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Abstract

Background: MMP-13, a zinc dependent protease which catalyses the cleavage of type II collagen, is expressed in
osteoarthritis (OA) and rheumatoid arthritis (RA) patients, but not in normal adult tissues. Therefore, the protease has been
intensively studied as a target for the inhibition of progression of OA and RA. Recent reports suggest that selective
inhibition of MMP-13 may be achieved by targeting the hemopexin (Hpx) domain of the protease, which is critical for
substrate specificity. In this study, we applied a cheminformatics-based drug design approach for the identification and
characterization of inhibitors targeting the amino acid residues characteristic to Hpx domain of MMP-13; these inhibitors
may potentially be employed in the treatment of OA and RA.

Methodology/Principal Findings: Sequence-based mutual information analysis revealed five characteristic (completely
conserved and unique), putative functional residues of the Hpx domain of MMP-13 (these residues hereafter are referred to
as HCR-13pf). Binding of a ligand to as many of the HCR-13pf is postulated to result in an increased selective inhibition of the
Hpx domain of MMP-13. Through the in silico structure-based high-throughput virtual screening (HTVS) method of Glide,
against a large public library of 16908 molecules from Maybridge, PubChem and Binding, we identified 25 ligands that
interact with at least one of the HCR-13pf. Assessment of cross-reactivity of the 25 ligands with MMP-1 and MMP-8, members
of the collagenase family as MMP-13, returned seven lead molecules that did not bind to any one of the putative functional
residues of Hpx domain of MMP-1 and any of the catalytic active site residues of MMP-1 and -8, suggesting that the ligands
are not likely to interact with the functional or catalytic residues of other MMPs. Further, in silico analysis of physicochemical
and pharmacokinetic parameters based on Lipinski’s rule of five and ADMET (absorption, distribution, metabolism, excretion
and toxicity) respectively, suggested potential utility of the compounds as drug leads.

Conclusions/Significance: We have identified seven distinct drug-like molecules binding to the HCR-13pf of MMP-13 with
no observable cross-reactivity to MMP-1 and MMP-8. These molecules are potential selective inhibitors of MMP-13 that can
be experimentally validated and their backbone structural scaffold could serve as building blocks in designing drug-like
molecules for OA, RA and other inflammatory disorders. The systematic cheminformatics-based drug design approach
applied herein can be used for rational search of other public/commercial combinatorial libraries for more potent molecules,
capable of selectively inhibiting the collagenolytic activity of MMP-13.
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Introduction

MMP-13 (Collagenase 3) is a zinc dependent protease which

catalyses the cleavage of type II collagen, the main structural

component of articular cartilage [1]. It is capable of cleaving the

peptide bond at amino acid positions 775–776 in all three strands

of the mature triple helical type II collagen molecules [2]. MMP-

13 is expressed in articular cartilage and joints of osteoarthritis

(OA) and rheumatoid arthritis (RA) patients, respectively, but not

in normal adult tissues [3,4].

Preclinical data implicate human MMP-13 as the direct cause of

irreversible cartilage damage in arthritic conditions [4,5,6,7]. This

is supported by the findings that i) over expression of MMP-13

induces OA in transgenic mice, ii) its mRNA expression co-

distributes with type II collagenase activity in osteoarthritic

cartilage, and iii) an inhibitor of MMP-13 has been shown to

disrupt the degradation of explanted human osteoarthritic

cartilage. In arthritic syndromes, the expression of MMP-13 is

elevated in response to the inflammatory signals by leukocytes and

other immune cells, in particular interleukin 1 (IL-1) and tumour
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necrosis factor alpha (TNF-a) [3]. The increased levels of MMP-

13 result in imbalance in their regulation by tissue inhibitors of

metalloproteinases (TIMPs), thus likely contributing to the

diseased state [8].

As a result, the MMP-13 protease has been a target for the

inhibition of the progression of OA and RA. Early broad spectrum

MMP inhibitors directed towards the zinc region of the catalytic

domain (inhibitors exploiting the hydroxamate function as a zinc-

binding group) have been ineffective because of their dose limiting

toxicity in the form of musculoskeletal syndrome (MSS),

characterised by joint stiffness and inflammation [9]. Conversely,

specific inhibitors targeting the non-zinc region of the catalytic

domain have been shown to effectively reduce the cartilage

damage [4]. Recent studies have, therefore, focused on the search

for selective inhibitors of MMP-13 [9,10,11]. The Hpx domain of

the protease [12,13,14], which is critical for substrate specificity,

represents an alternative target for the search of such inhibitors.

All MMPs in general have similar domain architecture, namely

an N-terminal signal sequence to target for secretion, a pro-

peptide domain to maintain latency for cell signalling, a catalytic

domain containing catalytic zinc binding motif, a linker region

that links the catalytic domain region with the C-terminal four

bladed propeller structure Hpx domain [15]. The catalytic domain

of these MMPs are unable to cleave the triple helical collagens

without the Hpx domain [16]. Further, the removal of the Hpx

domain from MMP-1, -8 and -13, which belong to the collagenase

family, has been shown to result in a loss of collagenolytic activity

[13]. Thus, the Hpx domain in the C-terminal region maintains

the specificity of collagenase family MMPs by affecting the

substrate binding [2].

In this study, we applied a cheminformatics-based drug design

approach to i) define the putative characteristic functional residues

of the Hpx domain of MMP-13, ii) identify and characterize

ligands binding to these residues and iii) assess the selectivity of

these ligands by testing their cross-reactivity to other collagenase

family members, MMP-1 and -8. Such screened and selected

potential specific inhibitors can then be tested by molecular

experiments to validate their specificity to MMP-13 and their

application as drug targets.

Materials and Methods

Sequence-based analysis to identify putative
characteristic functional residues of the Hpx domain of
MMP-13

The identity of characteristic residues specific to the Hpx

domain of MMP-13 have not been reported previously [13]. We

conducted sequence-based analyses to identify these amino acid

residues by performing a multiple sequence alignment and using

the AVANA tool (http://sourceforge.net/projects/avana/) to

compare the mutual information between subsets of the alignment

for the location of the characteristic sites [17].

The sequences of all reported human MMP proteins were

retrieved by performing PSI-BLAST [18] search against the non-

redundant (nr) NCBI Entrez protein database using the MMP-13

query sequence obtained from the Protein Data Bank [19] (PDB

ID:1PEX). A total of 50 MMP sequences were obtained from the

BLAST search (Table S1 and Table S2). These sequences were

then aligned using Muscle v3.6 [20] and the resulting alignment

was manually inspected and corrected for misalignments using

BioEdit [21]. The regions of the alignment representing the pro-

peptide domain, catalytic domain and the linker region were

deleted, leaving only the Hpx domain.

The alignment of the MMP Hpx domain sequences was then

submitted to AVANA to identify residues that are completely

conserved and characteristic to MMP-13 (i.e. characteristic

residues are defined as those with 100% amino acid identity and

mutual information value of 1). AVANA has a built-in

functionality to identify conserved, characteristic sites between

subsets of sequences in an alignment using entropy and mutual

information theories [17]. Herein, the two subsets for our

alignment in AVANA were i) 8 MMP-13 sequences and ii) all

other MMPs (42 of them). Having identified the Hpx character-

istic residues (abbreviated as HCR for brevity) of MMP-13 (i.e.

HCR-13), those that matched the putative functional residues of

Hpx [15] were identified (abbreviated as HCR-13pf).

Two main caveats herein include the small sample size and the

sampling bias for the MMP sequences reported in the public

database. However, the data used in this study was the most

representative and comprehensive available in the public database

to date (May 2009). Further, the characteristic residue list can be

refined with the availability of more sequence data in the future.

Virtual screening
We next aimed to identify and characterize ligands that interact

with the HCR-13pf. The in silico structure-based high-throughput

virtual screening (HTVS) method of Glide, version 5.5 (Schrö-

dinger, LLC, New York, 2009) [22], was used to identify potential

ligand molecules that interact with at least one of the HCR-13pf

residues on the 3D structure of MMP-13 (PDB ID: 1PEX). The

binding of ligands to these residues is postulated to render

selectivity to the inhibition of the proteolytic activity of the enzyme

MMP-13. A total of 16908 molecules derived from public libraries

namely Maybridge (14400; www.maybridge.com), PubChem [23]

(2438; obtained from Shanghai Institute of Organic Chemistry)

and Binding (70; www.bindingdb.org), were selected for virtual

screening against 1PEX.

Before performing HTVS, hydrogen atoms and charges were

added to the crystal structure of 1PEX and then the complex was

submitted to a series of restrained, partial minimizations using the

optimized potentials for liquid simulations all-atom (OPLS-AA)

force field [24]. The 3D structure was processed by use of the

‘Protein Preparation module’ with the ‘preparation and refine-

ment’ option before docking. The grid-enclosing box was centred

to all HCR-13 residues in 1PEX, so as to enclose the residues

within 3 Å from their centroid. A scaling factor of 1.0 was set to

van der Waals (VDW) radii for these residue atoms, with the

partial atomic charge less than 0.25. The ligand molecules

collected from the databases were prepared using ‘LigPrep’

module and were subsequently subjected to Glide ‘Ligand

docking’ protocol with HTVS mode.

Glide extra precision docking for the screened ligands
All the ligands selected from the screening step were then

subjected to Glide docking with extra precision (XP) to identify

residues involved in hydrogen bond interactions with 1PEX. Glide

XP mode determines all reasonable conformations for each low-

energy conformer in the designated binding site. In the process,

torsional degrees of each ligand are relaxed, though the protein

conformation is fixed. During the docking process, the Glide

scoring function (G-score) was used to select the best conformation

for each ligand. Final G-scores were selected based on the

conformation at which the identified ligands formed hydrogen

bonds to at least one of the HCR-13pf with optimal binding

affinity. The docking procedures were performed on a Dell RHEL

5.0 workstation.

Cheminformatics for MMP-13
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The ligands were then assessed for cross-reactive binding to

MMP-1 and -8, using Glide XP; these MMPs were analysed

because they also contribute to collagenolytic activity and contain

an Hpx domain as MMP-13. The better resolution 3D structure

for MMP-1 (1SU3 with catalytic and Hpx domains) and -8 (1BZS,

only containing catalytic domain; no structure available with Hpx

domain) obtained from PDB were used for the docking. The

binding analysis on these structures was focused on the known

active site residues of the catalytic domain of MMP-1 [25] and -8

[26] and the reported putative functional residues of Hpx domain

of MMP-1 (285–295; Asp-Ala-Ile-Thr-Thr-Ile-Arg-Gly-Glu-Val-

Met) [13]. It is noted that when aligned, the positions of the

reported putative functional residues of the Hpx domain of MMP-

1 do not correspond to those reported for MMP-13. This may be

because of the selectivity of these two MMPs to different

substrates, such as type I collagen for MMP-1 and type II for

MMP-13 [27].

Assessment of drug-like properties of selected optimized
ligands

The selected optimized lead molecules from the cross-reactivity

assay were studied for their drug-like properties based on Lipinski’s

rule of five [28], by use of the ADME-Tox application at the

Mobyle portal (http://mobyle.rpbs.univ-paris-diderot.fr). The

percentage of their human oral absorption was also predicted to

determine the toxicity levels, by use of QikProp version 3.2,

Schrödinger, LLC, New York, NY, 2009 [29].

Results and Discussion

In this study, we identified 34 characteristic residues for the Hpx

domain of MMP-13 (HCR-13) that were completely conserved

and unique to the analyzed sequences of this domain (Figure 1).

Five (Lys318, Arg344, Arg346, Lys363 and Lys372) of these were

part of the 11 putative functional residues of Hpx [15] (these five

are referred to as HCR-13pf). Binding of a ligand to as many of

these HCR-13pf and possibly the remaining HCR-13 are

postulated to result in increased selective inhibition of the Hpx

domain of MMP-13. Through HTVS, we identified 25 ligands

that interact with at least one of the HCR-13pf. The ligands were

screened from a large library of 16908 molecules obtained from

the public databases Maybridge, PubChem and Binding; all the

identified 25 ligands were from Maybridge.

Docking analysis using the more precise XP mode of Glide

revealed that the 25 ligands formed hydrogen bonds with 1–3

Figure 1. The characteristic residues of the Hpx domain of MMP-13 (HCR-13). The residues potentially important for the function of the
domain (HCR-13pf) are indicated with the green inverted triangles. The amino acid positions are with respect to the Hpx domain of the PDB record
1PEX.
doi:10.1371/journal.pone.0012494.g001

Table 1. Glide extra-precision (XP) results for the seven lead molecules, by use of Schrodinger 9.0.

Lead molecules a
G-score
(kcal/mol) b Interacting amino acids (HBD Å) c #HB d

Type of
Interaction e

3764 29.22 ARG344 (1.491), ARG346 (1.963), LYS347 (1.869), ASN326 (2.258) 4 polar

764 29.07 ARG344 (2.037), ARG300 (1.689 and 1.821) 3 polar

13196 28.78 ARG344 (1.748), ARG300 (1.595 and 1.853) 3 polar

3705 28.74 ARG344 (1.833 and 1.967), LYS347 (2.412), ASN326 (1.903) 4 polar

632 28.08 ARG344 (1.923 and 1.877), ARG326 (1.830) 3 polar

7789 27.59 ARG344 (2.324), ARG346 (1.929), LYS347 (1.964 and 2.342) 4 polar

1598 27.55 ARG344 (1.468), ASN326 (2.048) 2 polar

aLigand IDs are of the Maybridge database.
bGlide score.
cThe amino acids of the HCR-13pf that interact with the lead molecules are in boldface and underlined, while functionally important residues of MMP-13 that are not
part of HCR-13 are only underlined. Residues not functionally defined and not part of HCR-13 are in italics. The hydrogen bond distances, in angstrom (Å), between the
interacting amino acids of 1PEX and the seven lead molecules are indicated in brackets.

dNumber of hydrogen bonds formed.
eThe amino acids exhibited polar contacts with the seven lead molecules.
doi:10.1371/journal.pone.0012494.t001
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residues of HCR-13, of which 1–2 were HCR-13pf. In addition,

hydrogen bonds were also formed by 1–2 non-HCR-13 putative

functional residues and 1 non-HCR-13 non-putative functional

residue (Table S3).

Assessment of cross-reactivity of the 25 ligands with MMP-1

(containing both catalytic and Hpx domains) and MMP-8 (only

catalytic domain), members of the collagenase family as MMP-

13, returned seven lead molecules that did not bind to any one

of the putative functional residues of Hpx domain of MMP-1

and any of the catalytic active site residues of MMP-1 and -8.

Also, the closest distance between the putative functional

residues of the Hpx (MMP-1) or the catalytic active site residues

(MMP-1 and MMP-8) to the lead molecules was more than

10 Å (data not shown), suggesting that the ligands are not likely

to interact with the functional or catalytic residues. The docking

results of the final seven lead molecules to 1PEX are given in

Table 1.

The chemical name of the seven lead compounds with their

corresponding Maybridge identity (ID) number are 2-fluoroi-

sophthalic acid (compound 1: 3764), 3-(carboxymethyl)-2-methy-

lenepentanedioic acid (compound 2: 764), 2-{2-[(2-chlorobenzoyl)

amino]-1,3-thiazol-4-yl}acetic acid (compound 3: 13196), 6-

hydroxy-2-(methylsulfanyl)-4-pyrimidinecarboxylic acid (compound

4: 3705), 2,3-dihydro-1,4-benzodioxine-5-carboxylic acid (com-

pound 5: 632), 1-acetyl-4-hydroxypyrrolidine-2-carboxylic acid

(compound 6: 7789) and 2,3-dihydro-1,4-benzodioxine-2-carboxylic

acid (compound 7: 1598). The chemical structures of these lead

molecules are illustrated in Figure 2.

Figure 2. Structure of the seven lead molecules. The Maybridge database ID of the lead molecules are as follows: compound 1–3764;
compound 2–764; compound 3–13196; compound 4–3705; compound 5–632; compound 6–7789; and compound 7–1598.
doi:10.1371/journal.pone.0012494.g002
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The structural scaffold of the lead molecules contains carboxylic

acid functional group, mainly responsible for the hydrogen bond(s)

formed with the HCR-13pf. The binding conformation of the lead

molecules with the hydrogen bond interactions to the Hpx domain

of MMP-13 are given in Figure 3. The short hydrogen bond

distances, ranging from ,1.5 to ,2.4 Å, and the favourable

binding G-scores (29.22 to 27.55 kcal/mol) (Table 1) suggest

strong enzyme-ligand interactions. These carboxylic acid contain-

ing lead molecules were found to exhibit hydrophilic contacts with

1PEX, mostly with the polar side chains of amino acids Arg344

and Arg346 of HCR-13pf. They also exhibited polar interaction

with other functionally important amino acid residues that are not

part of HCR-13, namely Arg300 and Lys347.

In accordance with Lipinski’s rule of five, the Mobyle portal

was used to evaluate the drug-likeness of the lead molecules by

assessing their physicochemical properties. Their molecular

weights were ,500 daltons with ,5 hydrogen bond donors,

,10 hydrogen bond acceptors and a log p of ,5 (Table S4);

these properties are well within the acceptable range of the

Lipinski rule for drug-like molecules. These compounds were

further evaluated for their drug-like behaviour through analysis of

pharmacokinetic parameters required for absorption, distribu-

tion, metabolism, excretion and toxicity (ADMET) by use of

QikProp. For the seven lead compounds, the partition coefficient

(QPlogPo/w) and water solubility (QPlogS), critical for estimation

of absorption and distribution of drugs within the body, ranged

between , 20.1 to ,2.3 and , 24 to , 20.05, cell

permeability (QPPCaco), a key factor governing drug metabolism

and its access to biological membranes, ranged from ,26 to

,276, while the bioavailability and toxicity were from ,3.4 to

,0.4. Overall, the percentage human oral absorption for the

compounds ranged from ,46 to ,79%. All these pharmacoki-

netic parameters are within the acceptable range defined for

human use (see Table 2 footnote), thereby indicating their

potential as drug- like molecules.

As of May 2010, the number of MMP sequences in the NCBI

Entrez protein public database almost doubled since our last data

collection (May 2009). The May 2010 data contained a total of 94

MMP sequences, an increase of 44 since May 2009. Analysis of the

94 sequences revealed that the number of HCR-13 residues

(completely conserved and unique to MMP-13) reduced signifi-

cantly from 34 to only 10 (Gln309, Ala312, Lys318, His334,

His337, Arg344, Asn352, Lys372, Ser378, and Glu373), whereas

the HCR-13pf reduced from 5 to 3 (Lys318, Arg344, and Lys372).

This was expected because of our small initial sample size.

Nonetheless, there was no change in the HCR-13pf residues bound

by our seven lead molecules, except for two (compounds 1 and 6).

The putative functional residue Arg346 that interacts with both

these compounds is no longer classified as an HCR-13, but the

compounds still bind to one other HCR-13pf residue (Table 1).

Conclusion
The present work describes the identity of the putative

functional residues characteristic to Hpx domain of MMP-13,

and the identification of seven lead drug-like molecules binding to

the HCR-13pf, with no observable cross-reactivity to MMP-1 and

MMP-8. These molecules are potential selective inhibitors of

MMP-13 that need to be experimentally validated, while the

systematic cheminformatics-based drug design approach applied

herein can be used for rational search of other public/commercial

combinatorial libraries for more potent molecules, capable of

selectively inhibiting the collagenolytic activity of MMP-13.

Further, the backbone structural scaffold of these seven lead

compounds could serve as building blocks in designing drug-like

molecules in the treatment of OA, RA and other inflammatory

disorders.

Table 2. QikProp properties of the seven lead molecules, by use of Schrodinger 9.0.

Lead molecules a QPlogPo/w b QPlogS c QPPCaco
d QPlogHERG e Percent human oral absorption f

3764 0.841 21.388 70.704 0.219 47.742

764 2.239 23.622 78.429 2.381 30.962

13196 2.239 23.622 78.428 23.382 73.962

3705 1.058 21.740 44.646 21.559 62.677

632 1.409 21.558 276.206 21.496 78.888

7789 20.967 20.051 26.073 0.351 47.633

1598 1.454 21.630 249.077 21.869 78.349

aLigand IDs are of the Maybridge database.
bPredicted octanol/water partition co-efficient log p (acceptable range: 22.0 to 6.5).
cPredicted aqueous solubility; S in mol/L (acceptable range: 26.5 to 0.5).
dPredicted Caco-2 cell permeability in nm/s (acceptable range: ,25 is poor and .500 is great).
ePredicted IC50 value for blockage of HERG K+ channels (acceptable range: below 25.0).
fPercentage of human oral absorption (,25% is poor and .80% is high).
doi:10.1371/journal.pone.0012494.t002

Figure 3. Binding poses of the seven lead molecules. The proposed binding mode of the lead molecules are shown in ball and stick display
and non carbon atoms are coloured by atom types. Critical residues for binding are shown as lines colored by atom types. Hydrogen bonds are
shown as dotted yellow lines with the distance between donor and acceptor atoms indicated. Atom type colour code: red for oxygen, blue for
nitrogen, grey for carbon and yellow for sulphur atoms respectively. The HCR-13pf residues that interact with the lead molecule are indicated by the
arrow. The Maybridge database ID of the lead molecules are as follows: compound 1–3764; compound 2–764; compound 3–13196; compound 4–
3705; compound 5–632; compound 6–7789; and compound 7–1598.
doi:10.1371/journal.pone.0012494.g003
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Supporting Information

Table S1 Number of sequences of the various MMPs studied.

These sequences were obtained from the NCBI Entrez protein

database by use of PSI-BLAST search (as of May 2009).

Found at: doi:10.1371/journal.pone.0012494.s001 (0.03 MB

DOC)

Table S2 NCBI Entrez protein database accession and GI

numbers of the 50 sequences analysed in this study.

Found at: doi:10.1371/journal.pone.0012494.s002 (0.05 MB

DOC)

Table S3 The 25 screened ligands that interact with at least one

residue of the HCR-13pf of MMP-13 (PDB ID: 1PEX) and their

hydrogen bond interaction(s) to residues of MMP-1 (PDB ID:

1SU3) and -8 (PDB ID: 1BZS). 1SU3 structure contains both Hpx

and catalytic domains, while 1BZS has only the catalytic domain.

Rows shaded in grey are for the seven lead molecules.

Found at: doi:10.1371/journal.pone.0012494.s003 (0.06 MB

DOC)

Table S4 ADMET properties calculated using Mobyle portal for

the seven lead molecules.

Found at: doi:10.1371/journal.pone.0012494.s004 (0.04 MB

DOC)
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