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Abstract
In the current era, the theory of vagueness and multi-criteria group decision making (MCGDM) techniques are extensively
applied by the researchers in disjunctive fields like recruitment policies, financial investment, design of the complex circuit,
clinical diagnosis of disease, material management, etc. Recently, trapezoidal neutrosophic number (TNN) draws a major
awareness to the researchers as it plays an essential role to grab the vagueness and uncertainty of daily life problems.
In this article, we have focused, derived and established new logarithmic operational laws of trapezoidal neutrosophic
number (TNN) where the logarithmic base μ is a positive real number. Here, logarithmic trapezoidal neutrosophic weighted
arithmetic aggregation (Larm) operator and logarithmic trapezoidal neutrosophic weighted geometric aggregation (Lgeo)
operator have been introduced using the logarithmic operational law. Furthermore, a new MCGDM approach is being
demonstrated with the help of logarithmic operational law and aggregation operators, which has been successfully deployed
to solve numerical problems. We have shown the stability and reliability of the proposed technique through sensitivity
analysis. Finally, a comparative analysis has been presented to legitimize the rationality and efficiency of our proposed
technique with the existing methods.
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1 Introduction

Professor Zadeh [1] introduced the notion of fuzzy set the-
ory to capture the vagueness and uncertainty of realistic
problems, which was extended and expanded into intuition-
istic fuzzy set(IFS) theory by Professor Attanosov [2]. To
snatch the concept of uncertainty, inconsistency and inde-
terminacy of data in real-life problem, Professor Smaran-
dache [3] presented the origination of neutrosophic set (NS)
as an extension of IFS which contains truth membership
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function (μ), indeterminacy membership function (ι) and
falsity membership function (σ ). Recently, researchers have
introduced pentagonal [4], hexagonal [5], heptagonal [6]
fuzzy numbers and its application in different fields. Wang
et al. manifested the conception of single-valued neu-
trosophic set (SVNS) [7] and interval neutrosophic set
(INS) [8] which are subclasses of NSs and many other
recent works [9–12] have improved and bring innovation
into the NS hypothesis. Liu and Yuan [13] proposed the idea
of triangular intuitionistic fuzzy set (TIFN) which is a com-
bination of triangular fuzzy number and intuitionistic fuzzy
number. Qin et al. [14] proposed a TODIM-based multi-
criteria decision-making (MCDM) for TIFN. Ye [15] intro-
duced the trapezoidal intuitionistic fuzzy number (TrIFN)
and solved MCDM problem in this environment. Ye [16]
manifested a novel idea of trapezoidal neutrosophic num-
ber (TNN) by mixing the concept of SVNS and trapezoidal
fuzzy number and utilized it to solve an MCDM problem in
trapezoidal neutrosophic (TN) arena. It is to be noted that
both trapezoidal fuzzy numbers and neutrosophic numbers
are important and effective tools in the field of uncertainty.
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Now, the concept of TNN can be used more fruitful in
the field uncertainty to grab the impreciseness and inde-
terminacy in a rigorous way. In this direction, Jana et al.
[17] has already defined interval traphezoidal neutrosophic
numbers and apply it to solve MCGDM problem. Single
valued trapezoidal neutrosophic number (SVTNN) [18] is
another extension of SVNS. In SVTNN, each component is
presented in the form of trapezoidal number that has truth
membership degree, indeterminacy membership degree and
falsity membership degree. Deli and Subas [19] manifested
a ranking technique of TNN and displayed a multi-attribute
decision-making (MADM) procedure. Liang et al. [20] initi-
ated score, accuracy and certainty functions of single-valued
trapezoidal neutrosophic number (SVTNN) by using cen-
ter of gravity. Biswas et al. [21] defined cosine similarity
measure for trapezoidal fuzzy neutrosophic numbers and
presented an MADM based on it. Pramanik and Mallick
[22] structured a VIKOR technique for a multi-attribute
group decision making (MAGDM) in trapezoidal neutro-
sophic environment. Biswas et al. [23] gave the idea of TOP-
SIS method for MADM in TN environment, whereas Sahin
et al. [24] presented some weighted arithmetic and geomet-
ric operators in SVTN environment and gave their applica-
tion to MCDM problem. Abdel-Basset et al. [25] defined
a type 2 neutrosophic numbers (T2NN) and manifested
T2NN-TOPSIS technique to deal with a decision-making
problem. Recently, Chakraborty et al. [26–29] initiated the
geometrical concept of pentagonal neutrosophic number
and its application in operation research, networking and
graph theory arena. In this article, we have introduced new
logarithmic operational laws for TNNwhere the logarithmic
baseμ is a positive real number and subsequently developed
logarithmic trapezoidal neutrosophic weighted arithmetic
aggregation (Larm) operator and logarithmic trapezoidal
neutrosophic weighted geometric aggregation (Lgeo) oper-
ator which have been used to construct a new scheme of
MCGDM process.

1.1 Motivation

In this current decade, researchers in the neutrosophic
arena are mainly interested in the MCDM problems
which are operators based. In the field of aggregation,
the best activity is to design new operational laws. The
four essential operational laws like addition, multiplication,
scalar multiplication of TNN have been characterized by
Ye [16]. Recently, Haque et al. [30] introduced exponential
operational law where the bases are crisp numbers and
the exponents are TNNs. Moreover, logarithmic operational
law is a fundamental operational law in the field of
aggregation. Li [31] presented logarithmic operational for
IFN and developed its corresponding aggregation operators.
Garg [32] set forward logarithmic operational law for

SVNS and applied it in an MADM problem. Garg [33]
defined the logarithmic operational law for Pythagorean
fuzzy numbers and developed corresponding aggregation
operator and MCDM technique to solve the real-life
problems. From the literature survey, we could not notice
any logarithmic operational law for TNN till date. To
mobilize this research gap, here in this research article,
we have defined logarithmic operational law for TNN.
Furthermore, we have successfully adopt the proposed
logarithmic operator to develop new aggregation formula
to aggregate several uncertain information provided by the
different decision makers in an MCGDM process. Finally,
we have suggested an MCGDM strategy with the help of
our defined operational laws and corresponding aggregation
operators namely Larm and Lgeo.

1.2 Novelties

Lots of works have been already established in the
TN environment. In the meantime researchers have built
different formulations and their applications in different
fields of TNNs. But, there are still lots of works that can be
established in this arena. In this article, we make an attempt
to incorporate and address the following points:

i) To define new logarithmic operational law (LOL) for
TNNs which is a useful supplement of existing opera-
tional law and analyzed their algebraic properties.

ii) To introduce new operators like logarithmic trape-
zoidal neutrosophic weighted arithmetic aggrega-
tion (Larm) and logarithmic trapezoidal neutrosophic
weighted geometric aggregation (Lgeo) operators.

iii) Proposition of MCGDM strategy in TN environment.
iv) To demonstrate the proposed method we solved a

numerical problem based on a real-life problem.
v) A sensitivity analysis is performed to show the utility

and efficiency of the designed method.

1.3 Structure of the paper

The remainder of the article is organized in several sections.
Section 2 presents some fundamental Definitions related
with IFS and SVNS. In Section 3, we have introduced new
logarithmic operational law for TNN and briefly discussed
its algebraic properties. In Section 4, we have developed
two aggregation operators based on our defined logarithmic
operational law. In Section 5, an MCGDMmethod has been
manifested using our defined operational laws and related
aggregation operators. A numerical problem is taken to
exhibit the applicability of defined logarithmic operational
law and a sensitivity analysis are performed to show the
utility of the designed method in Section 6. Finally, we
conclude our results in Section 7.
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2Mathematical preliminaries

Basic Definitions and operations related with SVNSs and
TNSs are presented as follows:

Definition 2.1 Let S be a universal set. Then

˜N = {〈s, μ(s), ι(s), σ (s)〉; s ∈ S}
is said to be single-valued neutrosophic set (SVNS) [3] on
S, where μ : S → [0, 1], ι : S → [0, 1] and σ : S →
[0, 1] with the condition 0 ≤ μ(s) + ι(s) + σ(s) ≤ 3.
Here, μ(s), ι(s) and σ(s) are called the truth-membership
function, indeterminacy-membership function and falsity-
membership function respectively of the element to the
set N . For convenience, we represent this SVNS as ˜N =
{〈μ, ι, σ 〉, where μ, ι, σ ∈ [0, 1], 0 ≤ μ+ι+σ ≤ 3} and
and called as a single-valued neutrosophic number (SVNN).

Definition 2.2 Let S be a universal set. Then trapezoidal
neutrosophic set ˜A is defined by Ye [16] in the following
form:

˜A = {〈s, T (s), I (s), F (s)〉; s ∈ S}
where T (s) ⊂ [0, 1], I (s) ⊂ [0, 1], F(s) ⊂ [0, 1]
are three trapezoidal neutrosophic numbers and T (s) =
(α(s), β(s), γ (s), μ(s)) : S → [0, 1], I (s) =
(λ(s), μ(s), κ(s), ι(s)) : S → [0, 1] and F(s) =
(φ(s), ρ(s), ψ(s), σ (s)) : S → [0, 1] with the con-
dition 0 ≤ μ(s) + ι(s) + σ(s) ≤ 3 for all s ∈
S. Here, T (s), I (s) and F(s) are called the truth-
membership function, indeterminacy-membership function
and falsity-membership function respectively of the ele-
ment to the set ˜A. For convenience, we represent the
set as ˜A = {〈(a, b, c, d), (k, l, m, n), (x, y, v, w)〉 :
0 ≤ d + n + w ≤ 3} and called as a trapezoidal neutro-
sophic number (TNN).

Proposition 2.1 Let ˜Ak = 〈(ak, bk, ck, dk),

(lk, mk, nk, pk), (xk, yk, vk, wi)〉 (k = 1, 2) be any two
TNNs. Then, we have the following operational rules [16]:

i) ˜A1
⊕

˜A2 = 〈(a1 + a2 − a1a2, b1 + b2 − b1b2, c1
+c2 − c1c2, d1 + d2 − d1d2) ,

(l1l2, m1m2, n1n2, p1p2) ,

(x1x2, y1y2, v1v2, w1w2)〉
ii) ˜A1

⊗

˜A2 = 〈(a1a2, b1b2, c1c2, d1d2) ,

(l1 + l2 − l1l2, m1 + m2 − m1m2, n1 + n2
−n1n2, p1 + p2 − p1p2) ,

(x1 + x2 − x1x2, y1 + y2 − y1y2, v1 + v2
−v1v2, w1 + w2 − w1w2)〉

iii) μ˜A1 = 〈(1 − (1 − a1)
μ, 1 − (1 − b1)

μ,

1 − (1 − c1)
μ, 1 − (1 − d1)

μ) ,

(l1
μ, m1

μ, n1
μ, k1

μ) , (x1
μ, y1

μ, v1
μ, w1

μ)

iv) (˜A1)
μ = 〈(aλ

1 , b1
μ, c1

μ, d1
μ
)

, (1 − (1 − l1)
μ,

1 − (1 − m1)
μ, 1 − (1 − n1)

μ,

1 − (1 − k1)
μ) ,

(1 − (1 − x1)
μ, 1 − (1 − y1)

μ,

1 − (1 − v1)
μ, 1 − (1 − w1)

μ)

Definition 2.3 Let ˜As = 〈(as, bs, cs, ds),

(ls , ms, ns, ps), (xs, ys, vs, ws)〉 (s = 1, 2, · · · , p) be any
collection of TNNs. Then the trapezoidal neutrosophic num-
ber weighted arithmetic averaging (TNNWAA) operator is
defined in [16] as

T NNWAA(˜A1, ˜A2, · · · , ˜Ap)

=
p
∑

s=1

φs
˜As

=
〈

[1 −
p
∏

s=1

(1 − as)
φs , 1 −

p
∏

s=1

(1 − bs)
φs ,

1 −
p
∏

s=1

(1 − cs)
φs , 1 −

p
∏

s=1

(1 − ds)
φs

]

,

[

p
∏

s=1

(ls)
φs ,

p
∏

s=1

(ms)
φs ,

p
∏

s=1

(ns)
φs ,

p
∏

s=1

(ps)
φs

]

,

[

p
∏

s=1

(xs)
φs ,

p
∏

s=1

(ys)
φs ,

p
∏

s=1

(vs)
φs ,

p
∏

s=1

(ws)
φs

]〉

where φs (s = 1, 2, · · · , p) is the weight of ˜As (s =
1, 2, · · · , p) with φs ∈ [0, 1] and

p
∑

s=1

φs = 1.

Definition 2.4 Let ˜As = 〈(as, bs, cs, ds),

(ls, ms, ns, ps), (xs, ys, vs, ws)〉, (s = 1, 2, · · · , p) be col-
lections of TNNs. Then the trapezoidal neutrosophic num-
ber weighted geometric averaging (TNNWGA) operator is
defined in [16] as

T NNWGA(˜A1, ˜A2, · · · , ˜Ap)

=
p
∏

s=1

(˜As)
φs

=
〈[

p
∏

s=1

(as)
φs ,

p
∏

s=1

(bs)
φs ,

p
∏

s=1

(cs)
φs ,

p
∏

s=1

(ds)
φs

]

,

[

1 −
p
∏

s=1

(1 − ls)
φs , 1 −

p
∏

s=1

(1 − ms)
φs ,

1 −
p
∏

s=1

(1 − ns)
φs , 1 −

p
∏

s=1

(1 − ps)
φs

]

,
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[

1 −
p
∏

s=1

(1 − xs)
φs , 1 −

k
∏

s=1

(1 − ys)
φs ,

1 −
k
∏

s=1

(1 − vs)
φs , 1 −

k
∏

s=1

(1 − xs)
φs

]〉

where φs (s = 1, 2, · · · , p) is the weight of ˜As (s =
1, 2, · · · , p) with φs ∈ [0, 1] and

p
∑

s=1

φs = 1.

2.1 Application of aggregation operators

Aggregation operators are mainly used inMCDM/MCGDM
techniques to aggregate the input values of certain
alternatives under the different criteria. Let, we want to
evaluate an alternative under different criteria in which
computational entities are in the form of TNNs. Now, we
need to introduce a technique to aggregate all the evaluation
values into a single value in the form of TNN. For this
purpose, we have used aggregation operators TNNWAA
& TNNWGA as introducded by Ye [16]. Since TNN is

an another environment in the neutrosophic field, then the
above aggregation operators must have an crucial impact on
MCDM/MCGDM techniques in this TN environment. Here,
we have presented the following example to demonstrate the
application of of above mention aggregation operators:

Example 2.1 Let someone wants to buy a newmobile phone
based on the criterion of better camera quality, graphics
and RAM services. Let the available alternatives are mobile
companies namely X1, X2 and X3, which are evaluated
under the following criteria:

1) Y1 indicates the camera quality.
2) Y2 indicates the graphics quality services.
3) Y3 indicates the RAM quality services.

whose weight vector is (0.33, 0.32, 0.35). Figure 1 show
the schematic diagram of the application of aggregation
operators.

The input values of the decision making problem in TN
environment are given in the following matrix

Now, if we use the operator TNNWAA on the
above decision matrix, then we get the evaluation value
alternatives as follows:

X1

X2

X3

⎛

⎝

〈(0.3368, 0.6413, 0.7666, 0.8398), (0.3771, 0.5923, 0.7635, 0.8637), (0.3289, 0.4924, 0.6313, 0.7315)〉
〈(0.5098, 0.6362, 0.7365, 0.8398), (0.5955, 0.6663, 0.7969, 0.9000), (0.1000, 0.3587, 0.5329, 0.6982)〉
〈(0.7000, 0.7695, 0.8431, 0.9000), (0.2514, 0.3771, 0.5028, 0.6435), (0.2239, 0.3371, 0.5161, 0.7188)〉

⎞

⎠

Again, if we use the operator TNNWGA, we get

X1

X2

X3

⎛

⎝

〈(0.3318, 0.6222, 0.7188, 0.8307), (0.418, 0.6067, 0.7695, 0.8725), (0.3337, 0.5056, 0.6362, 0.7376)〉
〈(0.4962, 0.6313, 0.7306, 0.8307), (0.6093, 0.6711, 0.8188, 0.9000), (0.1000, 0.3778, 0.5376, 0.7146)〉
〈(0.7000, 0.7635, 0.8337, 0.9000), (0.2725, 0.4180, 0.5825, 0.7263), (0.2724, 0.3740, 0.6102, 0.7666)〉

⎞

⎠

From the above example, it is observed that after utilizing
the aggregation operators, we get the evaluation value of the
alternatives in the aggregated form. Now, if we apply the
score function [16], then we observe that, mobile company
X3 is the best option in presence of the underlying three
criterion. Based on above example, we observe that if we
want to evaluate some alternatives under different criteria in

TN environment, then first we need to apply the aggregation
operators to convert the system into a single decision
matrix. After that, utilizing the fruitful cripsification
technique, we can get the associated crisp values of each
alternatives. Finally, the best alternative can be determined
by taking the highest crisp value among finite alterna-
tives.
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Fig. 1 Application of
aggregation operators

2.2 De-Neutrosophication of a TNN

De-Neutrosophication is the technique where an appreciable
result is generated for crispsification. In the neutrosophic
environment researchers are highly devoted to convert a
TNN into a crisp number through various methods and
techniques. Here, we use Removal Area Technique (RAT)
to calculate de-Neutrosophication value of TNNs that is
defined as follows:

Definition 2.1.1 Let ˜A = 〈(a, b, c, d), (l, m, n, p),

(x, y, v, w)〉 be any TNN, then the de-Neutrosophication
value of ˜A (utilizing Removal Area technique) is given by
Chakraborty et al. [10] as

DNeu(˜A) = a + b + c + d + l + m + n + p + x + y + v + w

12
.

Definition 2.1.2 Let ˜A1 and ˜A2 be any two TNNs, then the
ranking technique is defined as follows

i) If DNeu(˜A1) > DNeu(˜A2), then ˜A1 > ˜A2

ii) If DNeu(˜A1) < DNeu(˜A2), then ˜A1 < ˜A2.

3 Logarithmic operational law for TNN

In this section logarithmic function on TNN is defined and
studied where the base (μ) is considered as positive real
number. Let ˜A be a TNN and μ > 0 be a real number.
Since in real field logμ 0 and log1 x are undefined, where
x is a real number, so we assume that ˜A �= 0, ˜A �=
〈[0, 0, 0, 0], [1, 1, 1, 1], [1, 1, 1, 1]〉 and μ �= 1. We define
the logarithm of TNN as follows:

Definition 3.1 Let V be an universal set and Let ˜A =
〈(a, b, c, d), (l, m, n, p), (x, y, v, w)〉 be any TNN. Then,
we define

logμ
˜A =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

〈[

1 − logμ a, 1 − logμ b, 1 − logμ c, 1 − logμ d
]

,
[

logμ(1 − l), logμ(1 − m), logμ(1 − n), logμ(1 − p)
]

,
[

logμ(1 − x), logμ(1 − y), logμ(1 − v), logμ(1 − w)
]〉

,

when 0 < μ ≤ min (a, b, c, d, 1 − l, 1 − m, 1 − n, 1 − p, 1 − x, 1 − y, 1 − v, 1 − w) < 1;
〈[

1 − log 1
μ

a, 1 − log 1
μ

b, 1 − log 1
μ

c, 1 − log 1
μ

d
]

,
[

log 1
μ
(1 − l), log 1

μ
(1 − m), log 1

μ
(1 − n), log 1

μ
(1 − p)

]

[

log 1
μ
(1 − x), log 1

μ
(1 − y), log 1

μ
(1 − v), log 1

μ
(1 − w)

]〉

,

when 0 < 1
μ

≤ min (a, b, c, d, 1 − l, 1 − m, 1 − n, 1 − p, 1 − x, 1 − y, 1 − v, 1 − w) < 1.

Here, we shall discuss some elementary Properties of
logμ

˜A which are as follows:
Theorem 3.1 Let ˜A = 〈(a, b, c, d), (l, m, n, p),

(x, y, v, w)〉 be a TNN. Then logμ
˜A is a TNN.
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Proof Let ˜A = 〈(a, b, c, d), (l, m, n, p), (x, y, v, w)〉 be
a TNN. Then a, b, c, d, l, m, n, p, x, y, v, w ∈ [0, 1] with
0 ≤ d + p + w ≤ 3.

Case 1 When 0 < μ ≤ min (a, b, c, d, 1 − l, 1 − m, 1 −
n, 1 − p) < 1, then we have,

0 ≤ logμ a, logμ b, logμ c, logμ d, logμ(1− l), logμ(1−
m), logμ(1 − n), logμ(1 − p), logμ(1 − x), logμ(1 −
y), logμ(1 − v), logμ(1 − w) ≤ 1

Hence, 0 ≤ 1 − logμ a, 1 − logμ b, 1 − logμ c, 1 −
logμ d, logμ(1 − l), logμ(1 − m), logμ(1 − n), logμ(1 −
p), logμ(1−x), logμ(1−y), logμ(1−v), logμ(1−w) ≤ 1
and 0 ≤ logμ a + logμ(1 − p) + logμ(1 − w) ≤ 3.

Thus, logμ
˜A is a TNN.

Case 2 When 0 < 1
μ

≤ min (a, b, c, d, 1 − l, 1 − m, 1 −
n, 1 − p) < 1, then proceeding in the similar way as in the
above case 1, we can prove that logμ

˜A is a TNN.
Thus, we conclude that logμ

˜A is a TNN.

Theorem 3.2 Let ˜A = 〈(a, b, c, d), (l, m, n, p),

(x, y, v, w)〉 be any TNN and 0 < μ ≤ min
(a, b, c, d, 1 − l, 1 − m, 1 − n, 1 − p, 1 − x, 1 − y, 1 − v,

1 − w) < 1, then

i) μlogμ
˜A = ˜A

ii) logμ μ
˜A = ˜A

Proof i) Using the Properties 2.1 and the Definition 3.1,
we get

μlogμ
˜A =

〈[

μ1−(1−logμ a), μ1−(1−logμ b), μ1−(1−logμ c), μ1−(1−logμ d)
]

,
[

1 − μlogμ(1−l), 1 − μlogμ(1−m), 1 − μlogμ(1−n),

1 − μlogμ(1−p)
]

,
[

1 − μlogμ(1−x), 1 − μlogμ(1−y), 1 − μlogμ(1−v), 1 − μlogμ(1−w)
]〉

=
〈[

μlogμ a, μlogμ b, μlogμ c, μlogμ d
]

, [1 − (1 − l), 1 − (1 − m), 1 − (1 − n), 1 − (1 − p)] , [1 − (1 − x),

1 − (1 − y), 1 − (1 − v), 1 − (1 − w)]〉
= 〈(a, b, c, d), (l, m, n, p), (x, y, v, w)〉
= ˜A.

ii) Again utilizing Properties 2.1 and the Definition 3.2,
we get

logμ μ
˜A = logμ

〈

[μ1−a, μ1−b, μ1−c, μ1−d ], [1 − μl, 1 − μm, 1 − μn, 1 − μp], [1 − μx, 1 − μy, 1 − μv, 1 − μw]
〉

=
〈[

1 − logμ μ1−a, 1 − logμ μ1−b, 1 − logμ μ1−c, 1 − logμ μ1−d
]

,
[

logμ(1 − (1 − μl)), logμ(1 − (1 − μm)),

logμ(1 − (1 − μn)), logμ(1 − (1 − μp))
]

,
[

logμ(1 − (1 − μx)), logμ(1 − (1 − μy)), logμ(1 − (1 − μv)),

logμ(1 − (1 − μw))
]〉

= 〈(a, b, c, d), (l, m, n, p), (x, y, v, w)〉
= ˜A.

Theorem 3.3 Let ˜At = 〈(at , bt , ct , dt ), (lt , mt , nt , pt ),

(xt , yt , vt , wt )〉 (t = 1, 2) be any two TNNs and 0 < μ ≤
min (at , bt , ct , dt , 1−lt , 1−mt, 1−nt , 1−pt , 1−xt , 1−yt ,

1 − vt , 1 − wt) < 1. Then

i) logμ
˜A1
⊕

logμ
˜A2 = logμ

˜A2
⊕

logμ
˜A1;

ii) logμ
˜A1
⊗

logμ
˜A2 = logμ A2

⊗

logμ
˜A1.

Proof The proof of the above Theorem follows from
Properties 2.1 and Definition 3.1.

Theorem 3.4 Let ˜At = 〈(at , bt , ct , dt ), (lt , mt , nt , pt ),

(xt , yt , vt , wt )〉 (t = 1, 2, 3) be any three TNNs and 0 <

μ ≤ min (at , bt , ct , dt , 1 − lt , 1 − mt, 1 − nt , 1 − pt , 1 −
xt , 1 − yt , 1 − vt , 1 − wt) < 1. Then

i) logμ
˜A1
⊕

logμ
˜A2
⊕

logμ
˜A3 = logμ

˜A3
⊕

logμ
˜A2

⊕

logμ A1;

ii) logμ
˜A1
⊗

logμ
˜A2
⊗

logμ
˜A3 = logμ

˜A3
⊗

logμ
˜A2

⊗

logμ
˜A1.
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Proof The proof of the above Theorem follows from
Properties 2.1 and Definition 3.1.

Theorem 3.5 Let ˜At = 〈(at , bt , ct , dt ), (lt , mt , nt , pt ) ,
(xt , yt , vt , wt )〉 (t = 1, 2) be any two TNNs and 0 < μ ≤
min (at , bt , ct , dt , 1 − lt , 1 − mt, 1 − nt , 1− pt , 1 − xt , 1−
yt , 1 − vt , 1 − wt) < 1. Then

i) k(logμ
˜A1
⊕

logμ
˜A2) = k logμ

˜A1
⊕

k logμ
˜A2;

ii) (logμ
˜A1
⊗

logμ
˜A2)

k = (logμ
˜A1)

k
⊗

(logμ
˜A2)

k;
iii) k1 logμ

˜A1
⊕

k2 logμ
˜A1 = (k1 + k2) logμ

˜A1;

iv) (logμ
˜A1)

k1
⊗

(logμ
˜A1)

k2 = (logμ
˜A1)

k1+k2;
v) ((logμ

˜A1)
k1)k2 = (logμ

˜A1)
k1k2 , where k, k1,& k2

are positive real numbers.

Proof i) We know,

logμ
˜A1

= 〈[1 − logμ a1, 1 − logμ b1, 1 − logμ c1, 1 − logμ d1
]

,
[

logμ(1 − l1), logμ(1 − m1), logμ(1 − n1), logμ(1 − p1)
]

,
[

logμ(1 − x1), logμ(1 − y1), logμ(1 − v1), logμ(1 − w1)
]〉

.

logμ
˜A2

= 〈[1 − logμ a2, 1 − logμ b2, 1 − logμ c2, 1 − logμ d2
]

,
[

logμ(1 − l2), logμ(1 − m2), logμ(1 − n2), logμ(1 − p2)
]

,
[

logμ(1 − x2), logμ(1 − y2), logμ(1 − v2), logμ(1 − w2)
]〉

.
∴ logμ

˜A1
⊕

logμ
˜A2

= 〈[1 − (logμ a1)(logμ a2), 1 − (logμ b1)(logμ b2), 1 − (logμ c1)(logμ c2), 1 − (logμ d1)(logμ d2)
]

,

[logμ(1 − l1) logμ(1 − l2), logμ(1 − m1) logμ(1 − m2), logμ(1 − n1) logμ(1 − n2) logμ(1 − p1) logμ(1 − p2)],
[logμ(1 − x1) logμ(1 − x2), logμ(1 − y1) logμ(1 − y2), logμ(1 − v1) logμ(1 − v2), logμ(1 − w1) logμ(1 − w2)]

〉

.

Now for k > 0 we have,

k(logμ
˜A1
⊕

logμ
˜A2),

= 〈[1 − ((logμ a1)(logμ a2))
k, 1 − ((logμ b1)(logμ b2))

k, 1 − ((logμ c1)(logμ c2))
k, 1 − ((logμ d1)(logμ d2))

k
]

,
[

((logμ(1 − l1) logμ(1 − l2))
k, ((logμ(1 − m1) logμ(1 − m2))

k, ((logμ(1 − n1) logμ(1 − n2))
k,

((logμ(1 − p1) logμ(1 − p2))
k
]

,
[

(((logμ(1 − x1) logμ(1 − x2))
k, ((logμ(1 − y1) logμ(1 − y2))

k,
(

(logμ(1 − v1) logμ(1 − v2))
k, ((logμ(1 − w1) logμ(1 − w2))

k
]〉

= 〈[1 − (logμ a1)
k, 1 − (logμ b1)

k, 1 − (logμ c1)
k, 1 − (logμ d1)

k], [(logμ(1 − l1))
k, (logμ(1 − m1))

k,

(logμ(1 − n1))
k, (logμ(1 − p1))

k
]

,
[

(logμ(1 − x1))
k, (logμ(1 − y1))

k, (logμ(1 − v1))
k, (logμ(1 − w1))

k
]〉

⊕ 〈[1 − (logμ a2)
k, 1 − (logμ b2)

k, 1 − (logμ c2)
k, 1 − (logμ d2)

k], [(logμ(1 − l2))
k, (logμ(1 − m2))

k,

(logμ(1 − n2))
k, (logμ(1 − p2))

k
]

,
[

(logμ(1 − x2))
k, (logμ(1 − y2))

k, (logμ(1 − v2))
k, (logμ(1 − w2))

k
]〉

= k logμ
˜A1
⊕

k logμ
˜A2.

ii) This proof is similar to the previous one.
iii) For any k1, k2 > 0, we have

k1 logμ
˜A1
⊕

k2 logμ
˜A1

= 〈[1 − (logμ a1)
k1 , 1 − (logμ b1)

k1 , 1 − (logμ c1)
k1 , 1 − (logμ d1)

k1
]

,
[

(logμ(1 − l1))
k1 , (logμ(1 − m1))

k1 ,

(logμ(1 − n1))
k1 , (logμ(1 − p1))

k1
]

,
[

(logμ(1 − x1))
k1 , (logμ(1 − y1))

k1 , (logμ(1 − v1))
k1 , (logμ(1 − w1))

k1
]〉

⊕ 〈[

1 − (logμ a2)
k1 , 1 − (logμ b2)

k1 , 1 − (logμ c2)
k2 , 1 − (logμ d2)

k2
]

,
[

(logμ(1 − l2))
k2 , (logμ(1 − m2))

k2 ,

(logμ(1 − n2))
k2 , (logμ(1 − p2))

k2
]

,
[

(logμ(1 − x2))
k2 , (logμ(1 − y2))

k2 , (logμ(1 − v2))
k2 , (logμ(1 − w2))

k2
]〉

= 〈[1 − (logμ a1)
k1+k2 , 1 − (logμ b1)

k1+k2 , 1 − (logμ c1)
k1+k2, 1 − (logμ d1)

k1+k2
]

,
[

(logμ(1 − l1))
k1+k2 ,

(logμ(1 − m1))
k1+k2 , (logμ(1 − n1))

k1+k2, (logμ(1 − p1))
k1+k2

]

,
[

(logμ(1 − x1))
k1+k2 , (logμ(1 − y1))

k1+k2,

(logμ(1 − v1))
k1+k2 , (logμ(1 − w1))

k1+k2
]〉

= (k1 + k2) logμ
˜A1.
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iv) Again for any k1, k2 > 0, we get

(logμ
˜A1)

k1
⊗

(logμ
˜A1)

k2

= 〈[(1 − logμ a1)
k1 , (1 − logμ b1)

k1 , (1 − logμ c1)
k1 , (1 − logμ d1)

k1
]

,
[

1 − (1 − logμ(1 − l1))
k1 ,

1 − (1 − logμ(1 − m1))
k1 , 1 − (1 − logμ(1 − n1))

k1 , 1 − (1 − logμ(1 − p1))
k1
]

,
[

1 − (1 − logμ(1 − x1))
k1 ,

1 − (1 − logμ(1 − y1))
k1 , 1 − (1 − logμ(1 − v1))

k1 , 1 − (1 − logμ(1 − w1))
k1
]〉⊗ 〈[

(1 − logμ a1)
k2 , (1 − logμ b1)

k2 ,

(1 − logμ c1)
k2 , (1 − logμ d1)

k2
]

,
[

1 − (1 − logμ(1 − l1))
k2 , 1 − (1 − logμ(1 − m1))

k2 , 1 − (1 − logμ(1 − n1))
k2 ,

1 − (1 − logμ(1 − p1))
k2
]

,
[

1 − (1 − logμ(1 − x1))
k2 , 1 − (1 − logμ(1 − y1))

k2 , 1 − (1 − logμ(1 − v1))
k2 ,

1 − (1 − logμ(1 − w1))
k2
]〉

= 〈[(1 − logμ a1)
k1+k2 , (1 − logμ b1)

k1+k2 , (1 − logμ c1)
k1+k2, (1 − logμ d1)

k1+k2
]

,
[

1 − (1 − logμ(1 − l1))
k1+k2 , 1 − (1 − logμ(1 − m1))

k1+k2
]

,
[

1 − (1 − logμ(1 − n1))
k1+k2 ,

1 − (1 − logμ(1 − p1))
k1+k2

]

,
[

1 − (1 − logμ(1 − x1))
k1+k2 , 1 − (1 − logμ(1 − y1))

k1+k2,

1 − (1 − logμ(1 − v1))
k1+k2 , 1 − (1 − logμ(1 − w1))

k1+k2]〉
= (logμ

˜A1)
k1+k2

v) The proof of this part is trivial and hence omitted.

4 Aggregation operators

In the decision making method, generally two types of
aggregation operators are used namely weighted arithmetic
operator and geometric averaging operator. Here, we
proposed two new aggregation operators laws for TNN
namely Larm and Lgeo, which are as follows:

Definition 4.1 Let ˜At = 〈(at , bt , ct , dt ), (lt , mt , nt , pt ),

(xt , yt , vt , wt )〉 (t = 1, 2, · · · , k) be any collection of
TNNs and 0 < μ ≤ min (at , bt , ct , dt , 1 − lt , 1 − mt, 1 −
nt , 1−pt , 1−xt , 1−yt , 1−vt , 1−wt) < 1. The logarithmic
trapezoidal neutrosophic weighted arithmetic aggregation
operator Larm : �k → � is defined as

Larm(˜A1, ˜A2, · · · , ˜Ak) = φ1 logμ1
˜A1

⊕

φ2 logμ2
˜A2

⊕

· · ·
⊕

φk logμk
˜Ak,

where ω = (φ1, φ2, · · · , φk)
T is the weight vector with

φt ≥ 0 and
k
∑

t=1

φt = 1.

Note 4.1.1 For convenience, we denote Larm(A1, ˜A2, · · · ,
˜Ak) = Larm.

Theorem 4.1 Let ˜As = 〈(as, bs, cs, ds), (ls , ms, ns, ps),

(xs, ys, vs, ws)〉 (s = 1, 2, · · · , p) be any collection of
TNNs. Then the aggregated value by using Larm operator is
also TNN and is given by

Larm =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

〈[

1 −
p
∏

s=1
(logμs

as)
φs , 1 −

p
∏

s=1
(logμs

bs)
φs , 1 −

p
∏

s=1
(logμs

cs)
φs , 1 −

p
∏

s=1
(logμs

ds)
φs

]

,

[

p
∏

s=1
(logμs

(1 − ls))
φs ,

p
∏

s=1
(logμs

(1 − ms))
φs ,

p
∏

s=1
(logμs

(1 − ns))
φs ,

p
∏

s=1
(logμs

(1 − ps))
φs

]

,

[

p
∏

s=1
(logμs

(1 − xs))
φs ,

p
∏

s=1
(logμs

(1 − ys))
φs ,

p
∏

s=1
(logμs

(1 − vs))
φs ,

p
∏

s=1
(logμs

(1 − ws))
φs

]〉

;
0 < μs ≤ min (as, bs, cs, ds, 1 − ls , 1 − ms, 1 − ns, 1 − ps, 1 − xs, 1 − ys, 1 − vs, 1 − ws) < 1
〈[

1 −
p
∏

s=1
(log 1

μs

as)
φs , 1 −

p
∏

s=1
(log 1

μs

bs)
φs , 1 −

p
∏

s=1
(log 1

μs

cs)
φs , 1 −

p
∏

s=1
(log 1

μs

ds)
φs

]

,

[

p
∏

s=1
(log 1

μs

(1 − ls))
φs ,

p
∏

s=1
(log 1

μs

(1 − ms))
φs ,

p
∏

s=1
(log 1

μs

(1 − ns))
φs ,

p
∏

s=1
(log 1

μs

(1 − ps))
ωs

]

,

[

p
∏

s=1
(log 1

μs

(1 − xs))
φs ,

p
∏

s=1
(log 1

μs

(1 − ys))
φs ,

p
∏

s=1
(log 1

μs

(1 − vs))
φs ,

p
∏

s=1
(log 1

μs

(1 − ws))
ωs

]〉

;
0 < 1

μs
≤ min (as, bs, cs, ds, 1 − ls , 1 − ms, 1 − ns, 1 − ps, 1 − xs, 1 − ys, 1 − vs, 1 − ws) < 1

(1)
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Proof To prove the Theorem 4.1, we use mathematical
induction on s, where 0 < μs ≤ min (as, bs, cs, ds, 1−

ls , 1−ms, 1−ns, 1−ps, 1−xs, 1−ys, 1−vs, 1−ws) < 1
(s = 1, 2, · · · , p). When s = 2, we get

Larm(˜A1, ˜A2)

= φ1 logμ1
˜A1
⊕

φ2 logμ2
˜A2

= 〈[1 − (logμ1
a1)

φ1 , 1 − (logμ1
b1)

φ1 , 1 − (logμ1
c1)

φ1 , 1 − (logμ1
d1)

φ1
]

,
[

(logμ1
(1 − l1))

φ1 , (logμ1
(1 − m1))

φ1 ,

(logμ1
(1 − n1))

φ1 , (logμ1
(1 − p1))

φ1
]

,
[

(logμ1
(1 − x1))

φ1 , (logμ1
(1 − y1))

φ1 , (logμ1
(1 − v1))

φ1 , (logμ1
(1 − w1))

φ1
]〉

⊕ 〈[

1 − (logμ2
a2)

φ2 , 1 − (logμ2
b2)

φ2 , 1 − (logμ2
c2)

φ2 , 1 − (logμ2
d2)

φ2
]

,
[

(logμ2
(1 − l2))

φ2 , (logμ2
(1 − m2))

φ2 ,

(logμ2
(1 − n2))

φ2 , (logμ2
(1 − p2))

φ2
]

,
[

(logμ2
(1 − x2))

φ2 , (logμ2
(1 − y2))

φ2 , (logμ2
(1 − v2))

φ2 , (logμ2
(1 − w2))

φ2
]〉

= 〈[1 − (logμ1
a1)

φ1(logμ2
a2)

φ2 , 1 − (logμ1
b1)

φ1(logμ2
b2)

φ2 , 1−(logμ1
c1)

φ1(logμ2
c2)

φ2 , 1−(logμ1
d1)

φ1(logμ2
d2)

φ2
]

,
[

(logμ1
(1 − l1))

φ1(logμ2
(1 − l2))

φ2 , (logμ1
(1 − m1))

φ1(logμ2
(1 − m2))

φ2 , (logμ1
(1 − n1))

φ1(logμ2
(1 − n2))

φ2 ,

(logμ1
(1 − p1))

φ1(logμ2
(1 − p2))

φ2
]

,
[

(logμ1
(1 − x1))

φ1(logμ2
(1 − x2))

φ2 , (logμ1
(1 − y1))

φ1(logμ2
(1 − y2))

φ2 ,

(logμ1
(1 − v1))

φ1(logμ2
(1 − v2))

φ2 , (logμ1
(1 − w1))

φ1(logμ2
(1 − w2))

φ2
]〉

=
〈[

1 −
2
∏

s=1
(logμs

as)
φs , 1 −

2
∏

s=1
(logμs

bs)
φs , 1 −

2
∏

s=1
(logμs

cs)
φs , 1 −

2
∏

s=1
(logμs

ds)
φs

]

,

[

2
∏

s=1
(logμs

(1 − ls))
φs ,

2
∏

s=1
(logμs

(1 − ms))
φs ,

2
∏

s=1
(logμs

(1 − ns))
φs ,

2
∏

s=1
(logμs

(1 − ps))
φs

]

,

[

2
∏

s=1
(logμs

(1 − xs))
φs ,

2
∏

s=1
(logμs

(1 − ys))
φs ,

2
∏

s=1
(logμs

(1 − vs))
φs ,

2
∏

s=1
(logμs

(1 − ws))
φs

]〉

Thus, the Theorem is true for s=2. Let us assume that the
Theorem is true for s = p. Then

Larm(˜A1, ˜A2, · · · , ˜Ap)

=
〈

[1 −
p
∏

s=1
(logμs

as)
φs , 1 −

p
∏

s=1
(logμs

bs)
φs , 1 −

p
∏

s=1
(logμs

cs)
φs , 1 −

p
∏

s=1
(logμs

ds)
φs

]

,

[

p
∏

s=1
(logμs

(1 − ls))
φs ,

p
∏

s=1
(logμs

(1 − ms))
φs ,

p
∏

s=1
(logμs

(1 − ns))
φs ,

p
∏

s=1
(logμs

(1 − ps))
φs

]

,

[

p
∏

s=1
(logμs

(1 − xs))
φs ,

p
∏

s=1
(logμs

(1 − ys))
φs ,

p
∏

s=1
(logμs

(1 − vs))
φs ,

p
∏

s=1
(logμs

(1 − ws))
φs

]〉

Now,

Larm(˜A1, ˜A2, · · · , ˜Ap, ˜Ap+1)

=
〈[

1 −
p
∏

s=1
(logμs

as)
φs , 1 −

p
∏

s=1
(logμs

bs)
φs , 1 −

p
∏

s=1
(logμs

cs)
φs , 1 −

p
∏

s=1
(logμs

ds)
φs

]

,

[

p
∏

s=1
(logμs

(1 − ls))
φs ,

p
∏

s=1
(logμs

(1 − ms))
φs ,

p
∏

s=1
(logμs

(1 − ns))
φs ,

m
∏

s=1
(logμs

(1 − ps))
φs

]

,

[

p
∏

s=1
(logμs

(1 − xs))
φs ,

p
∏

s=1
(logμs

(1 − ys))
φs ,

p
∏

s=1
(logμs

(1 − vs))
φs ,

p
∏

s=1
(logμs

(1 − ws))
φs

]〉

⊕

φp+1 logμp+1
˜Ap+1

=
〈[

1 −
p
∏

s=1
(logμs

as)
φs , 1 −

p
∏

s=1
(logμs

bs)
φs , 1 −

p
∏

s=1
(logμs

cs)
φs , 1 −

p
∏

s=1
(logμs

ds)
φs

]

,

[

p
∏

s=1
(logμs

(1 − ls))
φs ,

p
∏

s=1
(logμs

(1 − ms))
φs ,

p
∏

s=1
(logμs

(1 − ns))
φs ,

p
∏

s=1
(logμs

(1 − ps))
φs

]

,

[

p
∏

s=1
(logμs

(1 − xs))
φs ,

p
∏

s=1
(logμs

(1 − ys))
φs ,
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p
∏

s=1
(logμs

(1 − vs))
φs ,

p
∏

s=1
(logμs

(1 − ws))
φs

]〉

⊕

〈[

1 − (logμp+1
ap+1)

φp+1 , 1 − (logμp+1
bp+1)

φp+1 ,

p
∏

s=1
1 − (logμp+1

cp+1)
φp+1 , 1 − (logμp+1

dp+1)
φp+1

]

,

[

(logμp+1
(1 − lp+1))

φp+1 , (logμp+1
(1 − mp+1))

φp+1 ,

(logμp+1
(1 − np+1))

φp+1 , (logμp+1
(1 − pp+1))

φp+1

]

,

[

(logμp+1
(1 − xp+1))

φp+1 , (logμp+1
(1 − yp+1))

φp+1 ,

(logμp+1
(1 − vp+1))

φp+1 , (logμp+1
(1 − wp+1))

φ1

]〉

=
〈[

1 −
p+1
∏

s=1
(logμs

as)
φs , 1 −

p+1
∏

s=1
(logμs

bs)
φs , 1 −

p
∏

s=1
(logμs

cs)
φs , 1 −

p+1
∏

s=1
(logμs

ds)
φs

]

,

[

p+1
∏

s=1
(logμs

(1 − ls))
φs ,

p+1
∏

s=1
(logμs

(1 − ms))
φs ,

p+1
∏

s=1
(logμs

(1 − ns))
φs ,

p+1
∏

s=1
(logμs

(1 − ps))
φs

]

,

[

p+1
∏

s=1
(logμs

(1 − xs))
φs ,

p+1
∏

s=1
(logμs

(1 − ys))
φs ,

p+1
∏

s=1
(logμs

(1 − vs))
φs ,

p+1
∏

s=1
(logμs

(1 − ws))
φs ]
〉

This shows that the Theorem is valid for s=p+1. Hence
by mathematical induction, we can say that the above
Theorem holds for all integral value of s.

Again, if 0 < 1
μs

≤ min (as, bs, cs, ds, 1 − ls , 1 − ms,

1 − ns, 1 − ps, 1 − xs, 1 − ys, 1 − vs, 1 − ws) < 1, then
proceeding in the similar approach as in above case, we also
get

Larm(˜A1, ˜A2, · · · , ˜Ap)

=
〈[

1 −
p
∏

s=1
(log 1

μs

as)
φs , 1 −

p
∏

s=1
(log 1

μs

bs)
φs , 1 −

p
∏

s=1
(log 1

μs

cs)
φs , 1 −

p
∏

s=1
(log 1

μs

ds)
φs

]

,

[

p
∏

s=1
(log 1

μs

(1 − ls))
φs ,

p
∏

s=1
(log 1

μs

(1 − ms))
φs ,

p
∏

s=1
(log 1

μs

(1 − ns))
φs ,

p
∏

s=1
(log 1

μs

(1 − ps))
ωs

]

,

[

p
∏

s=1
(log 1

μs

(1 − xs))
φs ,

p
∏

s=1
(log 1

μs

(1 − ys))
φs ,

p
∏

s=1
(log 1

μs

(1 − vs))
φs ,

p
∏

s=1
(log 1

μs

(1 − ws))
ωs

]〉

.

4.1 Properties of aggregation operator

In this subsection the Properties of Larm opera-
tor has been presented. Here, it is assumed that
μ1 = μ2 = · · · = μp = μ (say) and 0 < μ ≤ min
(as, bs, cs, ds, 1 − ls , 1 − ms, 1 − ns, 1 − ps, 1 − xs,

1 − ys, 1 − vs, 1 − ws) < 1. Also ω = (φ1, φ2, · · · , φp)T

be the weight vector such that φs ≥ 0 and
p
∑

s=1

φs = 1.

Lemma 4.1.1 (Idempotency of Larm operator ) If ˜As = ˜A,
∀ s, where ˜A = 〈(a, b, c, d), (l, m, n, p), (x, y, v, w)〉 then
Larm(˜A1, ˜A2, · · · , ˜Ap) = logμ

˜A

Proof Since ˜As = ˜A, ∀ s, where ˜A = 〈(a, b, c, d),

(l, m, n, p), (x, y, v, w)〉 is an TNN such that ˜As = ˜A, ∀ s.
Then, from the Theorem (4.1), we get

Larm(˜A1, ˜A2, · · · , ˜Ap)

=
〈[

1 −
p
∏

s=1
(logμs

a)φs , 1 −
p
∏

s=1
(logμs

b)φs , 1 −
p
∏

s=1
(logμs

c)φs , 1 −
p
∏

s=1
(logμs

d)φs

]

,

[

p
∏

s=1
(logμs

(1 − l))φs ,

p
∏

s=1
(logμs

(1 − m))φs ,
p
∏

s=1
(logμs

(1 − n))φs ,
p
∏

s=1
(logμs

(1 − p))φs

]

,

[

p
∏

s=1
(logμs

(1 − x))φs ,
p
∏

s=1
(logμs

(1 − y))φs ,

p
∏

s=1
(logμs

(1 − v))φs ,
p
∏

s=1
(logμs

(1 − w))φs

]〉
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=
〈[

1 − (logμ a)
∑

φs , 1 − (logμ b)
∑

φs , 1 − (logμ c)
∑

φs , 1 − (logμ d)
∑

φs

]

,
[

(logμ(1 − l))
∑

φs , (logμ(1 − m))
∑

φs ,

(logμ(1 − n))
∑

φs , (logμ(1 − p))
∑

φs ], [(logμ(1 − x))
∑

φs , (logμ(1 − y))
∑

φs , (logμ(1 − v))
∑

φs ,

(logμ(1 − w))
∑

φs

]〉

,
[

since, δs = δ and ˜As = ˜A ∀ s
]

= logμ
˜A.

Lemma 4.1.2 ( Boundedness of Larm operator ) Let ˜As =
〈(as, bs, cs, ds) , (ls , ms, ns, ps) , (xs, ys, vs, ws)〉 , (s =
1, 2, · · · , p) be any collection of TNNs and let
˜Amin = 〈[min as,min bs,min cs,min ds] , [max ls ,maxms,

max ns,maxps] , [max xs,max ys,max vs,maxws]〉 ,
˜Amax = 〈[max as,max bs,max cs,max ds] , [min ls ,min

ms,min ns,minps] , [min xs,min ys,min vs,minws]〉 ,
˜A− = Larm(˜Amin, ˜Amin, · · · , ˜Amin),
˜A+ = Larm(˜Amax, ˜Amax, · · · , ˜Amax).

Then we have

˜A− ≤ Larm(˜A1, ˜A2, · · · , ˜Ap) ≤ ˜A+

Proof The proof of the Lemma follows from the Theorem
4.1 and the Lemma 4.1.1.

Lemma 4.1.3 (Monotonicity of Larm operator) Let ˜As =
〈(as, bs, cs, ds) , (ls , ms, ns, ps) , (xs, ys, vs, ws)〉 and
˜A′

s = 〈(

a′
s , b

′
s , c

′
s , d

′
s

)

,
(

l′s , m′
s , n

′
s , p

′
s

)

,
(

x′
s , y

′
s , v

′
s , w

′
s

)〉

,

(s = 1, 2, · · · , p) be two collection of TNNs. If
˜As ≤ ˜A′

s ∀ s, then

Larm(˜A1, ˜A2, · · · , ˜Ap) ≤ Larm(˜A′
1,
˜A′
2, · · · , ˜A′

p)

Proof The proof of above Lemma is similar to the Lemma
4.1.2 and hence omitted.

Definition 4.2 Let ˜As = 〈(as, bs, cs, ds) , (ls , ms, ns, ps) ,

(xs, ys, vs, ws)〉 , (s = 1, 2, · · · , p) be any
collection of TNNs and 0 < μ ≤ min
(as, bs, cs, ds, 1 − ls , 1 − ms, 1 − ns, 1 − ps, 1 − xs,

1 − ys, 1 − vs, 1 − ws) < 1. The logarithmic trapezoidal
neutrosophic weighted geometric aggregation operator
Lgeo : �p → � is defined as

Lgeo

(

˜A1, ˜A2, · · · , ˜Ap

) = (logμ1
˜A1
)φ1
⊗
(

logμ2
˜A2
)φ2

⊗

· · ·
⊗
(

logμp
˜Ap

)φp

where ω = (φ1, φ2, · · · , φp)T is the weight vector with

φs ≥ 0 and
p
∑

s=1

φs = 1.

Theorem 4.2 Let ˜As = 〈(as, bs, cs, ds) , (ls , ms, ns, ps) ,

(xs, ys, vs, ws)〉 (s = 1, 2, · · · , p) be any collection of
TNNs. Then the aggregated value by using Lgeo operator is
also TNN and is given by

Lgeo =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

〈[∏p

s=1(1 − logμs
as)

φs ,
∏p

s=1(1 − logμs
bs)

φs ,
∏p

s=1(1 − logμs
cs)

φs ,
∏p

s=1(1 − logμs
ds)

φs
]

,
[

1 −∏p

s=1(1 − logμs
(1 − ls))

φs , 1 −∏p

s=1(1 − logμs
(1 − ms))

φs , 1 −∏p

s=1(1 − logμs
(1 − ns))

φs ,

1 −∏p

s=1(1 − logμs
(1 − ps))

φs
]

,
[

1 −∏p

s=1(1 − logμs
(1 − xs))

φs , 1 −∏p

s=1(1 − logμs
(1 − ys))

φs ,

1 −∏p

s=1(1 − logμs
(1 − vs))

φs , 1 −∏p

s=1(1 − logμs
(1 − ws))

φs
]〉 ;

0 < μs ≤ min (as, bs, cs, ds, 1 − ls , 1 − ms, 1 − ns, 1 − ps, 1 − xs, 1 − ys, 1 − vs, 1 − ws) < 1
〈[

∏p

s=1(1 − log 1
μs

as)
φs ,
∏p

s=1(1 − log 1
μs

bs)
φs ,

p
∏

s=1
(1 − log 1

μs

cs)
φs ,
∏p

s=1(1 − log 1
μs

ds)
φs

]

,
[

1 −∏p

s=1(1 − log 1
μs

(1 − ls))
φs , 1 −∏p

s=1(1 − log 1
μs

(1 − ms))
φs , 1 −∏p

s=1(1 − log 1
μs

(1 − ns))
φs ,

1 −∏p

s=1(1 − log 1
μs

(1 − ps))
φs

]

,
[

1 −∏p

s=1(1 − log 1
μs

(1 − xs))
φs , 1 −∏p

s=1(1 − log 1
μs

(1 − ys))
φs ,

1 −∏p

s=1(1 − log 1
μs

(1 − vs))
φs , 1 −∏p

s=1(1 − log 1
μs

(1 − ws))
φs

]〉

;
0 < 1

μs
≤ min (as, bs, cs, ds, 1 − ls , 1 − ms, 1 − ns, 1 − ps, 1 − xs, 1 − ys, 1 − vs, 1 − ws) < 1

(2)
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Proof The proof of the Theorem is exactly same as
Theorem 4.1 and hence omitted.

Note 4.2.1 For convenience, we denote Lgeo(˜A1, ˜A2, · · · ,
˜Ap) = Lgeo.

5 MCGDM technique based on Larm
and Lgeo operators

MCGDM is a branch of operational research. In MCGDM
technique, a group of expert/decision-makers are involve
to select the best alternative from a given set of feasible
alternatives with respect to some given criteria. Here, we
have introduced an MCGDM technique by utilizing the
operators Larm & Lgeo, scalar multiplication & addition
of TNNs and its defuzzyfication method. In this technique,
we have considered the influence of the decision makers
weights in the decision making procedure. Here, we have
considered the MCGDM technique as follows:

Let U = {U1, U2, · · · , Uu} be the set of ‘u’ different
alternatives and V = {V1, V2, · · · , Vv} be the set of
‘v’ different attributes with the associated weight vectors

ω = (φ1, φ2, · · · , φv)
T , where φt ≥ 0 and

v
∑

t=1

φt =
1. Also, we take the set of decision-makers W =
{W1, W2, · · · , Ww} whose weight values are assumed as
� = {�1, �2, · · · , �w}, where �k ≥ 0, (k = 1, 2, · · · , w)

and satisfy the condition
w
∑

k=1

�k = 1. Here, the weight

values of the decision-maker’s will be assumed according
to ability of judgement, thinking ability, knowledge power,
etc. According to the suitable judgement of the decision-
makers, firstly we have constructed the decision matrices
related with different alternatives. The evaluated values for
the alternatives on the attributes are given as

˜Ar
ij =

〈(

ar
ij , b

r
ij , c

r
ij , d

r
ij

)

,
(

lrij , m
r
ij , n

r
ij , p

r
ij

)

,
(

xr
ij , y

r
ij , v

r
ij , w

r
ij

)〉

, i = 1, 2, · · · , u,

j = 1, 2, · · · , v, r = 1, 2, · · · , w.

The associated decision matrix (DM) is characterized as
follows:

where r = 1, 2, · · · , w.
Let the logarithmic base index for TNNs are given by μr

ij

(i = 1, 2, · · · , u), (j = 1, 2, · · · , v) where 0 < μr
ij ≤

min (aij , bij , cij , dij , 1− lij , 1− mij , 1− nij , 1− pij , 1−
xij , 1− yij , 1− vij , 1− wij ) < 1 which are summarised in
the matrix form as follows:

where r = 1, 2, · · · , w.
Now, our MCGDM technique under TN environment has

been executed through the following steps:

Step 1: Firstly, we apply the Larm or Lgeo operator on
every decision matrix DMr to get a new column
matrix Cr

u×1 as follows

Cr
u×1 = T NWEA(˜A1, ˜A2, · · · , ˜Av)

=
U1

U2
...
Uu

⎛

⎜

⎜

⎜

⎝

˜Ar
11
˜Ar
21

...
˜Ar

u1

⎞

⎟

⎟

⎟

⎠

,

where entities of column matrix Cr
u×1 is the

aggregated evaluation values with respect to
different criterion (r = 1, 2, · · · , w).

Step 2: Here, we obtain overall attribute values ˜As1

corresponding to the alternatives Us (s =
1, 2, · · · , u) after utilizing decision-maker’s (�k)

weights according to the relation
w
∑

k=1

�kC
k
u×1

(scalar multiplication and addition of TNNs) in
the form of final decision matrix (DM) as follows

DM =
U1

U2
...
Uu

⎛

⎜

⎜

⎜

⎝

˜A11
˜A21
...
˜Au1

⎞

⎟

⎟

⎟

⎠

.

Step 3: We calculate DNeu(˜As1) of the alternatives Us ,
(s = 1, 2, · · · , u) utilizing de-Neutrosophication
technique according to the Definition 2.1.1.

Step 4: After getting all the de-Neutrosophication values
of the corresponding alternatives, the alternatives
have been ranked according to the Definition 2.1.2
and select the best one.

Remark 5.1 The steps of MCGDM technique have been
shown pictorially in Fig. 2.
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Fig. 2 Flowchart of our
MCGDM technique

6 Detection of most harmful virus
by utilizing proposedMCGDM technique

Let us consider a realistic problem linked with medical
domain due to presence of disjunctive kinds of virus in our
environment. In this current era, we observed that, humans
of our world are suffering from many diseases and they
deal with disjunctive sort of symptoms in exclusive times.
It is a burning issue to identify which virus is the most
harmful virus for human in recent times. Peoples always
went to the hospital or nursing home and meet the doctor’s
for advice. Now the doctor’s always try to identify the fever
according to lab test report and symptoms on the patient’s
body. But, sometimes their minds are in dilemma about the
virus and symptoms when they are so closely related to each
other. Thus it is a problem of uncertainty domain in which
neutrosophic components are present. People of our society
are come to know about the virus and its effects according
to the opinions of doctors. Now, our problem is to collect

data’s from different doctors (Junior, Adult, Senior) related
with virus and symptoms and create decision matrices in
hesitation arena and focus to find out the most harmful virus
in our environment. Thus, it becomes an MCGDM problem
having three alternatives, three attributes and three types of
decision-maker.

Let the alternatives are: U1 = Virus 1 (Ebola Virus),
U2 = Virus 2 (Marburg Virus), U3 = Virus 3 (Corona
Virus) and the corresponding attributes are V1 = Symptom
1 (Vomiting), V2 = Symptom 2 (Sore Throat Problem),
V3 = Symptom 3 (cough and Red Eyes). Let us consider
the decision-makers W1 = Junior Doctor, W2 = Adult
Doctor, W3 = Senior Doctor having weight value D =
{0.33, 0.37, 0.3} and the weight corresponding to the
attribute function is taken as � = {0.32, 0.35, 0.33}. The
three alternatives are to be evaluated under these three
attributes and give their preferences in terms of TNNs by
the decision-makers.
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The evaluated information of the alternatives Ui , (i =
1, 2, · · · , u) under the attribute Vj , (j = 1, 2, · · · , v)

are characterized in the following trapezoidal neutrosophic
number decision matrices:

Furthermore, the logarithmic base matrices of correspond-
ing decision matrices are characterized as

Now, we have used the proposed technique under TN
environment as follows:

Step 1: Firstly, we use the Larm operator on each decision
matrix DMr according to the equation (1) we
have new column matrices Cr

3×1(r = 1, 2, 3) as
follows

C1
3×1 =

U1

U2

U3

⎛

⎝

〈(0.3918, 0.7694, 0.7743, 0.7893), (0.2910, 0.3385, 0.3476, 0.3871), (0.244, 0.3208, 0.1988, 0.3331)〉
〈(0.3808, 0.5407, 0.5420, 0.6125), (0.5126, 0.6103, 0.6805, 0.7422), (0.0944, 0.3979, 0.4810, 0.5483)〉
〈(0.6726, 0.7638, 0.7826, 0.7905), (0.3944, 0.5541, 0.5755, 0.6033), (0.3667, 0.4647, 0.6541, 0.7051)〉

⎞

⎠ ,

C2
3×1 =

U1

U2

U3

⎛

⎝

〈(0.1775, 0.5579, 0.7214, 0.7517), (0.4421, 0.4886, 0.5037, 1.000), (0.3250, 0.7206, 0.7281, 0.7392)〉
〈(0.4970, 0.5352, 0.696, 0.6406), (0.4562, 0.5515, 0.5803, 0.6293), (0.4089, 0.4185, 0.4271, 0.7255)〉
〈(0.2484, 0.7406, 0.7768, 0.7573), (0.4227, 0.4427, 0.4623, 0.5397), (0.4269, 0.4952, 0.6144, 0.7539)〉

⎞

⎠ ,

C3
3×1 =

U1

U2

U3

⎛

⎝

〈(0.5616, 0.7568, 0.8417, 0.8529), (0.2368, 0.3843, 0.6788, 0.7408), (0.5078, 0.6911, 0.7518, 0.8314)〉
〈(0.6192, 0.6198, 0.6795, 0.7452), (0.3422, 0.6367, 0.6438, 0.7248), (0.6838, 0.6838, 0.8295, 0.8438)〉
〈(0.2446, 0.3002, 0.395, 0.6889), (0.3986, 0.4046, 0.7998, 0.8819), (0.5960, 0.6107, 0.6146, 0.6787)〉

⎞

⎠ .

Again, if we utilize the operator Lgeo operator
according to the (2) on every decision matrix

DMr , we get new column matrices Cr
3×1(r =

1, 2, 3) as follows:
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(

C1
3×1

)

geo
=

U1
U2
U3

( 〈(0.6082, 0.6306, 0.6357, 0.6407), (0.5090, 0.5215, 0.5524, 0.7129), (0.7560, 0.7792, 0.8012, 0.8669)〉
〈(0.4192, 0.4513, 0.4580, 0.4875), (0.1874, 0.3897, 0.4195, 0.5780), (0.6056, 0.6210, 0.7190, 0.7517)〉
〈(0.3274, 0.3362, 0.6174, 0.6395), (0.4056, 0.4459, 0.5245, 0.6967), (0.6333, 0.6353, 0.6459, 0.6949)〉

)

,

(

C2
3×1

)

geo
=

U1
U2
U3

( 〈(0.3225, 0.4421, 0.4786, 0.4830), (0.5079, 0.5114, 0.5963, 1.000), (0.2675, 0.2694, 0.3819, 0.4608)〉
〈(0.5030, 0.5648, 0.6040, 0.6594), (0.5438, 0.5485, 0.5697, 0.5707), (0.5411, 0.5915, 0.7290, 0.7745)〉
〈(0.4516, 0.4594, 0.5232, 0.5427), (0.5773, 0.5573, 0.6377, 0.6603), (0.1731, 0.3048, 0.3856, 0.4461)〉

)

,

(

C3
3×1

)

geo
=

U1
U2
U3

( 〈(0.4384, 0.4432, 0.4583, 0.4710), (.5632, 0.6157, 0.6212, 0.6592), (0.2922, 0.3089, 0.3482, 0.3686)〉
〈(0.3808, 0.4842, 0.5205, 0.548), (0.4578, 0.5433, 0.5562, 0.5752), (0.3162, 0.3162, 0.3705, 0.3862)〉
〈(0.7554, 0.7998, 0.8050, 0.8111), (0.4014, 0.5954, 0.6002, 0.6181), (0.4040, 0.4893, 0.5954, 0.6213)〉

)

.

Step 2: We now apply decision-maker’s weight maintain-

ing the relation
w
∑

k=1

�kC
k
u×1 (scalar multiplication

and addition of TNNs) and we have overall
attribute values ˜As1 for the alternatives Us(s =
1, 2, 3) under the operator Larm as follows

(DM)arm =
U1
U2
U3

( 〈(0.3836, 0.7019, 0.7575, 0.7615), (0.3193, 0.4179, 0.5298, 0.6054), (0.3380, 0.4476, 0.5765, 0.5886)〉
〈(0.5044, 0.5680, 0.5910, 0.6677), (0.5063, 0.6009, 0.6350, 0.6995), (0.3069, 0.3727, 0.5138, 0.5494)〉
〈(0.4278, 0.6474, 0.6789, 0.6819), (0.4059, 0.4902, 0.5858, 0.6171), (0.4731, 0.5164, 0.5533, 0.5951)〉

)

.

On the other side, if we apply decision-makers
weight under the operator Lgeo according to

the relation
w
∑

k=1

�kC
k
u×1, we get overall attribute

values ˜As1 for the alternatives Us(s = 1, 2, 3)
which is given as

(DM)geo =
U1
U2
U3

( 〈(0.3744, 0.4202, 0.4539, 0.5389), (0.4633, 0.5766, 0.6512, 0.6632), (0.3374, 0.3808, 0.4830, 0.5119)〉
〈(0.5138, 0.5512, 0.6269, 0.6395), (0.2051, 0.3952, 0.4612, 0.4615), (0.4459, 0.4931, 0.5589, 0.5948)〉
〈(0.6565, 0.6947, 0.6998, 0.7335), (0.337, 0.3570, 0.3698, 0.3709), (0.3425, 0.4061, 0.4238, 0.4567)〉

)

.

Step 3: The de-Neutrosofication values of ˜As1, (s =
1,2,3) corresponding to Larm operator are
DNeu(˜A11) = 0.5208, DNeu(˜A21) = 0.4882,
DNeu(˜A31) = 0.5837. On the other hand,
the de-Neutrosofication values of ˜As1, (s =
1,2,3) corresponding to operator Lgeo are
DNeu(˜A11) = 0.5156, DNeu(˜A21) = 0.51,
DNeu(˜A31) = 0.5601.

Step 4: The ranking order of de-Neutrosofication values
is DNeu(˜A31) > DNeu(˜A11) > DNeu(˜A21) for
the operator Larm. Therefore, the ranking order of
the alternatives is U3 > U1 > U2. Therefore, U3
is the best option. Again, under the operator Lgeo,
the ranking order of the alternatives is U3 > U2 >

U1. Therefore, U3 is the best option.

6.1 Sensitivity analysis

The logical approach of sensitivity analysis is performed
by exchanging the weights of the decision-makers keeping
the remainder of the term are unchanged. Here, we perform
sensitivity analysis under the Larm and Lgeo operators to
capture the influence of the decision-makers weight on the

relative matrix and their ranking. The sensitivity analysis
results are shown in the Tables 1 & 2 under the operators
Larm and Lgeo respectively. In the Figs. 3 and 4, we have
represented the corresponding weights values of different
decision-makers and the ranking order of the alternatives
respectively under Larm operator. Also, in the Figs. 5 and
6, we have presented the related weights values of different
decision-makers and the ranking order of the alternatives
respectively under Lgeo operator.

In Table 1, we consider different weight vectors of the
decision-makers and get U3 is the best option in four cases
and U1 is the best option for one case under the operator
Larm. Again, in Table 2, we consider same weight vectors
of the decision-makers as in Table 1 and get U3 is the best
option in all cases under the operator Lgeo.

6.2 Comparative analysis

To demonstrate the efficiency and validity of our proposed
method, we have presented a comparison study of our
method with the existing methods in Table 3.

From the Table 3, we have observed that aggregation
operator proposed by Ye [15] cannot be apply in our
decision matrices as indeterminacy part is absent in this

A novel logarithmic operational law and aggregation operators for trapezoidal neutrosophic number with... 4413



Fig. 3 Different
decision-maker’s weights under
the operator Larm

Fig. 4 Ranking order of the
alternatives under the operator
Larm

Fig. 5 Different
decision-maker’s weights under
the operator Lgeo
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Fig. 6 Ranking order of the
alternatives under the operator
Lgeo

aggregation operator. Also Liang et al. [20], Biswas
et al. [23], Pranab et al. [34], Pramanik & Mallick [35],
Liu & Zhang [36] and Wu et al. [37] work on SVTNN
environment which is different from general TNN [16]
through its basic character. So we cannot apply this method
in our decision matrices to execute the best alternative.
Thus, we have applied the operators TNNWAA [16],
TNNWGA [16], ITNNWAA [17] and ITNNWGA [17]
on our data set and obtained the results. Interestingly,
we have found that the ranking order under the different
operators and our method are exactly same. On the other
hand we have already checked the stability of our obtained
results through sensitivity analysis. These phenomenons
clearly show the efficiency & reliability of our proposed
logarithmic operational law based MCGDM technique.

7 Conclusion

In this article, we have presented new logarithmic oper-
ational laws for TNNs which is a productive enhance-
ment of existing operational laws. We have studied their

mathematical Properties like boundedness, monotonicity
etc. Moreover, we have proposed the logarithmic trape-
zoidal neutrosophic weighted arithmetic aggregation opera-
tor Larm and logarithmic trapezoidal neutrosophic weighted
geometric aggregation operator Lgeo and presented an
MCGDM technique in TN environment by using these
aggregation operators. A numerical problem has been taken
up to demonstrate the proposed MCGDMmethod. Also, we
have discussed the usefulness and the utility of the proposed
method through a sensitivity analysis. Finally, a comparison
study of our proposed technique with existing methods has
been presented to justify the rationality and efficiency of our
proposed technique. From this article, we can conclude that
our defined operational law and its corresponding MCGDM
technique give a new direction to deal decision-making
problems.

In the future work, the defined logarithmic operational
law can be expanded to the other uncertain environments
to enrich the decision-making procedure. Researchers can
immensely apply these ideas of neutrosophic number in
numerous flourishing research fields like mobile comput-
ing, pattern recognition, cloud computing, etc.

Table 3 Comparison with the existing methods

Methods Nature of the Multiple group of Operators Ranking order

environment decision makers

Ye [15] TrIFN × TIFPWA TIFPWG Not applicable

Liang et al. [20] SVTNN × SVTNWAA SVTNWGA Not applicable

Biswas et al. [23] SVTNN × × Not applicable

Pramanik & Mallick [35] SVTNN � × Not applicable

Liu & Zhang [36] SVTNN � SVTNWMSM Not applicable

Wu et al. [37] SVTNN � SVTNPA SVTNPG Not applicable

Ye [16] TNN × TNNWAA TNNWGA U3 > U2 > U1 U3 > U2 > U1

Jana et al. [17] TNN × ITNNWAA ITNNWGA U3 > U2 > U1 U3 > U2 > U1

Proposed Method TNN � Larm Lgeo U3 > U2 > U1 U3 > U2 > U1

A novel logarithmic operational law and aggregation operators for trapezoidal neutrosophic number with... 4415
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