

lead to the conclusion the RANS turbulence mode is valid to make viscous shear predictions at

Re = 2000. Consequently, before applying the threshold approach, the modelers should ensure

that the model used in the simulation represents the physics of interest as closely as possible.

This can be achieved by evaluating the sensitivity of the simulations results to different model

form (RANS vs laminar vs LES). We performed a similar analysis by comparing different

RANS models at Re = 6500 (Fig 10). Alternatively, the modelers could also use an acceptance

criterion that defines the level of agreement between the CFD and experimental results before

applying the threshold data. This acceptance criterion could also be related the model risk with

the high risk models requiring a more stringent acceptance criterion for E. In addition, before

applying the threshold approach, the modelers should ensure that all the best practices for

CFD simulations are followed such as mass conservation, adequate mesh quality, and higher

order of accuracy. All these additional precautions will ensure that the threshold approach is

used in more meaningful manner for making device safety or effectiveness claims.

In conclusion, this study applied the V & V methodology published by the ASME V&V 20–

2009 standard on the FDA nozzle model to understand and highlight the need for quantifying

the experimental and numerical uncertainties as a part of the validation process. This study

also extended the methodology and provided a strategy for determining if the model can be

deemed sufficiently validated for a given COU in the presence of clear safety thresholds. The
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ASME V &V 20–2009 standard and the threshold-based validation approach can be used to

enhance the credibility and influence of computational modeling in the safety evaluation of all

types of medical devices.

Nomenclature

S, CFD simulation results;

D, Experimental data;

E, Comparison error;

Threshold, Viscous shear-stress safety threshold for hemolysis which is a function of residence

time;

O, Proximity, Magnitude of difference between simulation and threshold =

|Threshold-S|;

Uval, Validation uncertainty;

Re, Reynolds number in the nozzle throat;

Q, Inlet flow rate, m3/s;

d, Throat diameter, m;

Fig 11. a) Centerline velocity vs axial distance at Re = 2000, b) Confidence interval for |threshold-S|

represented as CIΩ and Error, E expressed as CIE at the throat for Re = 2000. Two lines for each CI

represent the upper and lower bound values.

https://doi.org/10.1371/journal.pone.0178749.g011
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μ, Mean dynamic viscosity, Pa.s;

ρ, Mean density, kg/m3;

U z, Average axial velocity, m/s;

R, Nozzle inlet radius, m;

r, Radial co-ordinate;

z, Axial co-ordinate;

TI, Turbulent intensity (%);

Unum, Numerical uncertainty;

h, grid size;

ΔVi, Volume of the ith grid element;

N, Total number of grid elements;

w, Grid refinement factor;

Fs, Factor of safety for grid refinement study;

φ, Output variable of interest (velocity or shear stress) in the grid refinement study;

ε, Absolute error in the output variable of interest, φ;

θ, Order of convergence in the grid refinement study;

τ, Shear stress, Pa;

τw, Wall shear stress, Pa;

Uinp, Uncertainty in simulation output (velocity or shear stress) due to uncertainty in

input parameters such as Q, μ, and TI;

Xi, ith input parameter in the sensitivity coefficient method;
@S
@Xi,

Sensitivity coefficient for simulation output parameter S;

uxi , Experimental uncertainty in the ith input parameter for the sensitivity coefficient

method;

ΔXi, Change in the ith input parameter for the sensitivity coefficient method;

Uexp, Uncertainty in the experiment output data (velocity or shear stress);

δmodel, Modeling error which is the error in the simulation due to an incorrect choice of

the model;

Uth, Uncertainty in the shear stress threshold which is also a function of residence time;

CIO, Confidence interval for O;

CIE, Confidence interval for Comparison error, E;

d”, Degree of freedom for the Student’s t-test;

B1, Variance for CFD, dataset for the Student’s t-test;

B2, Variance for threshold for the Student’s t-test;

B3, Variance for PIV dataset for the Student’s t-test
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