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Abstract
Our main result is to establish stability of martingale couplings: suppose that π is a
martingale coupling with marginals μ, ν. Then, given approximating marginal mea-
sures μ̃ ≈ μ, ν̃ ≈ ν in convex order, we show that there exists an approximating
martingale coupling π̃ ≈ π with marginals μ̃, ν̃. In mathematical finance, prices of
European call/put option yield information on the marginal measures of the arbitrage
free pricing measures. The above result asserts that small variations of call/put prices
lead only to small variations on the level of arbitrage free pricing measures. While
these facts have been anticipated for some time, the actual proof requires somewhat
intricate stability results for the adapted Wasserstein distance. Notably the result has
consequences for several related problems. Specifically, it is relevant for numerical
approximations, it leads to a new proof of the monotonicity principle of martingale
optimal transport and it implies stability of weak martingale optimal transport as well
as optimal Skorokhod embedding. On the mathematical finance side this yields con-
tinuity of the robust pricing problem for exotic options and VIX options with respect
to market data. These applications will be detailed in two companion papers.

W. Margheriti acknowledges support from the ‘Chaire Risques Financiers’, Fondation du Risque. G.
Pammer acknowledges support from the Austrian Science Fund (FWF) through Grant Number W1245.

B G. Pammer
gudmund.pammer@math.ethz.ch

M. Beiglböck
mathias.beiglboeck@univie.ac.at

B. Jourdain
benjamin.jourdain@enpc.fr

W. Margheriti
william.margheriti@enpc.fr

1 University of Vienna, Vienna, Austria

2 CERMICS, Ecole des Ponts, INRIA, Marne-la-Vallée, Paris, France

3 ETH Zürich, Zürich, Switzerland

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00440-021-01103-y&domain=pdf
http://orcid.org/0000-0003-2494-8739


360 M. Beiglböck et al.

Keywords Martingale optimal transport · Adapted Wasserstein distance · Stability

1 Introduction

Before carefully explaining all required notation and describing relevant literature,
let us give a first description of our main result and its relevance for the martingale
transport theory.

While classical transport theory is concerned with the set �(μ, ν) of couplings
or transport plans of probability measures μ, ν, the martingale variant restricts the
problem to the set �M (μ, ν) of martingale couplings, that is, transport plans which
preserve the barycenter of each particle. Even though the main interest lies in the case
where μ, ν are probabilities on the real line, many of the basic arguments and results
appear significantly more involved in the martingale context. A basic explanation lies
in the rigidity of the martingale condition that makes classically simple approximation
results quite intricate. Specifically, the martingale theory has been missing a counter-
part to the following straightforward fact of the classical transport theory:

Fact 1.1 (Stability of couplings) Let π ∈ �(μ, ν) and assume that μk, νk , k ∈ N,
are probabilities that converge weakly to μ and ν. Then there exist couplings πk ∈
�(μk, νk), k ∈ N converging weakly to π .

This result is so basic and straightforward that its implicit use is easily overlooked.
Note however that it plays a crucial role in a number of occasions, e.g. for stability of
optimal transport, providing numerical approximations, or in the characterisation of
optimality through cyclical monotonicity.

The main result of this article is to establish Fact 1.1 for martingale transports on
the real line, see Theorem 2.6 below. This closes a gap in the theory of martingale
transport and yields basic fundamental results in a unified fashion that is much closer
to the classical theory. It allows to address questions in martingale optimal transport,
optimal Skorokhod embedding and robust finance that have previously remained open.
These applications are considered systematically in two accompanying articles, see
[12] for the first of the two. Among other results, we establish therein the stability
of the superreplication bound for VIX futures as well as the stability of the stretched
Brownian motion. Moreover, we derive sufficiency of a monotonicity principle, in
the spirit of cyclical monotonicity of classical optimal transport, for the weak martin-
gale optimal transport problem and are able to generalize the results concerning the
corresponding notion of monotonicity in martingale optimal transport.

We note that while virtually all (to the best of our knowledge) applications of
martingale optimal transport are concerned with the case where μ, ν are supported on
R, it is a highly intriguing challenge to extend the martingale transport theory to the
case where μ, ν are supported on R

d , d > 1. In a remarkable contrast to our main
result, stability of martingale optimal transport breaks down in higher dimensions as
has been recently established by Brückerhoff and Juillet [17].
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1.1 Themartingale optimal transport problem

Let (X , dX ), (Y , dY ) be Polish spaces and C : X × Y → R+ be a nonnegative
measurable function. Denote by P(X) the set of probability measures on X . For μ ∈
P(X) and ν ∈ P(Y ), the classical Optimal Transport problem consists in minimising

inf
π∈�(μ,ν)

∫
X×Y

C(x, y) π(dx, dy), (OT)

where �(μ, ν) denotes the set of probability measures in P(X × Y ) with the first
marginal μ and the second marginal ν. When X = Y and C = drX for some r ≥ 1,
(OT) corresponds to the well-known Wasserstein distance with index r to the power
r , denoted Wr

r (μ, ν), see [4,51,53,54] for a study in depth.
The theory of OT goes back to Monge [44] in its original formulation and Kan-

torovich [39] in its modern formulation. It was rediscovered many times under various
forms and has an impressive scope of applications. A variant of OT that is motivated
by applications in mathematical finance, in particular in model-independent pricing,
was introduced in [11] in a discrete time setting and in [26] in a continuous time
setting. Compared to the usual OT, the difference is that one requires an additional
martingale constraint to (OT) which reflects the condition for a financial market to be
free of arbitrage.

In detail, the Martingale Optimal Transport (MOT) problem is formulated as fol-
lows: given π ∈ P(R×R), we denote by (πx )x∈X a regular conditional disintegration
with respect to its first marginal μ. We then write π(dx, dy) = μ(dx) πx (dy), or
with a slight abuse of notation, π = μ × πx if the context is not ambiguous. Let
C : R× R→ R+ be a nonnegative measurable function and μ, ν be two probability
distributions on the real line with finite first moment. Then the MOT problem consists
in minimising

inf
π∈�M (μ,ν)

∫
R×R

C(x, y) π(dx, dy), (MOT)

where �M (μ, ν) denotes the set of martingale couplings between μ and ν, that is

�M (μ, ν) =
{
π = μ× πx ∈ �(μ, ν) | μ(dx)-almost everywhere,

∫
R

y πx (dy) = x

}
.

According to Strassen’s theorem [52], the existence of a martingale coupling between
twoprobabilitymeasuresμ, ν ∈ P(R)with finite firstmoment is equivalent toμ ≤c ν,
where ≤c denotes the convex order. We recall that two finite positive measures μ, ν

on R with finite first moment and are said to be in the convex order if and only if we
have

∫
R

f (x) μ(dx) ≤
∫
R

f (y) ν(dy),
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for every convex function f : R→ (−∞,∞]. Note that there holds equality for all
affine functions, from which we deduce that μ and ν have equal masses and satisfy∫
R
x μ(dx) = ∫

R
y ν(dy).

For adaptations of classical optimal transport theory to the MOT problem, we refer
to [33,34,36]. Concerning duality results, we refer to [15,18,21,23]. We also refer
to [20,22,27,46] for the multi-dimensional case and to [10,14] for connections to
Skorokhod embedding problem.

Concerning the numerical resolution of the MOT problem, we refer to the articles
[2,3,19,30,32]. When μ and ν are finitely supported, then the MOT problem amounts
to linear programming. In the general case, once the MOT problem is discretised by
approximating μ and ν by probability measures with finite support and in the convex
order, Alfonsi, Corbetta and Jourdain [3] raised the question of the convergence of
optimal costs of the discretised problem towards the costs of the original problem. A
first partial result was obtained by Juillet [38] who established stability of left-curtain
coupling. Guo and Obłój [30] establish the result under moment conditions. More
recently, [9,55] independently gave a definite positive answer.

1.2 The adaptedWasserstein distance

The stability result shown in [9] involvesWasserstein convergence. More precisely, let
μk, νk ∈ P(R), k ∈ N be in the convex order and respectively converge to μ and ν in
Wr . Under mild assumption, for all k ∈ N there exists πk ∈ �M (μk, νk), optimal for
(MOT), and any accumulation point of (πk)k∈N with respect to the Wr -convergence
is a martingale coupling between μ and ν optimal for (MOT).

However, it turns out that the usual weak topology / Wasserstein distance is not
well suited in setups where accumulation of information plays a distinct role, e.g. in
mathematical finance. Indeed, the symmetry of this distance does not take into account
the temporal structure of stochastic processes. It is easy to convince oneself that two
stochastic processes very close in Wasserstein distance can yield radically unalike
information, as illustrated in [5, Figure 1]. Therefore, one needs to strengthen, the
usual topology of weak convergence accordingly. Over time numerous researchers
have independently introduced refinements of the weak topology, we mention Hell-
wig’s information topology [31], Aldous’s extended weak topology [1], the nested
distance / adapted Wasserstein distance of Plug-Pichler [47] and the optimal stopping
topology [6]. Strikingly, all those seemingly different definitions lead to same topol-
ogy in the present discrete time [6, Theorem 1.1] framework. We refer to this topology
as the adapted weak topology. A natural compatible metric is given by the adapted
Wasserstein distance, see [16,43,47–50] among others.

Fix x0 ∈ X and r ≥ 1. We denote the set of all probability measures on X with
finite r -th moment by Pr (X), i.e.

Pr (X) =
{
p ∈ P(X) |

∫
X
drX (x, x0) p(dx) < +∞

}
.
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Let M(X) (resp. Mr (X)) denote the set of all finite positive measures (resp. with
finite r -th moment). The sets M(X) and Mr (X), resp. are equipped with the weak
topology induced by the set Cb(X) of all real-valued absolutely bounded continuous
functions on X and, resp., the set �r (X) of all real-valued continuous functions on X ,
C(X), which satisfy the growth constraint

�r (X) = {
f ∈ C(X) | ∃α > 0, ∀x ∈ X , | f (x)| ≤ α

(
1+ drX (x, x0)

)}
.

A sequence (μk)k∈N converges inMr (X) to μ if and only if

∀ f ∈ �r (X), μk( f ) −→
k→+∞ μ( f ). (1.1)

If moreover μ and μk , k ∈ N, have equal masses, then the convergence (1.1) can be
equivalently formulated (see for instance [54, Theorem 6.9]) in terms of the Wasser-
stein distance with index r :

Wr (μ
k, μ) := inf

π∈�(μk ,μ)

(∫
X×X

drX (x, y) π(dx, dy)

) 1
r −→
k→+∞ 0.

Givenm0 > 0, we can then equip the set of finite positivemeasures inMr (X×Y )with
massm0 with the Wasserstein topology. However, we can also equip it with a stronger
topology, namely the adapted Wasserstein topology. It is induced by the metric AWr

defined for all π, π ′ ∈Mr (X × Y ) such that π(X × Y ) = π ′(X × Y ) = m0 by

AWr (π, π ′) = inf
χ∈�(μ,μ′)

(∫
X×X

(
drX (x, x ′)+Wr

r (πx , π
′
x ′)

)
χ(dx, dx ′)

) 1
r

, (1.2)

whereμ, resp.μ′, is the firstmarginal ofπ , resp.π ′. It is easy to check thatWr ≤ AWr ,
and thereforeAWr indeed induces a stronger topology thanWr . Another useful point
of view is the following: let J :M(X × Y ) →M(X × P(Y )) be the inclusion map
defined for all π = μ× πx ∈M(X × Y ) by

J (π)(dx, dp) = μ(dx) δπx (dp).

For all π, π ′ ∈ Mr (X × Y ) with equal masses, their adapted Wasserstein distance
coincides with

AWr (π, π ′) =Wr (J (π), J (π ′)). (1.3)

It follows that the topology induced byAWr coincideswith theweak topology induced
by J .

Finally, let us mention the interpretation of the adapted Wasserstein distance in
terms of bicausal couplings (cf. [7]). Let π, π ′ ∈ Pr (X × Y ). Let Z1, Z2, Z ′1, Z ′2
be random variables such that the distribution of (Z1, Z2, Z ′1, Z ′2) is a Wr -optimal
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coupling between π and π ′. In many cases, there exists a Monge transport map T :
X × Y → X × Y such that (Z ′1, Z ′2) = T (Z1, Z2). As mentioned in [5], the temporal
structure of stochastic processes is then not taken into account since the present value
Z ′1 is determined from the future value Z2. Therefore, it is more suitable to restrict to
couplings (Z1, Z2, Z ′1, Z ′2) between π and π ′ such that the conditional distribution of
Z ′1 (resp. Z1) given (Z1, Z2) (resp. (Z ′1, Z ′2)) is equal to the conditional distribution
of Z ′1 (resp. Z1) given Z1 (resp. Z ′1).

Let μ and μ′ denote the respective first marginal distributions of π and π ′
and let η ∈ �(π, π ′) be a coupling between π and π ′. Let χ(dx, dx ′) =∫
(y,y′)∈Y×Y η(dx, dy, dx ′, dy′) ∈ �(μ,μ′). W e write χ(dx, dx ′)
= μ(dx) χx (dx ′) = μ′(dx ′)←−χ x ′(dx). Then η is called bicausal if and only if

∫
y′∈Y

η(dx, dy, dx ′, dy′) = π(dx, dy) χx (dx
′)

and
∫
y∈Y

η(dx, dy, dx ′, dy′) = π ′(dx ′, dy′)←−χ x ′(dx).

We denote by �bc(π, π ′) the set of bicausal couplings between π and π ′. Let
(γ(x,x ′)(dy, dy′))(x,x ′)∈X×X be a probability kernel such that η(dx, dy, dx ′, dy′) =
χ(dx, dx ′) γ(x,x ′)(dy, dy′). Another useful characterisation is that η is bicausal if
and only if χ(dx, dx ′)-almost everywhere, γ(x,x ′)(dy, dy′) ∈ �(πx , πx ′). Then the
adapted Wasserstein distance coincides with

AWr (π, π ′) = inf
η∈�bc(π,π ′)

(∫
X×Y

(
drX (x, x ′)+ drY (y, y′)

)
η(dx, dy, dx ′, dy′)

) 1
r

.

One of the objectives of the present paper is to prove that well-known stability results
for the Wr -convergence also hold for the AWr -convergence. More details are given
in Sect. 2.

1.3 Outline

Section 2 presents the main result of this article, Theorem 2.6. We also provide a
discussion of the result and give a sketch of its proof in order to help seeing through
the technical details provided later on.

In Sect. 3 we provide certain technical lemmas which allow us to deal with dif-
ficulties specific to the adapted Wasserstein distance with more ease. They mainly
explore properties of approximations and when addition (in a sense explained below)
is continuous.

Section 4 focuses on the convex order. It deals with potential functions which are
a convenient tool to address the convex order in dimension one.

Section 5 is devoted to the proof of the main theorem. Before entering into actual
argument, we establish that is is enough to prove AW1-convergence for irreducible
pairs of marginals.
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2 Main result

Our main result is Theorem 2.6 below. Before stating it, we give a proposition which
enlightens us why the conclusion of the theorem should be at least hoped for. We also
state a generalisation of this proposition to Polish spaces. Then, we state a proposition
which is a key result to argue that the theorem needs only to be proved when the limit
pair is irreducible. Next, we state the theorem together with a sketch of its proof. It is
understood that (X , dX ) and (Y , dY ) denote arbitrary Polish spaces and that (x0, y0)
is a fixed element of X × Y .

As already mentioned above, it is well-known (and easy to show) that when one
considers convergent sequences of marginals (μk)k∈N, (νk)k∈N (with equal masses)
to μ, ν ∈Mr (X), then, informally speaking, we have1

�(μk, νk) −→
k→+∞ �(μ, ν) inWr , (2.1)

i.e., any sequence with convergent marginals has accumulation points in�(μ, ν), and
for any π ∈ �(μ, ν) it holds

inf
πk∈�(μk ,νk )

Wr
r (π, πk) ≤Wr

r (μ,μk)+Wr
r (ν, νk) −→

k→+∞ 0. (2.2)

Indeed, if ηk ∈ �(μk, μ), resp. τ k ∈ �(ν, νk) is optimal for Wr (μ
k, μ), resp.

Wr (ν, νk), then the measure ηk(dxk, dx) πx (dy) τ ky (dy
k) is a coupling between

π(dx, dy) and
∫
(x,y)∈X×Y ηk(dxk, dx) πx (dy) τ ky (dy

k) which belongs to �(μk, νk)

and

inf
πk∈�(μk ,νk )

Wr
r (π, πk)

≤
∫
X×X×Y×Y

(
drX (xk, x)+ drY (y, yk)

)
ηk(dxk, dx) πx (dy) τ ky (dy

k)

=Wr
r (μ,μk)+Wr

r (ν, νk).

The next two propositions establish (2.1) with respect to AWr for finite positive
measures with commonmass. The first one is formulated for X = Y = R and provides
under mild assumptions an estimate of infπk∈�(μk ,νk ) AWr

r (π, πk)with respect to the
marginals as in (2.2). Its proof relies on unidimensional tools, whichwe recall here. For
η a probability distribution on R, we denote by Fη : x �→ η((−∞, x]) its cumulative
distribution function, and by F−1η : (0, 1) → R its quantile function defined for all
u ∈ (0, 1) by

F−1η (u) = inf{x ∈ R | Fη(x) ≥ u}.

The following properties are standard results (see for instance [37, Section 6] for
proofs):

1 Note that this can be made precise in terms of hemicontinuity. We also refer to [45].
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(a) Fη is càdlàg i.e. right-continuous with left-hand limits, F−1η is càglàd i.e. left-
continuous with right-hand limits;

(b) For all (x, u) ∈ R× (0, 1),

F−1η (u) ≤ x ⇐⇒ u ≤ Fη(x), (2.3)

which implies, using the notation Fη(y−) for the left-hand limit of Fη at y ∈ R,

Fη(x−) < u ≤ Fη(x) �⇒ x = F−1η (u), (2.4)

and Fη(F
−1
η (u)−) ≤ u ≤ Fη(F

−1
η (u)); (2.5)

(c) For η(dx)-almost every x ∈ R,

0 < Fη(x), Fη(x−) < 1 and F−1η (Fη(x)) = x; (2.6)

(d) The image of the Lebesgue measure on (0, 1) by F−1η is η.

The property (d) is referred to as the inverse transform sampling.

Proposition 2.1 Let μ,μk, ν, νk ∈Mr (R), k ∈ N, be measures of equal masses such
that μk (resp. νk) converges to μ (resp. ν) inWr . Let π ∈ �(μ, ν). Then:

(a) There exists a sequence πk ∈ �(μk, νk), k ∈ N, converging to π in AWr ;
(b) If for all x ∈ R and k ∈ N with μk({x}) > 0, there exists x ′ ∈ R such that

μ((−∞, x ′)) ≤ μk((−∞, x)) < μk((−∞, x]) ≤ μ((−∞, x ′])

(which is for instance always satisfied for μk non-atomic) then

AWr
r (π, πk) ≤Wr

r (μ,μk)+Wr
r (ν, νk). (2.7)

Remark 2.2 If π is a martingale coupling, i.e.
∫
R
y′ πx ′(dy′) = x ′, μ(dx ′)-almost

everywhere, then for χk ∈ �(μk, μ) an optimal coupling for AWr (π
k, π), we have

∫
R

∣∣∣∣x −
∫
R

y πk
x (dy)

∣∣∣∣
r

μk(dx)

=
∫
R×R

∣∣∣∣x −
∫
R

y πk
x (dy)

∣∣∣∣
r

χk(dx, dx ′)

≤ 2r−1
∫
R×R

(
|x − x ′|r +

∣∣∣∣x ′ −
∫
R

y πk
x (dy)

∣∣∣∣
r)

χk(dx, dx ′)

= 2r−1
∫
R×R

(
|x − x ′|r +

∣∣∣∣
∫
R

y′ πx ′(dy
′)−

∫
R

y πk
x (dy)

∣∣∣∣
r)

χk(dx, dx ′)

≤ 2r−1
∫
R×R

(
|x − x ′|r +Wr

1(π
k
x , πx ′)

)
χk(dx, dx ′)

≤ 2r−1AWr
r (π, πk) −→

k→+∞ 0.
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In that sense, πk, k ∈ N is almost a sequence of martingale couplings.

In the setting of Proposition 2.1 and Remark 2.2, ifμk and νk are also in the convex
order and π is a martingale coupling, then in view of Remark 2.2 one would naturally
expect that πk can be slightly modified into a martingale coupling and still converge
to π in AWr . This actually requires a considerable amount of work and is the main
message of Theorem 2.6 below. We mention that the previous proposition generalises
to arbitrary Polish spaces X and Y , as the next proposition states, but unfortunately
without providing an estimate.

Proposition 2.3 Let μ,μk ∈ Mr (X), ν, νk ∈ Mr (Y ), k ∈ N, all with equal masses
and such that μk (resp. νk) converges to μ (resp. ν) in Wr . Let π ∈ �(μ, ν). Then
there exists a sequence πk ∈ �(μk, νk), k ∈ N, converging to π in AWr .

The next proposition is a key ingredient which allows us to reduce the proof of
Theorem 2.6 below to the case of irreducible pairs of marginals. For μ ∈ M1(R),
we denote by uμ its potential function, that is the map defined for all y ∈ R by
uμ(y) = ∫

R
|y − x |μ(dx) (see Sect. 4 for more details). We recall that a pair (μ, ν)

of finite positive measures in convex order is called irreducible if I = {uμ < uν} is
an interval and then, μ(I ) = μ(R) and ν(I ) = ν(R).

Remark 2.4 If (μ, ν) is an irreducible pair of non-zeromeasures in the convexorder and
a ∈ R is such that ν([a,+∞)) = 0, then the convex order implies μ([a,+∞)) = 0,
hence

uμ(a) = a −
∫
R

x μ(dx) = a −
∫
R

y ν(dy) = uν(a),

so a /∈ I . Similarly, ν((−∞, a]) = 0 �⇒ a /∈ I . We deduce that ν must assign
positive mass to any neighbourhood of each of the boundaries of I .

According to [13, Theorem A.4], for any pair (μ, ν) of probability measures in
convex order, there exist N ⊂ N and a sequence (μn, νn)n∈N of irreducible pairs of
sub-probability measures in convex order such that

μ = η +
∑
n∈N

μn, ν = η +
∑
n∈N

νn and
{
uμ < uν

} = ⋃
n∈N

{
uμn < uνn

}
,

where the union is disjoint and η = μ|{uμ=uν }. The sequence (μn, νn)n∈N is unique up
to rearrangement of the pairs and is called the decomposition of (μ, ν) into irreducible
components. Moreover, for any martingale coupling π ∈ �M (μ, ν), there exists a
unique sequence of martingale couplings πn ∈ �M (μn, νn), n ∈ N such that

π = χ +
∑
n∈N

πn,

whereχ = (id, id)∗η and∗denotes the pushforward operation. This sequence satisfies

∀n ∈ N , πn(dx, dy) = μn(dx) πx (dy). (2.8)
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Proposition 2.5 Let (μk, νk)k∈N be a sequence of pairs of probability measures on
the real line in convex order which converge to (μ, ν) in W1. Let (μn, νn)n∈N be
the decomposition of (μ, ν) into irreducible components and η = μ|{uμ=uν }. Then
there exists for any k ∈ N a decomposition of (μk, νk) into pairs of sub-probability
measures (μk

n, ν
k
n )n∈N , (ηk, υk) which are in convex order such that

ηk +
∑
n∈N

μk
n = μk, υk +

∑
n∈N

νkn = νk, k ∈ N, (2.9)

lim
k→+∞ ηk = η, lim

k→+∞μk
n = μn, lim

k→+∞ νkn = νn, lim
k→+∞ υk = η inW1.

(2.10)

We can now state our main result, namely Theorem 2.6 below. Any martingale
coupling whose marginals are approximated by probability measures in convex order
can be approximated by martingale couplings with respect to the adapted Wasserstein
distance.

Theorem 2.6 Letμk, νk ∈ Pr (R), k ∈ N, be in convex order and respectively converge
to μ and ν in Wr . Let π ∈ �M (μ, ν). Then there exists a sequence of martingale
couplings πk ∈ �M (μk, νk), k ∈ N converging to π in AWr .

Proof (Sketch of the proof) We will first argue that it is enough to consider the case
r = 1. Thanks to Proposition 2.5,we can also reduce the proof to the case of irreducible
pairs of marginals (μ, ν), whose single irreducible component is denoted (, ρ) = I .

Step 1. Fix a martingale coupling π ∈ �M (μ, ν). When directly approximating π

we would face technical obstacles. First, for K a compact subset of I , μ|K × πx is
not necessarily compactly supported. Moreover, ν may put mass on the boundary of
I . To overcome successively these two difficulties, the kernel πx is first compactified
to a compact set [−R, R], where R > 0 (when || ∨ |ρ| < ∞, one may choose R
equal to this maximum), and then pushed forward by the map y �→ α(y − x) + x ,
where α ∈ (0, 1). This yields a martingale coupling π R,α close to π and easier to
approximate, betweenμ and a probability measure νR,α dominated by ν in the convex
order. We find compact sets K , L ⊂ I such that the restriction π R,α|K×R is compactly
supported on K × L and concentrated on K × L̊ , where L̊ denotes the interior of L .
Since, by irreducibility, ν puts mass onto any neighbourhood of the boundary of I ,
νR,α assigns positive mass to two open sets L−, L+ on both sides of K with positive
distance to K . This is summarised in Fig. 1, where J denotes a compact subset of I
that is large enough.

Step 2. It is possible to find an approximating sequence (π̂k = μ̂k × π̂k
x )k∈N for

the sub-probability martingale coupling π R,α|K×R from step 1. Unfortunately π̂k is
not necessarily a martingale coupling. Therefore, we free up some mass, and use the
one available on the left and right of K in L− and L+ to adjust the barycenters of
the kernels πk

x . Hence we find a sequence (π̃k = μ̂k × π̃k
x )k∈N of sub-probability

martingale couplings approximating π R,α|K×R.
Step 3. By construction, up to multiplication by a factor smaller than and close to 1,

the first marginal of π̃k satisfies μ̂k ≤ μk . Moreover, its secondmarginal denoted ν̃k is
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Fig. 1 Intervals involved in the proof. The boundaries of the closed intervals are vertical bars and those of
the open intervals are parentheses

such that there exists a probability measure νR,α,k which satisfies ν̃k ≤ νR,α,k ≤c νk .
Then by using the uniform convergence of potential functions, we show that for k
sufficiently large there exist sub-probability martingale couplings ηk ∈ �M (μk −
μ̂k, νR,α,k − ν̃k) so that the sum ηk + π̃k is a martingale coupling in �M (μk, νR,α,k),
where the second marginal is dominated by νk in the convex order.

Step 4. In the last step, we use the inverse-transform martingale coupling between
νR,α,k and νk , see [37], to change ηk + π̃k to a martingale coupling πk ∈ �(μk, νk).
Finally, we estimate the AW1-distance of π to πk . ��

3 On the adapted weak topology

We begin this section with a lemma on uniform integrability which will prove very
handy throughout the paper. We formulate it for finite positive measures on X , but it
is understood that (X , x0) is replaced with (Y , y0) for measures on Y .

Lemma 3.1 Let r ≥ 1 and μ ∈Mr (X). For ε > 0, let

I rε (μ) := sup
τ∈M(X)

τ≤μ, τ(X)≤ε

∫
X
drX (x, x0) τ (dx). (3.1)

(a) I rε is monotone in μ, i.e., μ ≤ μ′ ∈Mr (X) implies that I rε (μ) ≤ I rε (μ′).
(b) The value of I rε (μ) vanishes as ε → 0.
(c) For any μ′ ∈Mr (X) such that μ(X) = μ′(X) we have

I rε (μ) ≤ 2r−1
(
I rε (μ′)+Wr

r (μ,μ′)
)
. (3.2)

(d) Let μ,μk ∈Mr (X), k ∈ N be with equal masses such that μk converges weakly
to μ. Then

Wr (μ
k , μ) −→

k→+∞ 0 ⇐⇒ sup
k∈N

I rε (μk) −→
ε→0

0 and sup
k∈N

∫
X
drX (x, x0) μk(dx) < +∞.

(e) Finally, if X = R
d and μ ≤c ν with ν ∈M1(R

d), then I 1ε (μ) ≤ I 1ε (ν).

Remark 3.2 If μ(X) ≤ ε, then I rε (μ) is simply the r -th moment of μ.

Proof The first point (a) is an easy consequence of the definition of I rε .
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Next we check (b). Let μ ∈Mr (X) be such that μ(X) > 0. Since

I rε (μ) = μ(X)I r ε
μ(X)

(
μ

μ(X)

)
, (3.3)

to check convergence of I rε (μ) to 0 as ε → 0, we may suppose that μ ∈ Pr (X).
Let ε ∈ (0, 1). For η ∈ Mr (X), we denote by η the image of η under the map
x �→ drX (x, x0). Let τ ∈M(X) be such that τ ≤ μ and 0 < τ(X) ≤ ε. Since τ ≤ μ,
we have τ ≤ μ. Using (2.5) for the last inequality, we get for all u ∈ (0, 1)

1− Fτ/τ(X)

(
F−1μ (1− τ(X)u)

)
= τ((F−1μ (1− τ(X)u),+∞))

τ (X)

≤ μ((F−1μ (1− τ(X)u),+∞))

τ (X)
≤ u,

hence Fτ/τ(X)(F
−1
μ (1 − τ(X)u)) ≥ 1 − u and by (2.3), F−1τ/τ(X)(1 − u) ≤ F−1μ (1 −

τ(X)u). Using the inverse transform sampling, we deduce

∫
X
drX (x, x0) τ (dx)

= τ(X)

∫ 1

0
F−1τ/τ(X)(1− u) du

≤ τ(X)

∫ 1

0
F−1μ (1− τ(X)u) du =

∫ 1

1−τ(X)

F−1μ (u) du ≤
∫ 1

1−ε

F−1μ (u) du.

(3.4)

Hence I rε (μ) ≤ ∫ 1
1−ε

F−1μ (u) du where the right-hand side vanishes as ε → 0 since, as

μ ∈ Pr (X),
∫ 1
0 F−1μ (u) du = ∫

X dX (x, x0)r μ(dx) < +∞. Let us check the equality

I rε (μ) =
∫ 1

1−ε

F−1μ (u) du, (3.5)

that will come in handy for the proof of claim (e) by setting

τ ∗(dx) =
(
1Aε(x)+ Fμ(yε)− (1− ε)

μ(Bε)
1Bε(x)

)
μ(dx), (3.6)

where

yε = F−1
μ

(1− ε), Aε = {x ∈ R | drX (x, x0) > yε} and Bε = {x ∈ R | drX (x, x0) = yε},
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and the second summand of the right-hand side in (3.6) is taken to be zero ifμ(Bε) = 0.
Since Aε ∩ Bε = ∅ and, by (2.5),

μ(Bε) = μ({yε}) = Fμ(yε)− Fμ(F−1μ (1− ε)−) ≥ Fμ(yε)− (1− ε),

hence τ ∗ ≤ μ. Moreover, τ ∗ is the measure dominated by μ with mass equal to ε

which is the largest in stochastic order. Indeed, one easily checks that

τ∗(dy) = 1y>yεμ(dy)+ (
Fμ(yε)− (1− ε)

)
δyε (dy) so that τ

∗(R) = ε,

∀y ∈ R, F
τ∗/ε(y) = 1y≥yε

Fμ(y)− (1− ε)

ε
and ∀u ∈ (0, 1), F−1

τ∗/ε(1− u)=F−1
μ

(1−εu).

With the inverse transform sampling, the latter equality implies that

∫
X
drX (x, x0) τ ∗(dx) = ε

∫ 1

0
F−1

τ∗/ε(u)du = ε

∫ 1

0
F−1μ (1− εu)du =

∫ 1

1−ε

F−1μ (u) du

so that (3.5) holds.
To see (c), fix μ′ ∈ M(X) with μ(X) = μ′(X). We denote by π(dx, dx ′) =

μ(dx) πx (dx ′) ∈ �(μ,μ′) a Wr -optimal coupling. Let τ ∈ M(X) be such that
τ ≤ μ and τ(X) ≤ ε. Let τ ′ ∈M(X) be defined by

τ ′(dx ′) =
∫
x∈X

πx (dx
′) τ (dx).

Since π is element of �(μ,μ′), we find τ ′ ≤ μ′ and τ(X) = τ ′(X). Then

∫
X
drX (x, x0) τ (dx) ≤ 2r−1

∫
X×X

(
drX (x ′, x0)+ drX (x, x ′)

)
πx (dx

′) τ (dx)

≤ 2r−1
(
I rε (μ′)+

∫
X×X

drX (x, x ′) π(dx, dx ′)
)

,

which shows by optimality of π the assertion.
We now show (d). Letμ,μk ∈Mr (X) bewith equalmasses such thatμk converges

weakly to μ. According to (3.3), we may suppose that μ,μk ∈ Pr (X).
Suppose thatWr (μ

k, μ) vanishes as k goes to +∞. Then the sequence of the r -th
moments of μk , k ∈ N is bounded since it converges to the r -th moment of μ. Let
η > 0. Let k0 ∈ N be such that for all k > k0, Wr

r (μ
k, μ) < η. Then (c) yields for

ε > 0

sup
k∈N

I rε (μk) ≤
∑
k≤k0

I rε (μk)+ sup
k>k0

I rε (μk) ≤
∑
k≤k0

I rε (μk)+ 2r−1(I rε (μ)+ η).

According to (b) we then get

lim sup
ε→0

sup
k∈N

I rε (μk) ≤ 2r−1η.
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Since η > 0 is arbitrary, we deduce that supk∈N I rε (μk) vanishes with ε.
Conversely, suppose that supk∈N I rε (μk) vanishes with ε and the sequence of the

r -th moments ofμk , k ∈ N is bounded. By Skorokhod’s representation theorem, there
exist random variables X and Xk , k ∈ N, defined on a common probability space
such that X , resp. Xk is distributed according to μ, resp. μk and Xk converges almost
surely to X . Then for all M > 0,

Wr
r (μ

k, μ) ≤ E[drX (Xk, X)]
= E[drX (Xk, X)1{drX (Xk ,X)<M}] + E[drX (Xk, X)1{drX (Xk ,X)≥M}].

By the dominated convergence theorem, we deduce

lim sup
k→+∞

Wr
r (μ

k, μ) ≤ lim sup
k→+∞

E[drX (Xk, X)1{drX (Xk ,X)≥M}].

Let us then prove that the right-hand side vanishes as M goes to +∞. Let η > 0. Let
ε > 0 be such that I rε (μ)+ supk∈N I rε (μk) < η. By Markov’s inequality, we have

sup
k∈N

E[1{drX (Xk ,X)≥M}] ≤ sup
k∈N

E[drX (Xk, X)]
M

≤ 2r−1

M
sup
k∈N

∫
X
drX (x, x0) (μk + μ)(dx),

where the right-hand side vanishes as M goes to+∞. Therefore, there exists M0 > 0
such that for all k ∈ N and M > M0,

E[drX (Xk, X)1{drX (Xk ,X)≥M}]
≤ 2r−1

(
E[drX (Xk, x0)1{drX (Xk ,X)≥M}] + E[drX (x0, X)1{drX (Xk ,X)≥M}]

)

≤ 2r−1
(
I rε (μk)+ I rε (μ)

)
< 2r−1η.

Therefore, for all M > M0,

lim sup
k→+∞

E[drX (Xk, X)1{drX (Xk ,X)≥M}] ≤ 2r−1η.

Since η is arbitrary, this proves the assertion.
Finally, we want to show (e). Let X = R

d and μ ≤c ν with ν ∈ M1(R
d).

According to (3.3), we may suppose that μ, ν ∈ P1(R
d). Again, we write μ and ν

for the pushforward measures of μ and ν under the map (x �→ |x − x0|r ). First, we
note that μ is dominated by ν in the increasing convex order. Indeed, let f ∈ C(X) be
convex and nondecreasing, then x �→ f (|x − x0|r ) constitutes a convex, continuous
function. Thus,

∫
R

f (y) μ(dy) =
∫
Rd

f (|x − x0|r ) μ(dx) ≤
∫
Rd

f (|x − x0|r ) ν(dx) =
∫
R

f (y) ν(dy).
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The convex increasing order is characterised by the following family of inequalities
(see for instance [2, Theorem 2.4]): for all 0 ≤ ε ≤ 1,

∫ 1

1−ε

F−1μ (y) dy ≤
∫ 1

1−ε

F−1ν (y) dy.

The identity (3.5) concludes the proof. ��
WenowproveProposition 2.1.Ahandy tool in the construction of the approximative

sequence (πk)k∈N are copulas. Recall that a two-dimensional copula is an element C
of �(λ, λ) where λ is the uniform distribution on (0, 1). A coupling π is an element
of �(μ, ν) if and only if it can be written as the push-forward of a copula C under the
quantile map (F−1μ , F−1ν ) : (0, 1) × (0, 1) → R × R. Clearly, if C is a copula then
π = (F−1μ , F−1ν )∗C is contained in �(μ, ν). On the other hand, if π ∈ �(μ, ν) is
given, we can construct a copula C by

C(du, dv) = 1(0,1)(u) du Cu(dv),

where Cu is given by

Cu = ((y, w) �→ Fν(y−)+ wν({y}))∗(πF−1μ (u)
× λ). (3.7)

In particular, we have that u �→ Cu is constant on the jumps on Fμ. The fact that
the second marginal distribution of C is indeed uniformly distributed on (0, 1) is a
direct consequence of the inverse transform sampling and the well-known result (see
for instance [37, Lemma 6.6] for a proof) that for any η ∈ P(R),

((z, w) �→ Fη(z−)+ wη({z}))∗(η × λ) = λ. (3.8)

Finally, we check the identity π = (F−1μ , F−1ν )∗C . Let w ∈ (0, 1] and continue by
distinguishing two cases: On the one hand, if ν({y}) > 0 then we have by (2.4)

F−1ν (Fν(y−)+ wν({y})) = y. (3.9)

On the other hand, we derive from (2.6) that (3.9) holds for ν-almost every y ∈ {z ∈
R : ν({z}) = 0}. Hence, we obtain for λ-almost every u ∈ (0, 1)

πF−1μ (u)
= (F−1ν )∗Cu (3.10)

and conclude with π = (F−1μ , F−1ν )∗C .

Proof (Proof of Proposition 2.1) Because of homogeneity of the AWr - and Wr -
distances, we can suppose w.l.o.g. that μ,μk, ν, νk and π are probability measures.
Let C be the copula defined by C(du, dv) = 1(0,1)(u) du Cu(dv), where Cu is given
by (3.7).
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In order to defineπk , we construct associated copulasCk where u �→ Ck
u is constant

on the jumps of Fμk . Let

θk : R× (0, 1) → (0, 1), (x, w) �→ Fμk (x−)+ wμk({x}),

Ck
u (dv) =

∫ 1

w=0
C

θk

(
F−1

μk
(u),w

)(dv) dw,

πk = (F−1
μk , F−1

νk
)∗Ck = (F−1

μk , F−1
νk

)∗(1(0,1)(u) du Ck
u (dv)).

The fact that Ck is a copula, and therefore πk ∈ �(μk, νk), is a direct consequence
of (3.8) and the inverse transform sampling. Since u �→ Cu and u �→ Ck

u are constant
on the jumps of Fμ and Fμk respectively, reasoning like in the derivation of (3.10),
we have for du-almost every u in (0, 1)

πF−1μ (u)
= (F−1ν )∗Cu, πk

F−1
μk

(u)
= (F−1

νk
)∗Ck

u .

Moreover, since (u �→ (F−1μ (u), F−1
μk (u)))∗λ is a coupling betweenμ andμk , namely

the comonotonous coupling, we have using the definition of AWr (π, πk) as an infi-
mum over �(μ,μk), cf. (1.2),

AWr
r (π, πk) ≤

∫ 1

0

(
|F−1μ (u)− F−1

μk (u)|r +Wr
r (πF−1μ (u)

, πk
F−1

μk
(u)

)

)
du

=Wr
r (μ,μk)+

∫ 1

0
Wr

r

(
(F−1ν )∗Cu, (F

−1
νk

)∗Ck
u

)
du.

(3.11)

By Minkowski’s inequality we have

(∫ 1

0
Wr

r

(
(F−1ν )∗Cu, (F

−1
νk

)∗Ck
u

)
du

) 1
r

≤
(∫ 1

0
Wr

r

(
(F−1ν )∗Cu, (F

−1
ν )∗Ck

u

)
du

) 1
r

+
(∫ 1

0
Wr

r

(
(F−1ν )∗Ck

u , (F
−1
νk

)∗Ck
u

)
du

) 1
r

.

(3.12)

Since for any η ∈ P(R) the map F−1η ◦ F−1
Ck
u
is non-decreasing, we have (see for

instance [3, Lemma A.3]) that for dw-almost every w ∈ (0, 1),

F−1η (F−1
Ck
u
(w)) = F−1

(F−1η )∗Ck
u
(w).
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Hence, we deduce

∫
(0,1)

Wr
r

(
(F−1ν )∗Ck

u , (F
−1
νk

)∗Ck
u

)
du

=
∫

(0,1)

∫
(0,1)

|F−1ν (F−1
Ck
u
(w))− F−1

νk
(F−1

Ck
u
(w))|r dw du

=
∫

(0,1)

∫
(0,1)

|F−1ν (v)− F−1
νk

(v)|r Ck
u (dv) du

=
∫

(0,1)
|F−1ν (v)− F−1

νk
(v)|r dv =Wr

r (ν, νk) → 0,

(3.13)

where we used inverse transform sampling in the second equality. At this stage, we
can already show (b) of Proposition 2.1. Indeed, the assumption made in (b) ensures
that any jump of Fμk is included in a jump of Fμ. We already noted that u �→ Cu is
constant on the jumps of Fμ and therefore also constant on the jumps of Fμk . This
yields for all u, w ∈ (0, 1) that C

θk (F
−1
μk

(u),w)
= Cu and particularly Ck

u = Cu , which

causes the first term on the right-hand side of (3.12) to vanish. Then the estimate (2.7)
follows immediately from (3.11), (3.12) and (3.13).

To obtain (a) and in view of (3.11), (3.12) and (3.13), it is sufficient to show

∫ 1

0
Wr

r

(
(F−1ν )∗Cu, (F

−1
ν )∗Ck

u

)
du → 0.

This is achieved in two steps: First, we show for du-almost every u ∈ (0, 1) that

Wr ((F
−1
ν )∗Cu, (F

−1
ν )∗Ck

u ) → 0. (3.14)

Second, we prove that

u �→Wr
r ((F

−1
ν )∗Cu, (F

−1
ν )∗Ck

u ) k ∈ N, (3.15)

is uniformly integrable on (0, 1) with respect to λ.
To show (3.14), note that Wr -convergence is already determined by a countable

family C ⊂ �r (R) (see [25, Theorem 4.5.(b)]). For this reason, it is sufficient to show
that for all f ∈ C, for du-almost every u ∈ (0, 1),

∫
(0,1)

f (F−1ν (v))Ck
u (dv) → g(u) :=

∫
(0,1)

f (F−1ν (v))Cu(dv), k →+∞,

(3.16)

where the integrals are du-almost everywhere well defined because of the inverse
transform sampling, the fact that f ∈ �r (R) and ν ∈ Pr (R). For u ∈ (0, 1), let
xu = F−1μ (u) and xku = F−1

μk (u). Let U ⊂ (0, 1) be the set of continuity points of F−1μ
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and define

Uc = {u ∈ U | Fμ is continuous at xu} and

Ud = {u ∈ U\Uc | u ∈ (Fμ(xu−), Fμ(xu))}.

By monotonicity of F−1μ , the complement of U in (0, 1) is at most countable, and
since μ has countably many atoms, the complement of Ud in U\Uc is also at most
countable. We deduce that it is sufficient to show (3.16) for du-almost all u ∈ Uc∪Ud .
Let then u ∈ U . If μk({xku }) = 0, then Ck

u = Cu and

∫
(0,1)

f (F−1ν (v))Ck
u (dv) = g(u).

From now on and until (3.16) is proved, we suppose w.l.o.g. that μk({xku }) > 0 for all
k ∈ N. Then

∫
(0,1)

f (F−1ν (v))Ck
u (dv) = 1

μk({xku })
∫ F

μk (xku )

F
μk (xku−)

g(w) dw. (3.17)

Define lk = infn≥k xnu and rk = supn≥k xnu . Since u ∈ U we find lk ↗ xu and rk ↘ xu
when k goes to+∞. Due to right continuity of Fμ and left continuity of x �→ Fμ(x−)

we have

Fμ(xu−) = lim
p

Fμ(l p−) and lim
p

Fμ(rp) = Fμ(xu).

By Portmanteau’s theorem and monotonicity of cumulative distribution functions we
have

Fμ(l p−) ≤ lim inf
k

Fμk (l p−) ≤ lim inf
k

Fμk (xku−) ≤ lim sup
k

Fμk (xku )

≤ lim sup
k

Fμk (rp) ≤ Fμ(rp).

By taking the limit p→+∞, we find

Fμ(xu−) ≤ lim inf
k

Fμk (xku−) ≤ lim sup
k

Fμk (xku ) ≤ Fμ(xu). (3.18)

By (2.5), the interval [Fμk (xku−), Fμk (xku )] contains u, and if u ∈ Uc, then (3.18)
implies that its length μk({xku }) vanishes when k goes to +∞. Consequently, (3.17)
and the Lebesgue differentiation theorem yield that for du-almost every u ∈ Uc,

∫
(0,1)

f (F−1ν (v))Ck
u (dv) → g(u).
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Suppose now u ∈ Ud and define

ak = Fμk (xku−) ∨ Fμ(xu−), bk = Fμk (xku ) ∧ Fμ(xu).

Note that on the interval (ak, bk) the function g is constant equal to g(u), so (3.17)
amounts to

∫
(0,1)

f (F−1ν (v))Ck
u (dv)

= 1

μk({xku })

(∫ F
μk (xku )

bk
g(w) dw +

∫ bk

ak
g(u) dw +

∫ ak

F
μk (xku−)

g(w) dw

)
.

According to (3.18),

ak − Fμk (xku−)→ 0 and Fμk (xku )− bk → 0, k →+∞. (3.19)

Moreover, having (2.5) in mind it is clear that

Fμk (xku−) < ak �⇒ μk({xku }) ≥ u − Fμ(xu−),

and bk < Fμk (xku ) �⇒ μk({xku }) ≥ Fμ(xu)− u.
(3.20)

Using the latter fact and the equality

bk − ak = μk({xku })− (Fμk (x
k
u )− bk)− (ak − Fμk (x

k
u−)),

we get

1− Fμk (x
k
u )− bk

Fμ(xu)− u
− ak − Fμk (x

k
u−)

u − Fμ(xu−)
≤ bk − ak

μk({xku })
≤ 1.

Hence by (3.19) we have bk−ak
μk ({xku }) → 1 as k goes to +∞, which implies that

1
μk ({xku })

∫ bk
ak

g(u) dw → g(u) as k →+∞. Therefore, we just have to show that

1

μk({xku })

(∫ F
μk (xku )

bk
g(w) dw +

∫ ak

F
μk (xku−)

g(w) dw

)
→ 0, k →+∞. (3.21)

Note that we can assume w.l.o.g. that for all k ∈ N either Fμk (xku−) < ak or bk <

Fμk (xku ). Let d = (u − Fμ(xu−)) ∧ (Fμ(xu) − u), which is positive since u ∈ Ud .
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Then we have by (3.20)

1

μk({xku })

∣∣∣∣∣
∫ F

μk (xku )

bk
g(w) dw +

∫ ak

F
μk (xku−)

g(w) dw

∣∣∣∣

≤ 1

d

∣∣∣∣∣
∫ F

μk (xku )

bk
g(w) dw +

∫ ak

F
μk (xku−)

g(w) dw

∣∣∣∣∣ .
(3.22)

By the inverse transform sampling and the facts that f ∈ �r (R) and ν ∈ Pr (R), we
have

∫ 1
0 |g(w)| dw = ∫

R
| f (y)| ν(dy) < +∞. Then (3.21) is a direct consequence

of (3.22), (3.19) and the dominated convergence theorem. Hence (3.14) is proved for
du-almost every u ∈ (0, 1).

Next, we show uniform integrability of (3.15). We can estimate

Wr
r ((F−1ν )∗Cu , (F−1ν )∗Ck

u ) ≤ 2r−1
(∫

(0,1)
|F−1ν (v)|r Cu(dv)+

∫
(0,1)

|F−1ν (v)|r Ck
u (dv)

)
.

Since by the inverse transform sampling we have

∫
(0,1)

∫
(0,1)

|F−1ν (v)|r Cu(dv) du =
∫
R

|y|r ν(dy) <∞,

it is enough to show uniform integrability of u �→ ∫
(0,1) |F−1ν (v)|r Ck

u (dv), k ∈ N.
On the one hand, using the inverse transform sampling and ν ∈ Pr (R), we have

∀k ∈ N,

∫
(0,1)

∫
(0,1)

|F−1ν (v)|rCk
u (dv) du =

∫
R

|y|r ν(dy) < +∞.

On the other hand, let ε > 0 and A be ameasurable subset of (0, 1) such that λ(A) < ε.
We have

∫
A

∫
(0,1)

|F−1ν (v)|r Ck
u (dv) du =

∫
R

|y|r (F−1ν )∗τ k(dy),

where τ k(dv) = ∫ 1
u=0 1A(du)Ck

u (dv) du. Note that τ k ≤ λ, (F−1ν )∗τ k ≤ ν and
(F−1ν )∗τ k(R) = τ k((0, 1)) = λ(A). Therefore,

sup
A∈B((0,1)),

λ(A)≤ε

sup
k

∫
A

∫
(0,1)

|F−1ν (v)|r Ck
u (dv) du ≤ I rε (ν),

where I rε (ν) is defined by (3.1). By Lemma 3.1, the right-hand side converges to 0
with ε → 0. This yields uniform integrability of (3.15), which completes the proof. ��
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As mentioned in Sect. 2, Proposition 2.1 generalises to Polish spaces. Unsur-
prisingly, the proof of Proposition 2.3 requires radically different tools from its
unidimensional equivalent. In particular, we need to recall the so-calledWeak Optimal
Transport (WOT) problem introduced byGozlan, Roberto, Samson and Tetali [29] and
studied in [28]. LetC : X×Pr (Y )→ R+ be nonnegative, continuous, strictly convex
in the second argument and such that there exists a constant K > 0 which satisfies

∀(x, p) ∈ X × Pr (Y ), C(x, p) ≤ K

(
1+ drX (x, x0)+

∫
Y
drY (y, y0) p(dy)

)
. (3.23)

Then the WOT problem consists in minimising

VC (μ, ν) := inf
π∈�(μ,ν)

∫
X
C(x, πx ) μ(dx). (WOT)

In view of the definition (1.3) of the adapted Wasserstein distance which involves
measures on the extended space X × P(Y ), it is natural to consider an extension of
(WOT) which also involves this space. Hence we also consider the extended problem

V ′C (μ, ν) := inf
P∈�(μ,ν)

∫
X×P(Y )

C(x, p) P(dx, dp), (WOT’)

where �(μ, ν) is the set of couplings between μ and an arbitrary measure on P(Y )

with mean ν, that is

�(μ, ν) =
{
P ∈ P(X × P(Y )) |

∫
(x ′,p)∈X×P(Y )

δx ′ (dx) p(dy) P(dx ′, dp) ∈ �(μ, ν)

}
.

(3.24)

Remark 3.3 We gather here useful results on weak transport problems which hold
under the standing assumptions on C :

(a) according to [8, Theorem 1.2] and the paragraph following this theorem, (WOT)
admits a unique minimiser π∗;

(b) As a consequence of the necessary optimality condition [9, Theorem 2.2], J (π∗)
is the only minimiser of (WOT’). Indeed, if we assume the opposite then there is
a minimizer P∗ ∈ �(μ, ν) of (WOT’) which does not lie in the image of �(μ, ν)

under J . Hence, any measurable set A ⊂ X × Pr (Y ) with P∗(A) = 1 contains
(x, p), (x, q) ∈ Awith p �= q. Due to strict convexity ofC in its second argument,
we find

C

(
x,

p + q

2

)
<

1

2
(C(x, p)+ C(x, q)) .

SinceAwas an arbitrary set supporting P∗, the strict inequality above contradicts
the necessary optimality condition in [9, Theorem 2.2];
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(c) V (μ, ν) = V ′(μ, ν) [8, Lemma 2.1];
(d) Stability of (WOT) and (WOT’): Let μk ∈ Pr (X), νk ∈ Pr (Y ), k ∈ N converge

respectively toμ ∈ Pr (X) and ν ∈ Pr (Y ) inWr . For k ∈ N, letπk ∈ �(μk, νk) be
optimal for V (μk, νk). Then πk , resp. J (πk), converges to the unique minimiser
π∗, resp. J (π∗), in Wr [9, Theorem 1.3 and Corollary 2.9]. In particular, this
shows that πk converges to π∗ even in AWr .

Proof of Proposition 2.3 Since ν ∈ Pr (Y ), we have that

∫
X

∫
Y
drY (y, y0) πx (dy) μ(dx) =

∫
Y
drY (y, y0) ν(dy) < +∞, (3.25)

hence up to a modification on a μ-null set, we can suppose w.l.o.g. that for all x ∈ X ,
πx ∈ Pr (Y ). Let ε > 0 and y0 ∈ Y . Define for R > 0 theWr -open ball BR of radius
R1/r and centre δy0 and the set

AR = {x ∈ X | πx ∈ BR} =
{
x ∈ X

∣∣∣∣
∫
Y
drY (y, y0) πx (dy) < R

}
.

By (3.25) again, μ is concentrated on
⋃

R>0 AR and we can choose R large enough
such that

μ(X\AR) < ε.

Since μ is a probability measure on the Polish space X , it is a Radon measure.
Moreover, Pr (Y ) endowed with Wr is a separable metric space, hence it is second-
countable. Therefore we can apply Lusin’s theorem to the map X � x �→ πx ∈ Pr (Y )

in order to deduce the existence of a closed set F ⊂ AR such that

μ(X\F) < ε and x �→ πx restricted to F is continuous.

Let M̃r (Y ) be the linear space of all finite signed measures on Y , the positive and
negative parts of which are contained in Mr (Y ), equipped with the weak topology
induced by �r (Y ). Since weak topologies are locally convex, an extension of Tietze’s
theorem [24, Theorem 4.1] yields the existence of a continuous map x �→ π x defined
on X with values in M̃r (Y ) such that π x = πx for all x ∈ F and

{π x | x ∈ X} ⊂ co{πx | x ∈ F} ⊂ BR,

where co denotes the convex hull.
Next, we define a nonnegative, continuous, strictly convex in the second argument

functionwhich satisfies a condition of the form (3.23) in order to use the results onweak
transport problems detailed in Remark 3.3. Let {gk | k ∈ N} ⊂ �1(Y ) be a family of
1-Lipschitz continuous functions and absolutely bounded by 1, which separates P(Y )
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(see [25, Theorem 4.5.(a)]). We have for any pair p, p′ ∈ P(Y ), p �= p′ that there is
l ∈ N such that

∫
Y
gl(y) p(dy) �=

∫
Y
gl(y) p

′(dy). (3.26)

Define C : X × Pr (Y ) → R+ for all (x, p) ∈ X × Pr (Y ) by

C(x, p) := ρ(π x , p)+
∑
k∈N

1

2k

∣∣∣∣
∫
Y
gk(y) π x (dy)−

∫
Y
gk(y) p(dy)

∣∣∣∣
2

,

where ρ : P(Y )× P(Y ) → [0, 1] is defined for all p, p′ ∈ P(Y ) by

ρ(p, p′) = inf
χ∈�(p,p′)

∫
Y×Y

(dY (y, y′) ∧ 1) χ(dy, dy′).

Sinceρ can be interpreted as aWasserstein distancewith respect to a bounded distance,
it is immediate that it is a metric on P(Y ) which induces the weak convergence
topology. On the one hand, the map (x, p) �→ ρ(π x , p) is continuous by continuity
of x �→ π x . On the other hand, by Kantorovich and Rubinstein’s duality theorem and
Jensen’s inequality, we have for all (x, p), (x ′, p′) ∈ X × Pr (Y )

∑
k∈N

1

2k

∣∣∣∣∣
∣∣∣∣
∫
Y
gk(y) π x (dy)−

∫
Y
gk(y) p(dy)

∣∣∣∣
2

−
∣∣∣∣
∫
Y
gk(y) π x ′ (dy)−

∫
Y
gk(y) p

′(dy)
∣∣∣∣
2
∣∣∣∣∣

=
∑
k∈N

1

2k

∣∣∣∣
∫
Y
gk(y) π x (dy)−

∫
Y
gk(y) p(dy)+

∫
Y
gk(y) π x ′ (dy)−

∫
Y
gk(y) p

′(dy)
∣∣∣∣

×
∣∣∣∣
∫
Y
gk(y) π x (dy)−

∫
Y
gk(y) p(dy)−

∫
Y
gk(y) π x ′ (dy)+

∫
Y
gk(y) p

′(dy)
∣∣∣∣

≤
∑
k∈N

4

2k

(∣∣∣∣
∫
Y
gk(y) π x (dy)−

∫
Y
gk(y) π x ′ (dy)

∣∣∣∣+
∣∣∣∣
∫
Y
gk(y) p(dy)−

∫
Y
gk(y) p

′(dy)
∣∣∣∣
)

≤ 8
(W1(π x , π x ′ )+W1(p, p

′)
) ≤ 8

(Wr (π x , π x ′ )+Wr (p, p
′)
)
,

where the right-hand side vanishes when (x ′, p′) converges to (x, p) by continuity of
x �→ π x . We deduce that C is continuous.

Note that ρ is convex in the second argument. Therefore, to obtain strict convexity
of C(x, ·) in the second argument, it is sufficient to verify that

F(p) =
∑
k∈N

1

2k

∣∣∣∣
∫
Y
gk(y) p(dy)

∣∣∣∣
2
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is strictly convex. Let p, p′ ∈ P(Y ), p �= p′ and l ∈ N such that (3.26) holds. Hence,
strict convexity of the square proves

∣∣∣∣α
∫
Y
gl(y) p(dy)+ (1− α)

∫
Y
gl(y) p

′(dy)
∣∣∣∣
2

< α

∣∣∣∣
∫
Y
gl(y) p(dy)

∣∣∣∣
2

+ (1− α)

∣∣∣∣
∫
Y
gl(y) p

′(dy)
∣∣∣∣
2

,

which yields strict convexity of F on P(Y ).
Moreover, we have for all (x, p) ∈ X × Pr (Y ), C(x, p) ≤ 1 + 8 = 9, hence C

satisfies (3.23). Remember the definitions of VC and V ′C given in (WOT) and (WOT’).
Since for all x ∈ F , C(x, πx ) = C(x, π x ) = 0, we have

VC (μ, ν) ≤
∫
X\F

C(x, πx ) μ(dx) < 9ε.

Let π∗,ε ∈ �(μ, ν) be optimal for VC (μ, ν). For P, P ′ ∈ P(X × P(Y )), let

ρ̃(P, P ′) = inf
χ∈�(P,P ′)

∫
X×P(Y )×X×P(Y )

((
dX (x, x ′)+ ρ(p, p′)

) ∧ 1
)

χ(dx, dp, dx ′, dp′).

Since μ(dx) δπx (dp) δx (dx ′) δπ
∗,ε
x ′

(dp′) is a coupling between J (π) and J (π∗,ε), we
can estimate

ρ̃(J (π), J (π∗,ε))

≤
∫
X

ρ(πx , π
∗,ε
x ) μ(dx)

≤
∫
F

ρ(πx , π
∗,ε
x ) μ(dx)

+
∫
X\F

∫
Y
(dY (y, y0) ∧ 1) (πx + π∗,εx )(dy) μ(dx)

≤ VC (μ, ν)+ 2ε < 11ε.

For k ∈ N, let πk,ε ∈ �(μk, νk) be optimal for VC (μk, νk). Then J (πk,ε) is optimal
for V ′C (μk, νk) by Remark 3.3 (b), and converges to J (π∗,ε) in Wr and therefore
weakly by Remark 3.3 (d). Then we get

lim sup
k→+∞

ρ̃(J (πk,ε), J (π))

≤ lim sup
k→+∞

(
ρ̃(J (πk,ε), J (π∗,ε))+ ρ̃(J (π∗,ε), J (π))

)
≤ 11ε. (3.27)
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So far ε > 0 was arbitrary. Therefore, there exists a strictly increasing sequence
(kN )N∈N∗ of positive integers such that

∀N ∈ N
∗, ∀k ≥ kN , ρ̃(J (πk,1/N ), J (π)) ≤ 12

N
.

For k ∈ N, let Nk = max{N ∈ N
∗ | k ≥ kN }, where the maximum of the empty

set is defined as 1. Since (kN )N∈N∗ is strictly increasing, we find that Nk → +∞ as
k →+∞. Then the sequence of couplings

πk = πk,1/Nk ∈ �(μk, νk), k ∈ N

is such that ρ̃(J (πk), J (π)) vanishes as k goes to+∞, and therefore J (πk) converges
weakly to J (π). Moreover, sinceWr -convergence is equivalent to weak convergence
coupled with convergence of the r -moments, we have that the r -moments of μk and
νk respectively converge to the r -moments of μ and ν, which implies

∫
X×P(Y )

(
drX (x, x0)+Wr

r (p, δy0)
)
J (πk)(dx, dp)

=
∫
X

(
drX (x, x0)+Wr

r (π
k
x , δy0)

)
μk(dx)

=
∫
X
drX (x, x0) μk(dx)+

∫
Y
drY (y, y0)ν

k(dy)

−→
k→+∞

∫
X
drX (x, x0) μ(dx)+

∫
Y
drY (y, y0) ν(dy)

=
∫
X×P(Y )

(
drX (x, x0)+Wr

r (p, δy0)
)
J (π)(dx, dp).

We deduce that J (πk) converges to J (π) in Wr as k → +∞. According to (1.3),
πk,ε converges to π∗,ε in AWr , which concludes the proof. ��

In the proof of Theorem 2.6 we need to be able to confine approximative sequences
of couplings to certain sets. The next result provides all necessary tools for this.

Lemma 3.4 Let μ,μk ∈ Mr (X), ν, νk ∈ Mr (Y ), k ∈ N all with equal masses and
πk ∈ �(μk, νk), k ∈ N, converge to π ∈ �(μ, ν) in AWr . Let also A ⊂ X be
measurable and B ⊃ A be open.

(i) There are μ̃k ≤ μk |B and εk ≥ 0, k ∈ N such that μ̃k(B) = (1 − εk)μ(A) and
π̃k := μ̃k × πk

x satisfies

AWr (π̃
k, (1− εk)π |A×Y )+ εk −→

k→+∞ 0.
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(ii) Let C ⊂ Y be an open set on which ν is concentrated. There are μ̂k ≤ μ̃k , ν̂k ≤ νk ,
π̂k = μ̂k × π̂k

x ∈ �(μ̂k, ν̂k) concentrated on B ×C and ε′k ≥ 0, k ∈ N such that

AWr
r (π̂

k, (1− ε′k)π |A×Y )+
∫
X
Wr

r (π̂
k
x , πk

x ) μ̂k(dx)+ ε′k −→
k→+∞ 0.

Proof To give the reader some guidance we first give an informal description of the
strategy of the proof: In order to find (π̃k)k∈N and (π̂k)k∈N, we first pick, for k ∈ N,
optimizers χk ∈ �(μk, μ) for AWr (π

k, π). Denote by π̃k the composition of the
first marginal of χk |B×A with the kernel (πk

x )x∈X . By approximation arguments we
will then deduce that π̃k has the desired properties. In the last step, we adequately
modify π̃k to a coupling π̂k with second marginal concentrated on C .

Both assertions are trivial if μ(A) = 0 (and also when A = X ). So assume that
μ(A) > 0.

(i) Let χk ∈ �(μk, μ) be optimal for AWr (π
k, π) and μ̃k be the first marginal of

χk |B×A, k ∈ N. We set π̃k = μ̃k × πk
x and

εk = 1− χk(B × A)

χk(X × A)
= 1− μ̃k(X)

μ(A)
· (3.28)

Let us prove that εk goes to 0 as k →∞ before checking that the same holds for
AWr (π̃

k, (1− εk)π |A×Y ).
Let χ = (id, id)∗μ. Since χk(dx1, dx2) δ(x2,x2)(dx3, dx4) defines a coupling in
�(χk, χ), we find

Wr
r (χ

k, χ) ≤
∫
X4

(dX (x1, x3)
r + dX (x2, x4)

r ) χk(dx1, dx2) δ(x2,x2)(dx3, dx4)

=
∫
X×X

dX (x1, x2)
r χk(dx1, dx2) ≤ AWr

r (π
k, π) → 0, k →+∞.

Further, let P : Pr (X × X) → P(X × X) be the homeomorphism given by

P(η)(dx1, dx2) = (1+ dX (x1, x0)r + dX (x2, x0)r ) η(dx1, dx2)∫
X×X (1+ dX (x ′1, x0)r + dX (x ′2, x0)r ) η(dx ′1, dx ′2)

,

for η ∈ Pr (X × X). Recall (1.1), then it is easy to deduce that P(η′) → P(η)

weakly if and only if η′ → η in Wr . In particular, we find that P(χk) → P(χ)

weakly as k goes to +∞. Let f ∈ �r (X × X) and

ϕ : X × X : (x1, x2) �→ 1X×A(x1, x2) f (x1, x2)

1+ dX (x1, x0)r + dX (x2, x0)r
.

Thenϕ is a boundedmeasurablemapwhich is continuousw.r.t. the first coordinate.
As a consequence of [42, Lemma 2.1], we find

∫
X×X

ϕ(x1, x2) P(χk)(dx1, dx2) →
∫
X×X

ϕ(x1, x2) P(χ)(dx1, dx2), k →+∞,
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which amounts to

∫
X×X

f (x1, x2) χk |X×A(dx1, dx2) →
∫
X×X

f (x1, x2) χ |X×A(dx1, dx2), k →+∞.

Therefore (1.1) yields Wr -convergence of χk |X×A to χ |X×A. By Portmanteau’s
theorem, we have

χk(B × A) ≤ χk(X × A) =μ(A) = χ |X×A(B × B)

≤ lim inf
k→+∞ χk |X×A(B × B) = lim inf

k→+∞ χk(B × A),

By the first equality in (3.28), we deduce that εk , k ∈ N is a null sequence of
nonnegative real numbers. We now want to show that

AWr (μ̃
k × πk

x , (1− εk)μ|A × πx ) → 0. (3.29)

On the one hand, denoting by μ̄k the second marginal of χk |B×A, we have that

AWr
r (μ̃

k × πk
x , μ̄k × πx ) ≤

∫
X×X

(
drX (x, x ′)+Wr

r (π
k
x , πx ′)

)
χk |B×A(dx, dx ′)

≤
∫
X×X

(
drX (x, x ′)+Wr

r (π
k
x , πx ′)

)
χk(dx, dx ′)

= AWr
r (π

k, π) → 0, k →+∞.

(3.30)

On the other hand, let

μ̌k = (1− εk)μ|A, ζ k = μ̌k ∧ μ̄k andαk = μ̄k(X)− ζ k(X) = μ̌k(X)− ζ k(X).

Letχk ∈ �(μ̄k−ζ k, μ̌k−ζ k)be optimal forAWr
r ((μ̄

k−ζ k)×πx , (μ̌
k−ζ k)×πx ).

Since ((id, id)∗ζ k + χk) is a coupling between μ̄k and μ̌k , we find

AWr (μ̄
k × πx , μ̌

k × πx ) ≤
∫
X

(
drX (x, x ′)+Wr

r (πx , πx ′)
)

χk(dx, dx ′)

= AWr
r ((μ̄

k − ζ k)× πx , (μ̌
k − ζ k)× πx )

≤ AWr ((μ̄
k − ζ k)× πx , αkδ(x0,y0))+AWr ((μ̌

k − ζ k)× πx , αkδ(x0,y0)).
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In the next estimates we use (3.1). Note that the first marginal of (μ̄k − ζ k)× πx

is dominated by μ whereas its second marginal is dominated by ν. Thus, denoting
τ k(dy) = ∫

X πx (dy) (μ̄k − ζ k)(dx), we find

AWr
r ((μ̄k − ζ k)× πx , αkδ(x0,y0)) =

∫
X

(
drX (x, x0)+Wr

r (πx , δy0 )
)

(μ̄k − ζ k)(dx)

=
∫
X
drX (x, x0) (μ̄k − ζ k)(dx)+

∫
Y
drY (y, y0) τ k(dy)

≤ I rαk (μ)+ I rαk (ν).

Similarly, we find

AWr
r ((μ̌

k − ζ k)× πx , αkδ(x0,y0)) ≤ I rαk (μ)+ I rαk (ν).

If we can show that αk vanishes for k →+∞, then we find by Lemma 3.1 (b) that

AWr (μ̄
k × πx , μ̌

k × πx ) −→
k→+∞ 0, (3.31)

and the triangle inequality together with (3.30) and (3.31) yield the assertion,
(3.29).
Since μ̌k, μ̄k ≤ μ|A, the densities of μ̌k and μ̄k with respect to μ|A satisfy
dμ̌k

dμ|A ,
dμ̄k

dμ|A ≤ 1. Then we conclude by

αk = μ̄k(X)− ζ k(X)

=
∫
A

(
dμ̄k

dμ|A (x)− dμ̌k

dμ|A (x)

)+
μ(dx) ≤

∫
A

(
1− dμ̌k

dμ|A (x)

)
μ(dx)

= μ(A)− μ̌k(A) = εkμ(A) −→
k→+∞ 0.

(ii) Let ν̃k and ν̃ denote the second marginals of μ̃k × πk
x and μ|A × πx respectively.

Since μ|A × πx ≤ μ × πx with the second marginal ν of the right-hand side
concentrated on C , ν̃ is concentrated on C and ν̃(C) = μ(A). In a similar way,
since μ̃k × πk

x ≤ μk × πk
x , we have ν̃k ≤ νk . In order to modify μ̃k × πk

x into
a coupling with second marginal concentrated on C , we consider μ̃k × π̊k

x with
π̊k
x (dz) = ∫

Y χ̊k
y (dz) πk

x (dy) where the coupling χ̊k ∈ �(ν̃k, (1 − εk)ν̃) is Wr -
optimal. To enable comparison of the second marginal with νk as in the statement,
we take advantage of the inequality ν̃k ≤ νk and introduce μ̃k× π̂k

x with π̂k
x (dt) =∫

Y χ̂k
z (dt) π̊k

x (dz) where the coupling χ̂k ∈ �((1 − εk)ν̃, (1 − εk)
ν̃(C)

ν̃k (C)
ν̃k |C ) is

Wr -optimal. The second marginal of π̂k = μ̃k × π̂k
x is (1− εk)

ν̃(C)

ν̃k (C)
ν̃k |C . By the

equality ν̃(C) = μ(A) and (3.28) for the equality then the definition of ν̃k for the
inequality, one has

(1− εk)
ν̃(C)

ν̃k(C)
= μ̃k(X)

ν̃k(C)
≥ 1.
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Approximation of martingale couplings on the line… 387

Setting μ̂k = ν̃k (C)

μ̃k (X)
μ̃k ≤ μ̃k then ensures that the second marginal ν̂k = ν̃k |C of

μ̂k × π̂k
x is both concentrated on C and not greater than νk . Moreover, ν̂k(C) =

ν̂k(Y ) = μ̂k(X) ≤ μ̃k(X) with the right-hand side not greater than μ(A) by
(3.28). Hence

ε′k := 1− ν̃k(C)

μ(A)
∈ [0, 1]· (3.32)

Then it remains to show that

AWr (π̂
k, (1− ε′k)π |A×Y )+

∫
X
Wr

r (π̂
k
x , πk

x ) μ̂k(dx)+ ε′k −→
k→+∞ 0. (3.33)

Since we have

πk
x (dy) χ̊k

y (dz) ∈ �(πk
x , π̊k

x ), π̊k
x (dz) χ̂k

z (dt) ∈ �(π̊k
x , π̂k

x ),∫
x∈X

μ̂k(dx) πk
x (dy) χ̊k

y (dz) =
ν̃k(C)

μ̃k(X)
χ̊k(dy, dz),

∫
x∈X

μ̂k(dx) π̊k
x (dz) χ̂k

z (dt) = ν̃k(C)

μ̃k(X)
χ̂k(dz, dt),

we find plugging the expressions (3.28) and (3.32) that

AWr
r (μ̂

k × πk
x , μ̂k × π̂k

x )

≤
∫
X
Wr

r (π
k
x , π̂k

x ) μ̂k(dx)

≤ 2r−1
∫
X

(
Wr

r (π
k
x , π̊k

x )+Wr
r (π̊

k
x , π̂k

x )
)

μ̂k(dx)

≤ 2r−1
∫
X

(∫
Y×Y

drY (y, z) πk
x (dy) χ̊k

y (dz)+
∫
Y×Y

drY (z, t) π̊k
x (dz) χ̂k

z (dt)

)
μ̂k(dx)

= 2r−1
(

ν̃k(C)

μ̃k(X)

∫
Y×Y

drY (y, z) χ̊k(dy, dz)+ ν̃k(C)

μ̃k(X)

∫
Y×Y

drY (z, t) χ̂k(dz, dt)

)

= 2r−1
(
1− ε′k
1− εk

Wr
r (ν̃

k, (1− εk)ν̃)+ 1

μ(A)
Wr

r (ν̃
k(C)ν̃, ν̃(C)ν̃k |C )

)
.

To see convergence to 0, note that since AWr dominates Wr , we find by continuity
of the projection on the second marginal that (3.29) implies

Wr (ν̃
k, (1− εk)ν̃)→ 0, k →+∞.

Using Portmanteau’s theorem and the fact that (1− εk)→ 1 as k goes to +∞, we
have for all nonnegative function f ∈ �r (Y )

lim sup
k→+∞

ν̃k(1C f ) ≤ lim sup
k→+∞

ν̃k( f ) = ν̃( f ) = ν̃(1C f ) ≤ lim inf
k→+∞ ν̃k(1C f ),

123



388 M. Beiglböck et al.

hence

ν̃k |C ( f ) → ν̃( f ), k →+∞. (3.34)

Moreover, (3.34) applied with f = 1 yields ν̃k(C) → ν̃(C) = μ(A) as k goes to
+∞, hence ε′k vanishes as k goes to +∞ and

Wr (ν̃
k(C)ν̃, ν̃(C)ν̃k |C )→ 0, k →+∞.

We deduce that

AWr
r (μ̂

k × πk
x , μ̂k × π̂k

x ) ≤
∫
X
Wr

r (π
k
x , π̂k

x ) μ̂k(dx) → 0, k →+∞.

On the other hand, by the definition of μ̂k as ν̃k (C)

μ̃k (X)
μ̃k , (3.28) and (3.32) we have

μ̂k = 1−ε′k
1−εk

μ̃k , hence

AWr (μ̂
k × πk

x , (1− ε′k)μ|A × πx ) = 1− ε′k
1− εk

AWr (μ̃
k × πk

x , (1− εk)μ|A × πx ),

where the right-hand side vanishes as k goes to +∞ by the first part. Then (3.33)
follows by triangle inequality and the latter convergences, which completes the proof.

��
The addition of measures is continuous with respect to the weak and Wasserstein
topology. More precisely, we have the estimate

Wr
r (μ+ μ′, ν + ν′) ≤Wr

r (μ, ν)+Wr
r (μ

′, ν′)

for all measures μ,μ′, ν, ν′ ∈ Pr (X) such that μ and ν, resp. μ′ and ν′ have equal
masses.

When considering the adapted weak topology, the next example disproves a com-
parable statement.

Example 3.5 Let X = Y = R, and πk = δ(
1
k ,1

), χk = δ(
− 1

k ,−1
), k ∈ N. Then both

sequences are convergent in AW1, but

AW1(π
k + χk, δ(0,1) + δ(0,−1)) = 2

k
+ 2

does not vanish.

However, we show in the next lemma that the addition of measures with respect to the
adapted weak topology can still be considered to be continuous in a certain sense if
one of the limits has mass significantly smaller than the other.
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Lemma 3.6 Let μ̂, μ̂k, ν̂, ν̂k ∈ Mr (Y ), k ∈ N be with equal masses and
μ̃, μ̃k, ν̃, ν̃k ∈ Mr (Y ), k ∈ N be with equal masses smaller than ε. Let π̂k ∈
�(μ̂k, ν̂k), π̃k ∈ �(μ̃k, ν̃k), k ∈ N, π̂ ∈ �(μ̂, ν̂) and π̃ ∈ �(μ̃, ν̃). Let μ = μ̂+ μ̃

and ν = ν̂ + ν̃. Then

(a) We have for all k ∈ N

AWr
r (π̂

k + π̃k, π̂ + π̃)

≤ AWr
r (π̂

k, π̂)+ 2r−1
(
I rε (μ̃)+ I rε (μ̃k)+ I rε (ν̃)+ I rε (ν̃k)+ 2I rε (ν̂)+ 2I rε (ν̂k)

)

≤ AWr
r (π̂

k, π̂)+ (2r−1)2
(
Wr

r (μ̃
k, μ̃)+Wr

r (ν̃
k, ν̃)+ 2Wr

r (ν̂
k, ν̂)

)

+ 2r−1(1+ 2r−1)I rε (μ)+ 3 · 2r−1(1+ 2r−1)I rε (ν),

(3.35)

where I rε (·) is defined by (3.1).
(b) If (π̂k)k∈N converges to π̂ in AWr and (μk = μ̂k + μ̃k)k∈N, resp. (νk = ν̂k +

ν̃k)k∈N, converges to μ, resp. ν, inWr , then

lim sup
k→+∞

AWr
r (π̂

k + π̃k, π̂ + π̃) ≤ C(I rε (μ)+ I rε (ν)), (3.36)

where C > 0 depends only on r.

Proof The second inequality of (3.35) is easily deduced from the first one, (3.2) and
the fact that I rε (μ̃) ≤ I rε (μ), I rε (ν̃) ≤ I rε (ν) and I rε (ν̂) ≤ I rε (ν).

To see (b), assume for a moment that the first inequality of (3.35) holds true and
suppose

π̂k → π̂ in AWr , μk = μ̂k + μ̃k → μ and νk = ν̂k + ν̃k → ν inWr

as k →+∞. Using Lemma 3.1 (a) and then (c), we obtain

lim sup
k→+∞

AWr
r (π̂

k + π̃k, π̂ + π̃)

≤ C ′ lim sup
k→+∞

(
I rε (μk)+ I rε (νk)+ I rε (μ)+ I rε (ν)

)

≤ C lim sup
k→+∞

(
Wr

r (μ
k, μ)+Wr

r (ν
k, ν)+ I rε (μ)+ I rε (ν)

)

= C(I rε (μ)+ I rε (ν)),

where C,C ′ > 0 depend only on r . Hence (b) is proved.
To conclude the proof, it remains to show the first inequality in (3.35). Let ρ̂k ∈

�(μ̂k, μ̂) be optimal for AWr (π̂
k, π̂) and ρ̃k ∈ �(μ̃k, μ̃) be arbitrary. We write
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ρk = ρ̂k + ρ̃k . Then

AWr
r (π̂

k + π̃k, π̂ + π̃)

≤
∫
X×X

(
drX (x, x ′)+Wr

r ((π̂
k + π̃k)x , (π̂ + π̃)x ′)

)
ρk(dx, dx ′). (3.37)

Let p̂ = dμ̂
dμ

and p̂k = dμ̂k

dμk . Notice that p̂ and p̂k take values in [0, 1]. The identities

(π̂ + π̃)(dx, dx ′) = μ(dx)
(
p̂(x) π̂x (dx

′)+ (1− p̂(x)) π̃x (dx
′)
)
,

(π̂k + π̃k)(dx, dx ′) = μk(dx)
(
p̂k(x) π̂k

x (dx ′)+ (1− p̂k(x)) π̃k
x (dx ′)

)
,

provide representations for the disintegrations of (π̂ + π̃) and (π̂k + π̃k) respectively
for μ(dx)- and μk(dx)-almost every x :

(π̂ + π̃)x = p̂(x) π̂x + (1− p̂(x))π̃x , (π̂k + π̃k)x = p̂k(x) π̂k
x + (1− p̂k(x)) π̃k

x .

Thus, we have when letting αk+(x, x ′) = ( p̂k(x)− p̂(x ′))+, αk−(x, x ′) = ( p̂k(x)−
p̂(x ′))− and βk(x, x ′) = p̂k(x) ∧ p̂(x ′) that

Wr
r ((π̂k + π̃k)x , (π̂ + π̃)x ′)

≤Wr
r (βk(x, x ′) π̂k

x , βk(x, x ′) π̂x ′)

+Wr
r

(
αk+(x, x ′) π̂k

x + (1− p̂k(x)) π̃k
x , αk−(x, x ′) π̂x ′ + (1− p̂(x ′)) π̃x ′

)

≤ βk(x, x ′)Wr
r (π̂k

x , π̂x ′)+ 2r−1
(
αk+(x, x ′)Wr

r (π̂k
x , δy0 )+ (1− p̂k(x))Wr

r (π̃k
x , δy0 )

+αk−(x, x ′)Wr
r (π̂x ′ , δy0 )+ (1− p̂(x ′))Wr

r (π̃x ′ , δy0 )
)

.

(3.38)

Since βk(x, x ′) = p̂k(x) ∧ p̂(x ′) ≤ 1, we deduce from (3.37), (3.38) and AWr -
optimality of ρ̂k
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AWr
r (π̂

k + π̃k, π̂ + π̃) ≤ AWr
r (π̂

k, π̂)+
∫
X×X

dX (x, x ′)r ρ̃k(dx, dx ′)

+ 2r−1
∫
X×X

p̂k(x)Wr
r (π̂

k
x , δy0) ρ̃k(dx, dx ′)

+ 2r−1
∫
X×X

p̂(x ′)Wr
r (π̂x ′ , δy0) ρ̃k(dx, dx ′)

+ 2r−1
∫
X×X

αk+(x, x ′)Wr
r (π̂

k
x , δy0) ρk(dx, dx ′)

+ 2r−1
∫
X×X

(1− p̂k(x))Wr
r (π̃

k
x , δy0) ρk(dx, dx ′)

+ 2r−1
∫
X×X

αk−(x, x ′)Wr
r (π̂x ′ , δy0) ρk(dx, dx ′)

+ 2r−1
∫
X×X

(1− p̂(x ′))Wr
r (π̃x ′ , δy0) ρk(dx, dx ′).

(3.39)

Recall that ρ̃k has marginals μ̃k and μ̃ with total mass smaller than ε. By (3.1) we
find

∫
X×X

dX (x, x ′)r ρ̃k(dx, dx ′) ≤ 2r−1
(
I rε (μ̃k)+ I rε (μ̃)

)
. (3.40)

Concerning the marginals of p̂k(x) ρ(dx, dx ′) and p̂(x ′) ρ(dx, dx ′), we find the rela-
tions

p̂k(x) μ̃k(dx) = (1− p̂k(x)) μ̂k(dx), p̂(x ′) μ̃(dx ′) = (1− p̂(x ′)) μ̂(dx ′).

Again by (3.1), we find since ρ̃k ∈ �(μ̃k, μ̃), π̂k ∈ �(μ̂k, ν̂k) and π̂ ∈ �(μ̂, ν̂) that

∫
X×X

p̂k(x)Wr
r (π̂

k
x , δy0) ρ̃k(dx, dx ′)

=
∫
X×X

(1− p̂k(x))Wr
r (π̂

k
x , δy0) μ̂k(dx) ≤ I rε (ν̂k), (3.41)

∫
X×X

p̂(x ′)Wr
r (π̂x ′ , δy0) ρ̃k(dx, dx ′)

=
∫
X×X

(1− p̂(x ′))Wr
r (π̂x ′ , δy0) μ̂(dx ′) ≤ I rε (ν̂). (3.42)
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We deduce from (3.39) and (3.40)-(3.42) that it is sufficient to show

∫
X×X

αk+(x, x ′)Wr
r (π̂

k
x , δy0) ρk(dx, dx ′) ≤ I rε (ν̂k), (3.43)

∫
X×X

(1− p̂k(x))Wr
r (π̃

k
x , δy0) ρk(dx, dx ′) ≤ I rε (ν̃k), (3.44)

∫
X×X

αk−(x, x ′)Wr
r (π̂x ′ , δy0) ρk(dx, dx ′) ≤ I rε (ν̂), (3.45)

∫
X×X

(1− p̂(x ′))Wr
r (π̃x ′ , δy0) ρk(dx, dx ′) ≤ I rε (ν̃). (3.46)

To see (3.44) and (3.46), note that

(1− p̂k(x)) μk(dx) = μ̃k(dx) and (1− p̂(x ′)) μ(dx ′) = μ̃(dx ′). (3.47)

As a consequence, the first marginal of (1− p̂k(x)) ρk(dx, dx ′) is μ̃k , whereas the
second marginal of (1− p̂(x ′)) ρk(dx, dx ′) coincides with μ̃. Hence, as the mass of
μ̃k and μ̃ does not exceed ε, we have

∫
X×X

(1− p̂k(x))Wr
r (π̃

k
x , δy0) ρk(dx, dx ′)

=
∫
X
Wr

r (π̃
k
x , δy0) μ̃k(dx) =Wr

r (ν̃
k, δy0) = I rε (ν̃k),

∫
X×X

(1− p̂(x ′))Wr
r (π̃x ′ , δy0) ρk(dx, dx ′)

=
∫
X
Wr

r (π̃x ′ , δy0) μ̃(dx ′) =Wr
r (ν̃, δy0) = I rε (ν̃).

Next,we show (3.43) and (3.45). To this end, denotingρk(dx, dx ′) = μk(dx) ρk
x (dx

′) =
μ(dx ′)←−ρ k

x ′(dx), we have

αk+(x, x ′) ρk(dx, dx ′) ≤ p̂k(x) ρk(dx, dx ′)

= dμ̂k

dμk
(x) μk(dx) ρk

x (dx
′) = μ̂k(dx) ρk

x (dx
′),

αk−(x, x ′) ρk(dx, dx ′) ≤ p̂(x ′) ρk(dx, dx ′)

= dμ̂

dμ
(x ′) μ(dx ′)←−ρ k

x ′(dx) = μ̂(dx ′)←−ρ k
x ′(dx).

In particular, the first marginal of αk+(x, x ′) ρk(dx, dx ′), denoted here by τ k , is dom-
inated by μ̂k , whereas the second marginal of αk−(x, x ′) ρk(dx, dx ′), denoted here

by τ k
′
, is dominated by μ̂. Concerning the masses of τ k and τ k

′
, remember (3.47),
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αk+(x, x ′) ≤ 1− p̂(x ′) and αk−(x, x ′) ≤ 1− p̂k(x), thus,

τ k(X) =
∫
X×X

αk+(x, x ′) ρk(dx, dx ′) ≤
∫
X
(1− p̂(x ′)) μ(dx ′) = μ̃(X) ≤ ε,

τ k
′
(X) =

∫
X×X

αk−(x, x ′) ρk(dx, dx ′) ≤
∫
X
(1− p̂k(x)) μk(dx) = μ̃k(X) ≤ ε.

Using (3.1), we conclude with

∫
X×X

αk+(x, x ′)Wr
r (π̂

k
x , δy0) ρk(dx, dx ′) =

∫
X
Wr

r (π̂
k
x , δy0) τ (dx) ≤ I rε (ν̂k),

∫
X×X

αk−(x, x ′)Wr
r (π̂x ′ , δy0) ρk(dx, dx ′) =

∫
X
Wr

r (π̂x ′ , δy0) τ ′(dx ′) ≤ I rε (ν̂).

��
The addition onMr (X ×Y ) is continuous with respect to the adapted weak topology
provided the limits have singular firstmarginal distributions.We recall that twopositive
measures μ, ν are called singular if and only if there exists a measurable set A ⊂ X
such that μ(A�) = 0 = ν(A).

Lemma 3.7 Let π, χ ∈Mr (X × Y ) be such that their respective first marginals are
singular. Let πk, χk ∈Mr (X ×Y ), k ∈ N converge to π and χ respectively inAWr .
Then

πk + χk −→
k→+∞ π + χ in AWr .

Proof Let μ1, μ2, μk
1 and μk

2 denote the respective first marginals of π , χ , πk and χk .

Due to singularity, there is a measurable set A ⊂ X such that μ1(A�) = 0 = μ2(A).
Suppose first that for all k ∈ N, μk

1(A
�) = 0 = μk

2(A). Let ρk
1 ∈ �(μk

1, μ1), resp.
ρk
2 ∈ �(μk

2, μ2), be an optimal coupling for AWr (π
k, π), resp. AWr (χ

k, χ). Since
almost surely

(πk + χk)x = 1A(x) πk
x + 1A�(x)χk

x and (π + χ)x = 1A(x) πx + 1A�(x)χx ,

we have

AWr
r (π

k + χk, π + χ)

≤
∫
X×X

(
drX (x, x ′)+Wr

r ((π
k + χk)x , (π + χ)x ′)

)
(ρk

1 + ρk
2 )(dx, dx

′)

=
∫
X×X

(
drX (x, x ′)+Wr

r (π
k
x , πx ′)

)
ρk
1 (dx, dx

′)

+
∫
X×X

(
drX (x, x ′)+Wr

r (χ
k
x , χx ′)

)
ρk
2 (dx, dx

′)

= AWr
r (π

k, π)+AWr
r (χ

k, χ) → 0, k →+∞.
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Let us now go back to the general case. Let ε > 0. Since X is a Polish space, μ1 and
μ2 are inner regular, so there exist two compact sets K1 ⊂ A and K2 ⊂ A� such that

μ1(K
�
1 ) < ε and μ2(K

�
2 ) < ε.

Since X is metrizable, it is normal, hence we can separate the closed, disjoint sets
K1 and K2 by open, disjoint sets K̃1 and K̃2 where K1 ⊂ K̃1 and K2 ⊂ K̃2. Then
Lemma 3.4 (i) provides sequences (μ̃k

1 × πk
x )k∈N and (μ̃k

2 × χk
x )k∈N with values in

M(X × Y ) and null sequences (εk)k∈N and (ηk)k∈N with values in [0, 1], such that
μ̃k
1 ≤ μk

1|K̃1
, μ̃k

2 ≤ μk
2|K̃2

and, for k →+∞,

AWr
r (μ̃

k
1 × πk

x , (1− εk)π |K1×Y )

+AWr
r (μ̃

k
2 × χk

x , (1− ηk)χ |K2×Y ) → 0.

To apply Lemma 3.6 (b), let 0 < ε′ ≤ ε be such that ε′(μ1(K1)+ μ2(K2)) < ε. Let
k be sufficiently large such that εk ∧ ηk < ε′. We consider the sequences

π̂k = 1− ε′

1− εk
μ̃k
1 × πk

x +
1− ε′

1− ηk
μ̃k
2 × χk

x , π̂ = (1− ε′)
(
π |K1×Y + χ |K2×Y

)
,

π̃k = πk + χk − π̂k, π̃ = π + χ − π̂ ,

where π̃k is well-defined in Mr (X × Y ) since εk < ε′ and ηk < ε′. Note that as
k →+∞,

AWr
r

(
1− ε′

1− εk
μ̃k
1 × πk

x , (1− ε′)π |K1×Y
)

= 1− ε′

1− εk
AWr

r

(
μ̃k
1 × πk

x , (1− εk)π |K1×Y
)
→ 0,

AWr
r

(
1− ε′

1− ηk
μ̃k
2 × χk

x , (1− ε′)χ |K2×Y
)

= 1− ε′

1− ηk
AWr

r

(
μ̃k
2 × χk

x , (1− ηk)χ |K2×Y
)
→ 0.

Since the first marginal distributions of μ̃k
1×πk

x and (1−εk)π |K1×Y , resp. μ̃k
2×χk

x and
(1− ηk)χ |K2×Y , are concentrated on K̃1, resp. K̃2, and since K̃1 and K̃2 are disjoint,
we have according to the preceding part that

AWr
r (π̂

k, π̂)→ 0, k →+∞.

Due toAWr -convergence of (πk)k∈N and (χk)k∈N, we obtainWr -convergence of the
marginals of πk + χk to the marginals of π + χ . Furthermore, we have

π̃k(X × Y ) = π̃(X × Y ) ≤ μ1(K
c
1)+ μ2(K

c
2)+ ε′(μ1(K1)+ μ2(K2)) < 3ε.
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Then (3.36) yields

lim sup
k→+∞

AWr
r (π

k + χk, π + χ) = lim sup
k→+∞

AWr
r (π̂

k + π̃k, π̂ + π̃)

≤ C
(
I r3ε(μ1 + μ2)+ I r3ε(ν1 + ν2)

)
,

where ν1 and ν2 denote the respective second marginals of π and χ , and the constant
C only depends on r . Therefore, the right-hand side vanishes as ε → 0 according to
Lemma 3.1 (b), which concludes the proof. ��

4 Auxiliary results on the convex order in dimension one

We recall that the convex order on M1(R) is defined by

μ ≤c ν ⇐⇒ ∀ f : R→ R convex, μ( f ) ≤ ν( f ).

The following assertions can be found for instance be found in [35, Section 2]: for
all (m0,m1) ∈ R

∗+ ×R, there is a one-to-one correspondence between finite positive
measures μ ∈ M1(R) with mass m0 such that

∫
R
y μ(dy) = m1 and the set of

functions u : R→ R
+ which satisfy

(i) u is convex;
(ii) u(y)− m0|y − m1| goes to 0 as |y| tends to +∞.

Any function which satisfies (i) and (ii) is then called a potential function. As noted
above, the potential function of μ is denoted by

uμ(y) =
∫
R

|y − x |μ(dx).

Potential functions can of course also be considered in greater generality than on the
real line, but this is not relevant for our purposes.

A sequence (μk)k∈N of finite positive measures with equal masses on the line
converges in W1 to μ if and only if the sequence of potential functions (uμk )k∈N
converges pointwise to uμ. In that case, since for all y ∈ R the map x �→ |y − x |
is Lipschitz continuous with constant 1, we have by Kantorovich and Rubinstein’s
duality theorem that

sup
y∈R

|uμk (y)− uμ(y)| ≤W1(μ
k, μ) → 0, k →+∞,

hence we even have uniform convergence on R of potential functions.
For all m1 ∈ R, the set of all finite positive measures on the real line with mean

m1 is a lattice [40, Proposition 1.6], and even a complete lattice [41] for the convex
order. Then all μ, ν ∈ M1(R) with mean m1 have a supremum, denoted μ ∨c ν,
and an infimum, denoted μ∧c ν, with respect to the convex order. In that context it is
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convenient toworkwith potential functions since they provide simple characterisations
of those bounds:

μ ∨c ν is defined as the measure with potential function uμ ∨ uν,

μ ∧c ν is defined as the measure with potential function co(uμ ∧ uν),

where co is the convex hull.

Lemma 4.1 Let (μk)k∈N, (νk)k∈N be two sequences ofM1(R) converging respectively
to μ and ν in W1. Suppose that there exists (m0,m1) ∈ R

∗+ × R such that μk(R) =
νk(R) = m0 and

∫
R
x μk(dx) = ∫

R
y νk(dy) = m1 for all k ∈ N. Then

lim
k→+∞W1(μ

k ∨c νk, μ ∨c ν) = 0 and lim
k→+∞W1(μ

k ∧c νk, μ ∧c ν) = 0.

Proof Convergence in W1 is equivalent to pointwise convergence of the potential
functions. Thus, the convergence of μk ∨c νk to μ∨c ν inW1 is a consequence of the
pointwise convergence of uμk∨cνk

= uμk ∨ uνk to uμ ∨ uν = uμ∨cν .
To show convergence of μk ∧c νk to μ ∧c ν in W1, it is sufficient to show for all

x ∈ R

uμk∧cνk
(x) = co(uμk ∧ uνk )(x)→ co(uμ ∧ uν)(x) = uμ∧cν(x), k →+∞. (4.1)

Since uμk and uνk converge uniformly on R to uμ and uν respectively, we have
uniform convergence of uμk ∧ uνk to uμ ∧ uν . Let ε > 0 and k0 ∈ N be such that for
all k ≥ k0,

sup
x∈R

|(uμk ∧ uνk )(x)− (uμ ∧ uν)(x)| ≤ ε.

For all k ≥ k0, we find

co(uμ ∧ uν)− ε ≤ (uμ ∧ uν)− ε ≤ uμk ∧ uνk ,

co(uμk ∧ uνk )− ε ≤ (uμk ∧ uνk )− ε ≤ uμ ∧ uν .

Thus, as the convex hull is the supremum over all dominated, convex functions,
this yields

co(uμ ∧ uν)− ε ≤ co(uμk ∧ uνk ) ≤ co(uμ ∧ uν)+ ε,

which establishes (4.1) and completes the proof. ��
We now provide the proof of Proposition 2.5 which is the key argument to see that

it is enough to prove our main result, namely Theorem 2.6, for irreducible pairs of
marginals.
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Proof of Proposition 2.5 To construct the desired decomposition, pick for all k ∈ N a
coupling πk ∈ �M (μk, νk). Let ln and rn denote the left and right boundary of the
open interval {uμn < uνn } on which μn is concentrated, and set

μk
n(dx) =

∫ Fμ(rn−)

u=Fμ(ln)
δF−1

μk
(u)

(dx) du, νkn (dy) =
∫ Fμ(rn−)

u=Fμ(ln)
πk
F−1

μk
(u)

(dy) du.

These are the respective marginals of π̃k,n on R
2 given by

π̃k,n(dx, dy) =
∫ Fμ(rn−)

u=Fμ(ln)
δF−1

μk
(u)

(dx) πk
F−1

μk
(u)

(dy) du. (4.2)

Since πk is a martingale coupling, we have μk
n ≤c νkn . Finally define

J = [0, 1]\
⋃
n∈N

(Fμ(ln), Fμ(rn−)),

and set

ηk(dx) =
∫
u∈J

δF−1
μk

(u)
(dx) du, υk(dy) =

∫
u∈J

πk
F−1

μk
(u)

(dy) du.

These are the respective marginals of π̃k defined by

π̃k(dx, dy) =
∫
u∈J

δF−1
μk

(u)
(dx) πk

F−1
μk

(u)
(dy) du,

which is again a martingale coupling with marginals (ηk, υk), thus, ηk ≤c υk .
Using inverse transform sampling for the second equality, we find

(
π̃k +

∑
n∈N

π̃k,n

)
(dx, dy) =

∫ 1

u=0
δF−1

μk
(u)

(dx) πk
F−1

μk
(u)

(dy) du

=
∫
xk∈R

δxk (dx) πk
xk (dy) μk(dxk)

= μk(dx) πk
x (dy) = πk(dx, dy).

Concerning the marginals, we deduce

ηk +
∑
n∈N

μk
n = μk and υk +

∑
n∈N

νkn = νk .

For all (τ, u, l, r) ∈ P1(R)× (0, 1)× R× R, we have by (2.3):

Fτ (l) < u < Fτ (r−) �⇒ l < F−1τ (u) < r �⇒ Fτ (l) < u ≤ Fτ (r−). (4.3)
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Since μn(dx) = 1(ln ,rn)(x) μ(dx), using (4.3) for the second equality we find

μn(dx) =
∫
x ′∈(ln ,rn)

δx ′(dx) μ(dx) =
∫ Fμ(rn−)

u=Fμ(ln)
δF−1μ (u)

(dx) du.

We deduce that

η(dx) =
(

μ−
∑
n∈N

μn

)
(dx)

=
∫ 1

u=0
δF−1μ (u)

(dx) du −
∑
n∈N

∫ Fμ(rn−)

u=Fμ(ln)
δF−1μ (u)

(dx) du

=
∫
u∈J

δF−1μ (u)
(dx) du.

Since the monotone rearrangement yields an optimal coupling, we have

W1(η
k, η)+

∑
n∈N

W1(μ
k
n, μn) =

∫ 1

0
|F−1

μk (u)− F−1μ (u)| du =W1(μ
k, μ),

hence

lim
k→+∞W1(η

k, η) = 0 = lim
k→+∞W1(μ

k
n, μn), ∀n ∈ N .

Since the marginals of πk converge weakly, the sequences (μk)k∈N and (νk)k∈N are
tight, and so is (πk)k∈N. For n ∈ N , π̃k,n is dominated by πk , hence (π̃k,n)k∈N is
tight and therefore relatively compact. Moreover, byW1-convergence of (μk)k∈N and
(νk)k∈N, the sequences

(∫
R
|x |μk(dx)

)
k∈N and

(∫
R
|y| νk(dy))k∈N converge and are in

particular bounded. Hence the sequences
(∫

R
|x |μk

n(dx)
)
k∈N and

(∫
R
|y| νkn (dy)

)
k∈N

are bounded as well and admit convergent subsequences. Since theW1-convergence is
equivalent to the weak convergence plus convergence of the first moments, we deduce
that the sequence (π̃k,n)k∈N is relatively compact in W1. Since (πk)k∈N is tight,
from any subsequence we can extract a further subsequence denoted by (πk j ) j∈N
which converges weakly to some π ∈ �M (μ, ν). There are subsequences (π̃k j ,n) j∈N
converging in W1 to a measure π̃n . Moreover π̃n ≤ π with π ∈ �M (μ, ν) denoting
the weak limit of a subsequence of the tight sequence (πk j ) j∈N. The first marginal of
π̃n coincides with μn due to the continuity of the projection, thus,

π̃n ≤ π |(ln ,rn)×R = :πn .

As π̃n(R × R) = μn((ln, rn)) = πn(R × R), there must hold equality, i.e., π̃n =
πn and

∫
x∈R π̃n(dx, dy) = νn(dy). By continuity of the projection, we deduce that

lim j→∞W1(ν
k j
n , νn) = 0 and, since the limit does not depend on the subsequence,

(νkn )k∈N converges inW1 to νn . Analogously, we find that (υk)k∈N converges to η. ��
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The next two lemmas explore the influence of certain scaling and restrictions of
measure on condition that the transformed measures are in convex order.

Lemma 4.2 Let r ≥ 1 and μ ∈ Mr (R
d) be a finite positive measure. Let m1 =∫

R
x μ(dx) and μα , α ∈ R+ be the image of μ by y �→ α(y−m1)+m1. Then for all

α, β ∈ R+,

Wr (μ
α, μβ) = |β − α|

(∫
Rd
|x − m1|r μ(dx)

) 1
r = |β − α|Wr (μ

0, μ1). (4.4)

Moreover, (μα)α∈R+ constitutes a peacock, i.e., α ≤ β ∈ R+ implies μα ≤c μβ .

Proof Let α ≤ β ∈ R+. By the triangle inequality we obtain

(∫
Rd
|x − m1|r μβ(dx)

) 1
r =Wr (δm1 , μ

β) ≤Wr (δm1 , μ
α)+Wr (μ

α, μβ)

=
(∫

Rd
|x − m1|r μα(dx)

) 1
r +Wr (μ

α, μβ).

Thus,

Wr (μ
α, μβ) ≥

(∫
Rd
|x − m1|r μβ(dx)

) 1
r −

(∫
Rd
|x − m1|r μα(dx)

) 1
r

= (β − α)

(∫
Rd
|x − m1|r μ(dx)

) 1
r

.

Since the image of μ under x �→ (α(x − m1)+ m1, β(y − m1)+ m1) is a coupling
between μα and μβ , we also have the reverse inequality

Wr (μ
α, μβ) ≤ (β − α)

(∫
Rd
|x − m1|r μ(dx)

) 1
r

,

which proves (4.4).
To see that (μα)α∈R+ is a peacock, we fix again α ≤ β ∈ R+ and a convex function

f on R
d . By convexity, we have

μα( f ) =
∫
Rd

f (α(x − m1)+ m1) μ(dx)

≤
∫
Rd

(
α

β
f (β(x − m1)+ m1)+

(
1− α

β

)
f (m1)

)
μ(dx) ≤ μβ( f ).

��
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Lemma 4.3 For all p ∈ P1(R) with barycentre m1 ∈ R and R ≥ 0, let pR be defined
by

pR = p ∧c

(
R − m1

2R
δ−R + R + m1

2R
δR

)
if R ≥ |m1|,

and pR = δm1 otherwise. Then

(a) For all R > 0, pR ≤c p, and if R ≥ |m1|, then pR is concentrated on [−R, R].
(b) We have

W1(p
R, p) −→

R→+∞ 0.

Proof Let p ∈ P1(R) be with barycentre m1 ∈ R. For all R ≥ |m1|, let ηR =
R−m1
2R δ−R + R+m1

2R δR , so that pR = p ∧c ηR . If R < |m1| then pR = δm1 so we
clearly have pR ≤c p. Else, pR ≤c p still holds by definition of the convex infimum.
Moreover, since ηR is concentrated on [−R, R], so is pR by domination in the convex
order, hence (a) is proved.

To show (b), it suffices to verify pointwise convergence of the corresponding poten-
tial functions, i.e., for all y ∈ R,

u p∧ηR (y) = co(u p ∧ uηR )(y) → u p(y), R →+∞. (4.5)

Let ε > 0. Since u p(y) − |y − m1| vanishes as |y| → +∞, there exists M > 0
such that

∀y ∈ R, |y| > M �⇒ u p(y) ≤ |y − m1| + ε.

Let R0 = |m1| + supx∈[−M,M] u p(x) and R ≥ R0. The map uηR is a piecewise
affine function which changes slope at −R and R and such that uηR (y) → +∞ as
|y| → +∞. It therefore attains its minimum either at−R where it is equal to R+m1
or at R where it is equal to R−m1, and this minimum is equal to R−|m1|. We deduce
that for all y ∈ R, uηR (y) ≥ R − |m1|. Moreover, δm1 ≤c ηR , hence we also have
uηR (y) ≥ |y − m1| for all y ∈ R. Let y ∈ R. If |y| ≤ M , then

u p(y) ≤ sup
x∈[−M,M]

u p(x) = R0 − |m1| ≤ R − |m1| ≤ uηR (y).

If, on the other hand, |y| > M , then

u p(y) ≤ |y − m1| + ε ≤ uηR (y)+ ε.

We deduce that for all y ∈ R and R ≥ R0, u p(y)− ε ≤ (u p ∧ uηR )(y). Thus, as the
convex hull is the supremum over all dominated, convex functions, this yields

u p − ε ≤ co(u p ∧ uηR ) ≤ u p,
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which proves (4.5) and completes the proof. ��

5 Proof of themain theorem

We consider the setting of Theorem 2.6. Before entering its technical proof, we argue
that it is sufficient to consider the case r = 1 and that we can assume w.l.o.g. that
(μ, ν) is irreducible.

When considering a sequence of couplings (πk)k∈N which converges in AW1 to
π ∈ �(μ, ν), whose sequence of marginal distributions (μk, νk)k∈N is converging in
Wr , one can deduce AWr -convergence for the sequence of couplings. This is due to
(1.3), and Wr -convergence being equivalent to weak convergence plus convergence
of the r -moments. To see the latter, we find, when equipping X × Pr (Y ) with the
product metric ((x, p), (x ′, p′)) �→ (drX (x, x ′)+Wr

r (p, p
′))1/r ,

∫
X×Pr (Y )

(
drX (x, x0)+Wr

r (p, δy0 )
)
J (πk)(dx, dp) =Wr

r (μk , δx0 )+Wr
r (νk , δy0 )

−→
k→+∞Wr

r (μ, δx0 )+Wr
r (ν, δy0 ) =

∫
X×Pr (Y )

(
drX (x, x0)+Wr

r (p, δy0 )
)
J (π)(dx, dp).

(5.1)

A direct consequence is the following lemma, according to which proving Theo-
rem 2.6 for r = 1 is sufficient.

Lemma 5.1 In the setting of Theorem 2.6, assume that there exists a sequence of
martingale couplings πk ∈ �M (μk, νk), k ∈ N converging to π in AW1. Then this
sequence also converges to π in AWr .

Next, Proposition 2.5 is the key ingredient to show that it is enough to prove The-
orem 2.6 when (μ, ν) is irreducible.

Lemma 5.2 If the conclusion of Theorem 2.6 holds for r = 1 and for any irreducible
pair of marginals (μ, ν), then it holds for r = 1 and for any pair (μ, ν) in the convex
order.

Proof In the setting of Theorem 2.6, fix π ∈ �M (μ, ν). Denote by (μn, νn)n∈N the
decomposition of (μ, ν) into irreducible components with

μ = η +
∑
n∈N

μn, ν = η +
∑
n∈N

νn .

By Proposition 2.5, we can find sub-probability measures (ηk, υk)k∈N,
(μk

n)(k,n)∈N×N , (νkn )(k,n)∈N×N such that

ηk ≤c υk, μk
n ≤c νkn ∀(k, n) ∈ N× N ,

ηk → η, υk → η, μk
n → μn, νkn → νn inW1, k →+∞.
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For k ∈ N, let χk ∈ �M (ηk, υk) be a martingale coupling between ηk and υk . Since
the marginals both converge to η inW1, (χk)k∈N is tight and any accumulation point
with respect to the weak topology belongs to �M (η, η). Since χ := (id, id)∗η is the
only martingale coupling between η and itself, (χk)k∈N converges weakly to χ as k
goes to +∞ and even in W1 according to (5.1). We can show that this convergence
also holds in AW1.

Indeed, according to Proposition 2.1, there exists a sequence χ̃k ∈ �(ηk, υk),
k ∈ N, converging to χ in AW1. Then

AW1(χ
k, χ̃k) ≤

∫
R

W1(χ
k
x , χ̃k

x ) ηk(dx) ≤
∫
R

(
W1(χ

k
x , δx )+W1(δx , χ̃

k
x )

)
ηk(dx)

=
∫
R

∫
R

|x ′ − x | (χk
x + χ̃k

x )(dx ′) ηk(dx) =
∫
R

|x ′ − x | (χk + χ̃k)(dx, dx ′).

Since (x, x ′) �→ |x ′ − x | ∈ �1(R
2) and χk and χ̃k converge to χ inW1, we deduce,

using (1.1), that

∫
R

|x ′ − x | (χk + χ̃k)(dx, dx ′)→ 2
∫
R

|x ′ − x |χ(dx, dx ′) = 0, k →+∞,

hence,

AW1(χ
k, χ) ≤ AW1(χ

k, χ̃k)+AW1(χ̃
k, χ)→ 0, k →+∞.

By assumption, we can find for any n ∈ N a sequence (πk,n)k∈N of martingale
couplings between μk

n and νkn , k ∈ N, which converges in AW1 to πn as k goes to
+∞, where πn denotes π restricted to the n-th irreducible component given by (2.8).
By Lemma 3.7, we have for all p ∈ N that

χk +
∑

n∈N , n≤p

πk,n → χ +
∑

n∈N , n≤p

πn in AW1, k →+∞.

Moreover, the respective marginals of χk +∑
n∈N πk,n , namely μk and νk , converge

in W1 to the respective marginals of χ + ∑
n∈N πn , namely μ and ν. Therefore,

according to Lemma 3.6 (b), there exists a constant C > 0 such that

lim sup
k

AW1

(
χk +

∑
n∈N

πk,n, χ +
∑
n∈N

πn

)
≤ C

(
I 1εp (μ)+ I 1εp (ν)

)
,

where εp = ∑
n∈N ,n>p μn(R) where by convention the sum over an empty set is

0. Clearly, (εp)p∈N tends to 0, thus Lemma 3.1 (b) reveals that the right-hand side
vanishes as p goes to sup N . This proves that πk = χk +∑

n∈N πk,n ∈ �M (μk, νk)

converges in AW1 to π = χ +∑
n∈N πk ∈ �M (μ, ν). ��
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Proof of Theorem 2.6 Step 1. Due to Lemma 5.1 and Lemma 5.2, we may suppose
w.l.o.g. that r = 1 and (μ, ν) is irreduciblewith component I = (, ρ),  ∈ R∪{−∞},
ρ ∈ R∪ {+∞}. Next, we define auxiliary martingale couplings close to π which will
be easier to approximate in the limit. We define them with the same first marginal
distribution whereby the second marginal distribution is smaller with respect to the
convex order. These auxiliary couplings will satisfy two key properties: first, their
second marginal distribution must be concentrated on a compact subset of I when
the first marginal distribution is itself concentrated on a certain compact subset K of
I . Second, it is essential that their second marginal distribution has positive mass on
some two compact subsets of I on both sides of K .

Fix ε ∈ (0, 1
2 ). Choose a compact subset K = [a, b] of I with

μ(K �) < ε. (5.2)

Instead of directly approximating π , we initially consider the martingale coupling
π R,α whose definition is given below. For any R > 0, let (π R

x )x∈R be the probability
kernel obtained by virtue of Lemma 4.3. By Lemma 4.3 (b) we have for all x ∈ R that
π R
x ≤c πx . Therefore,

W1(π
R
x , πx ) ≤ 2

∫
R

|y|πx (dy),

where the right-hand side is a μ-integrable function of x . By Lemma 4.3 (b) we find
π R
x → πx in W1 as R → +∞. Let π R := μ × π R

x , then dominated convergence
yields

AW1(π
R, π) ≤

∫
R

W1(π
R
x , πx ) μ(dx) → 0, R →+∞.

Denote by νR the second marginal of π R . Consequently, νR converges to ν for the
W1-distance and νR ≤c ν for all R > 0. Let ã and b̃ be real numbers such that
ã ∈ (, a) and b̃ ∈ (b, ρ), for instance

ã = + a

2
∨ (a − 1) and b̃ = (b + 1) ∧ b + ρ

2
.

Since (μ, ν) is irreducible on I , according to Remark 2.4, ν assigns positive mass
to any neighbourhood in I of the endpoints  and ρ of I . From now on, we use the
notational convention that for all c ∈ R ∪ {±∞},

[−∞, c) = {x ∈ R | x < c}, (c,+∞] = {x ∈ R | c < x} and [−∞,+∞] = R.

In particular, I = [, ρ] ⊂ R.
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Then [, ã) and (b̃, ρ] are relatively open on I with νR(I ) = 1 = ν(I ), so Port-
manteau’s theorem yields

lim inf
R→+∞ νR([, ã)) ≥ ν([, ã)) > 0, lim inf

R→+∞ νR((b̃, ρ]) ≥ ν((b̃, ρ]) > 0.

Thus, we deduce that we can choose R > 0 such that

R ≥ |a| ∨ |b|,
∫
R

W1(π
R
x , πx ) μ(dx) < ε, νR([, ã)) > 0, and

νR((b̃, ρ]) > 0. (5.3)

Let π R,α
x be the image of π R

x by y �→ α(y − x)+ x when α ∈ (0, 1). Then π R,α :=
μ× π

R,α
x satisfies by Lemma 4.2

AW1(επ + (1− ε)π R,α, π)

≤
∫
R

W1(επx + (1− ε)π R,α
x , πx ) μ(dx)

≤ (1− ε)

∫
R

W1(π
R,α
x , πx ) μ(dx)

≤
∫
R

W1(π
R,α
x , π R

x ) μ(dx)+
∫
R

W1(π
R
x , πx ) μ(dx)

= (1− α)

∫
R

∫
R

|x − y|π R
x (dy) μ(dx)+

∫
R

W1(π
R
x , πx ) μ(dx)

≤ (1− α)

(∫
R

|x |μ(dx)+
∫
R

|y| νR(dy)

)
+

∫
R

W1(π
R
x , πx ) μ(dx),

where the right-hand side converges to
∫
R
W1(π

R
x , πx ) μ(dx) < ε for α → 1. Note

that 2R−a−ã
2R−2ã , b+b̃+2R

2b̃+2R ∈ (0, 1), so we can choose α ∈ (0, 1) such that

AW1(επ + (1− ε)π R,α, π) < ε and α ≥ 2R − a − ã

2R − 2ã
∨ b + b̃ + 2R

2b̃ + 2R
. (5.4)

Let L be a compact subset of I such that the interior L̊ of L satisfies

[(−R) ∨ (α+ (1− α)a), R ∧ (αρ + (1− α)b)] ⊂ L̊.

Because R ≥ (−a)∨b and thereby [a, b] = K ⊂ [−R, R], we have thatμ|K ×π R
x is

concentrated on K×([−R, R]∩ I ). Furthermore, for any (x, y) ∈ K×([−R, R]∩ I ),
we find αy + (1− α)x ∈ L̊ . Hence, μ|K × π

R,α
x is concentrated on K × L̊ .

Denote the second marginal of π R,α by νR,α . Since

(x, y) ∈ (, R)× [, ã) �⇒  < (1− α)x + αy < R − α(R − ã) ≤ a + ã

2
,
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we have that

νR,α

((
,

a + ã

2

))

=
∫
R2

1(
, a+ã2

)(y) π R,α(dx, dy) =
∫
R2

1(
, a+ã2

)(αy + (1− α)x) π R(dx, dy)

≥
∫
R2

1(,R)×[,ã)(x, y) π R(dx, dy) =
∫

(,R)

π R
x ((−∞, ã)) μ(dx).

If x ∈ [R,+∞), then π R
x = δx and since R ≥ ã, π R

x ((−∞, ã)) = 0. Added to the
fact that μ is concentrated on I , we obtain

∫
(,R)

π R
x ((−∞, ã)) μ(dx) =

∫
R

π R
x ((−∞, ã)) μ(dx)

= νR((−∞, ã)) = νR([, ã)) > 0.

We deduce that

νR,α

((
,

a + ã

2

))
> 0, and similarly, νR,α

((
b + b̃

2
, ρ

))
> 0. (5.5)

To summarise, we have constructed a martingale coupling π R,α ∈ �M (μ, νR,α)

close to π with respect to the AW1-distance in view of (5.4), whose restriction
π R,α|K×R is compactly supported on K × L and concentrated on K × L̊ . More-
over, the second marginal distribution νR,α is dominated by ν in the convex order and
assigns positive mass on both sides of K according to (5.5).

Step 2. In the next step we construct a sequence of sub-probability martingale
couplings supported on a compact cube J× J (K ⊂ J ⊂ I ) converging to π R,α|K×R.

Our first goal is to find a sequence νR,α,k , k ∈ N, such that μk ≤c νR,α,k ≤c νk

and

W1(ν
R,α,k, νR,α) → 0, k →∞. (5.6)

Defining νR,α,k by

νR,α,k = νk ∧c (μk ∨c Tk(ν
R,α)),

where Tk denotes the translation by the difference between the common barycentre of
μk and νk and the common barycentre of ν and νR,α , i.e.,

∫
R
y νk(dy)−∫

R
y νR,α(dy),

fulfils these requirements. Indeed

W1(Tk(ν
R,α), νR,α) =

∣∣∣∣
∫
R

y νk(dy)−
∫
R

y ν(dy)

∣∣∣∣ ≤W1(ν
k, ν) → 0,
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as k goes to +∞. Then Lemma 4.1 provides νR,α,k → ν ∧c (μ ∨c νR,α) = νR,α in
W1 as k goes to +∞. By Proposition 2.1 we can approximate π R,α with couplings
π R,α,k ∈ �(μk, νR,α,k) in AW1. Unfortunately the sequence π R,α,k , k ∈ N does
not have to consist of solely martingale couplings. Therefore, we have to adjust the
barycentres of its disintegrations, (π

R,α,k
x ) to obtain martingale kernels and thereby

martingale couplings. Due to (5.5) and inner regularity of νR,α , we find compact sets

L− ⊂
(

,
a + ã

2

)
, L+ ⊂

(
b + b̃

2
, ρ

)

with νR,α-positive measure. Let ̃, ρ̃ ∈ I , be such that ̃ < inf(L ∪ L−) and sup(L ∪
L+) < ρ̃. Then define

L̃− =
(

̃,
a + ã

2

)
, L̃+ =

(
b + b̃

2
, ρ̃

)
and K̃ =

(
3a + ã

4
,
3b + b̃

4

)
,(5.7)

so that L̃−, L̃+ and K̃ are bounded and open intervals covering respectively L−, L+
and K and such that the distance e between L̃− ∪ L̃+ and K̃ is positive:

e = inf
{
|x − y| | (x, y) ∈ (L̃− ∪ L̃+)× K̃

}
≥ a − ã

4
∧ b̃ − b

4
> 0.

Denoting J = [̃, ρ̃], Fig. 2 summarises the construction.
The respective restrictions of νR,α,k to L̃− and L̃+ are denoted by νk− and νk+,

respectively. Since L̃− and L̃+ are open, Portmanteau’s theorem ensures that eventu-
ally (for k sufficiently large) νk− and νk+ each have more total mass than some constant
δ > 0.

By Lemma 3.4 (ii) there are μ̂k ≤ μk , ν̂k ≤ νR,α,k , π̂k = μ̂k × π̂k
x ∈ �(μ̂k, ν̂k)

concentrated on K̃ × L̊ , and εk ≥ 0 such that

AW1(π̂
k, (1− εk)π

R,α|K×R)+ εk → 0, k →+∞. (5.8)

The following procedure shows that there are for μ̂k(dx)-almost every x unique con-
stants ck−(x), ck+(x) ∈ [0,+∞) and dk(x) ∈ [1,+∞) such that

π̃k
x :=

π̂k
x + ck+(x)νk+ + ck−(x)νk−

dk(x)
∈ P(R),

∫
R

y π̃k
x (dy) = x, ck−(x) ∧ ck+(x) = 0.

Note that the constraint ck−(x) ∧ ck+(x) = 0 provides

∫
R

y π̂k
x (dy) ≤ x �⇒ ck−(x) = 0,

∫
R

y π̂k
x (dy) ≥ x �⇒ ck+(x) = 0. (5.9)
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We require π̃k
x to be a probability measure with mean x , thus,

1+ ck+(x)νk+(R)+ ck−(x)νk−(R) = dk(x), (5.10)∫
R

y π̂k
x (dy)+ ck+(x)

∫
R

y νk+(dy)+ ck−(x)
∫
R

y νk−(dy) = xdk(x). (5.11)

Combining (5.9) with (5.10) and (5.11) yields

ck−(x) =
∫
R
y π̂k

x (dy)− x∫
R
(x − y) νk−(dy)

∨ 0 ∈
[
0,

∣∣x − ∫
R
y π̂k

x (dy)
∣∣

eνk−(R)

]
,

ck+(x) = x − ∫
R
y π̂k

x (dy)∫
R
(y − x) νk+(dy)

∨ 0 ∈
[
0,

∣∣x − ∫
R
y π̂k

x (dy)
∣∣

eνk+(R)

]
,

dk(x) = 1+ ck−(x)νk−(R)+ ck+(x)νk+(R) ∈
[
1, 1+

∣∣x − ∫
R
y π̂k

x (dy)
∣∣

e

]
.

Remember from (5.7) that L ∪ L̃− ∪ L̃+ ⊂ [̃, ρ̃] ⊂ I . Then we obtain for μ̂k(dx)-
almost every x the estimate

W1(π̃
k
x , π̂k

x ) ≤W1

(
ck+(x)νk+ + ck−(x)νk−

dk(x)
,
dk(x)− 1

dk(x)
π̂k
x

)
≤ dk(x)− 1

dk(x)
|ρ̃ − ̃|

≤
∣∣x − ∫

R
y π̂k

x (dy)
∣∣

e
|ρ̃ − ̃|.

Hence, the adapted Wasserstein distance between π̂k and π̃k = μ̂k × π̃k
x satisfies

AW1(π̃
k, π̂k) ≤

∫
R

W1(π̃
k
x , π̂k

x ) μ̂k(dx) ≤ |ρ̃ − ̃|
e

∫
R

∣∣∣∣x −
∫
R

y π̂k
x (dy)

∣∣∣∣ μ̂k(dx)

≤ |ρ̃ − ̃|
e

AW1(π̂
k, (1− εk)π

R,α|K×R),

where we used Remark 2.2 with exponent r = 1 = 2r−1 in the last inequality. The
triangle inequality and (5.8) then yield

lim
k

AW1(π̃
k, (1− εk)π

R,α|K×R)→ 0, k →∞. (5.12)

Next we bound the total mass which we require to fix the barycentres. We find that

∫
R

ck−(x)+ ck+(x)

dk(x)
μ̂k(dx) ≤ 1

e(νk−(R) ∧ νk+(R))

∫
R

∣∣∣∣x −
∫
R

y π̂k
x (dy)

∣∣∣∣ μ̂k(dx)

≤ AW1(π̂
k, (1− εk)π

R,α|K×R)

e(νk−(R) ∧ νk+(R))
→ 0, k →+∞,
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where we used Remark 2.2 again for the last inequality and the fact that νk−(R) ∧
νk+(R) ≥ δ for k large enough for the limit. Consequently, when ν̃k denotes the
second marginal of π̃k , we have for k sufficiently large that

(1− 2ε)ν̃k ≤ (1− 2ε)ν̂k + (1− 2ε)(νk− + νk+)

∫
R

ck−(x)+ ck+(x)

dk(x)
μ̂k(dx)

≤ (1− ε)νR,α,k .

Step 3. In this step, we complement the martingale coupling (1−2ε)π̃k to a martin-
gale coupling withmarginalsμk and ενk+(1−ε)νR,α,k for k sufficiently large. Recall
that π̃k ∈ �M (μ̂k, ν̃k) and π R,α|K×R ∈ �M (μ|K , ν̌R,α), where ν̌R,α is the second
marginal distribution of π R,α|K×R, are concentrated on the compact cube J × J and

AW1(π̃
k, (1− εk)π

R,α|K×R)→ 0, k →+∞.

Furthermore, since (1 − ε)π R,α − (1 − 2ε)π R,α|K×R is a martingale coupling with
marginals

(1− ε)μ− (1− 2ε)μ|K and (1− ε)νR,α − (1− 2ε)ν̌R,α,

we deduce by irreducibility of the pair (μ, ν) on I irreducibility of the pair of sub-
probability measures

εμ+ (1− ε)μ− (1− 2ε)μ|K and εν + (1− ε)νR,α − (1− 2ε)ν̌R,α,

whose potential functions satisfy

0 ≤ uμ − u(1−2ε)μ|K < uεν+(1−ε)νR,α − u(1−2ε)ν̌R,α on I .

Since those potential functions are continuous, there exists τ > 0 such that they have
distance greater τ on J . By uniform convergence of potential functions, for k ∈ N

sufficiently large we have

0 ≤ uμk − u(1−2ε)μ̂k + τ

2
≤ uενk+(1−ε)νR,α,k − u(1−2ε)ν̃k on J .

On the complement of J we have u(1−2ε)μ̂k = u(1−2ε)ν̃k since both measures are
concentrated on J and satisfy (1−2ε)

∫
R
x μ̂k(dx) = (1−2ε)

∫
R
y ν̃k(dy). Therefore,

0 ≤ uμk − u(1−2ε)μ̂k ≤ uενk+(1−ε)νR,α,k − u(1−2ε)ν̃k on J c.

By Strassen’s theorem [52], there exists ηk ∈ �M (μk − (1 − 2ε)μ̂k, ενk + (1 −
ε)νR,α,k − (1− 2ε)ν̃k). Finally, we write

πk = ηk + (1− 2ε)π̃k ∈ �M (μk, ενk + (1− ε)νR,α,k).

123



Approximation of martingale couplings on the line… 409

Step 4. In the last step, we show that the sequence constructed in this way is
eventually close to the original martingale couplingπ in adaptedWasserstein distance.

The marginals of πk are converging in W1 to (μ, εν + (1 − ε)νR,α) as k goes to
+∞. We have according to (5.12) that

AW1

(
(1− 2ε)

1− ε

1− εk
π̃k, (1− 2ε)(1− ε)π R,α|K×R

)
→ 0, k →∞.

For k large enough so that εk ≤ ε,

π̄k(R2)− (1− 2ε)
1− ε

1− εk
π̃k(R2)

= ηk(R2)+ (1− 2ε)
ε − εk

1− εk
π̃k(R2)

=
(
επ + (1− ε)π R,α − (1− 2ε)(1− εk)π

R,α|K×R
)

(R2)

+ (1− 2ε)(ε − εk)π
R,α|K×R(R2)

= 1− (1− 2ε)(1− ε)μ(K ) ≤ 4ε,

where we used μ(K ) ≥ 1− ε for the last inequality. Hence applying Lemma 3.6 (b),
with (π̂k, π̂ , π̃k, π̃ , ε) replaced by

(
(1− 2ε)

1− ε

1− εk
π̃k, (1− 2ε)(1− ε)π R,α|K×R,

ηk + (1− 2ε)
ε − εk

1− εk
π̃k, επ + (1− ε)

(
π R,α − (1− 2ε)π R,α|K×R

)
, 4ε

)
,

we obtain

lim sup
k

AW1(π
k, επ + (1− ε)π R,α) ≤ C(I4ε(μ)+ I4ε(εν + (1− ε)νR,α)),

with C given by Lemma 3.6 (b) and depending only on the exponent r = 1. Since
νR,α ≤c ν, then εν+(1−ε)νR,α ≤c ν, so using Lemma 3.1 (e), the triangle inequality
and (5.4), we get

lim sup
k

AW1(π
k, π)

≤ lim sup
k

(
AW1(π

k, επ + (1− ε)π R,α)+AW1(επ + (1− ε)π R,α, π)
)

≤ C(I4ε(μ)+ I4ε(ν))+ ε.

Since the right-hand side only depends on ε and vanishes as ε goes to 0, we can reason
like in the proof of Proposition 2.3 (from (3.27)) to find a null sequence (ε̃k)k∈N, two
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Fig. 2 Points and intervals involved in the proof. The boundaries of the closed intervals are vertical bars
and those of the open intervals are parentheses

sequences (Rk)k∈N, (αk)k∈N with values respectively inR∗+ and (0, 1), and martingale
couplings

π̊k ∈ �M (μk, ε̃kν
k + (1− ε̃k)ν

Rk ,αk ,k), k ∈ N

such that

AW1(π̊
k, π) → 0, k →+∞. (5.13)

In particular, theW1-distance of their secondmarginal distributions vanishes as k goes
to +∞, hence the triangle inequality yields, for k →+∞,

W1(ε̃kν
k + (1− ε̃k)ν

Rk ,αk ,k, νk)

≤W1(ε̃kν
k + (1− ε̃k)ν

Rk ,αk ,k, ν)+W1(ν, νk)→ 0.

Remember that νRk ,αk ,k ≤c νk , hence ε̃kν
k+(1−ε̃k)ν

Rk ,αk ,k ≤c νk . Then by [37, The-
orem 2.12], there exist martingale couplings Mk ∈ �M (ε̃kν

k + (1− ε̃k)ν
Rk ,αk ,k, νk),

k ∈ N such that, for k →+∞,

∫
R×R

|x − y|Mk(dx, dy) ≤ 2W1(ε̃kν
k + (1− ε̃k)ν

Rk ,αk ,k, νk)→ 0. (5.14)

Let then

πk(dx, dy) = μk(dx)
∫
z∈R

Mk
z (dy) π̊k

x (dz) ∈ �M (μk, νk).

Using the fact that for μk(dx)-almost every x , π̊k
x (dz) Mk

z (dy) ∈ �(π̊k
x , πk

x ), we get

AW1(π
k, π̊k)≤

∫
R

W1(π
k
x , π̊k

x ) μk(dx)≤
∫
R×R×R

|z − y|μk(dx) Mk
z (dy) π̊k

x (dz)

=
∫
R×R

|z − y|Mk(dy, dz),

where the right-hand side vanishes by (5.14) as k goes to +∞. Then (5.13) and the
triangle inequality yield
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AW1(π
k, π) ≤ AW1(π

k, π̊k)+AW1(π̊
k, π) → 0, k →+∞,

which concludes the proof. ��
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