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Abstract

The genus Orbivirus includes both insect and tick-borne viruses. The orbivirus genome, composed of 10 segments of dsRNA,
encodes 7 structural proteins (VP1–VP7) and 3 non-structural proteins (NS1–NS3). An open reading frame (ORF) that spans
almost the entire length of genome segment-9 (Seg-9) encodes VP6 (the viral helicase). However, bioinformatic analysis
recently identified an overlapping ORF (ORFX) in Seg-9. We show that ORFX encodes a new non-structural protein,
identified here as NS4. Western blotting and confocal fluorescence microscopy, using antibodies raised against recombinant
NS4 from Bluetongue virus (BTV, which is insect-borne), or Great Island virus (GIV, which is tick-borne), demonstrate that
these proteins are synthesised in BTV or GIV infected mammalian cells, respectively. BTV NS4 is also expressed in Culicoides
insect cells. NS4 forms aggregates throughout the cytoplasm as well as in the nucleus, consistent with identification of
nuclear localisation signals within the NS4 sequence. Bioinformatic analyses indicate that NS4 contains coiled-coils, is related
to proteins that bind nucleic acids, or are associated with membranes and shows similarities to nucleolar protein UTP20 (a
processome subunit). Recombinant NS4 of GIV protects dsRNA from degradation by endoribonucleases of the RNAse III
family, indicating that it interacts with dsRNA. However, BTV NS4, which is only half the putative size of the GIV NS4, did not
protect dsRNA from RNAse III cleavage. NS4 of both GIV and BTV protect DNA from degradation by DNAse. NS4 was found
to associate with lipid droplets in cells infected with BTV or GIV or transfected with a plasmid expressing NS4.
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Introduction

The genus Orbivirus currently includes twenty two distinct virus

species, with genomes composed of 10 segments of linear double

stranded RNA (dsRNA), that are vectored by Culicoides midges,

ticks, phlebotomine flies, anopheline or culicine mosquitoes. The

three economically most important orbiviruses: Bluetongue virus

(BTV) (the Orbivirus ‘type-species’) African horse sickness virus (AHSV)

and Epizootic hemorrhagic disease virus (EHDV) are all transmitted by

Culicoides biting-midges [1]. Several tick-borne orbiviruses can infect

humans, including members of the Changuinola virus, Corriparta virus,

Lebombo virus, Orungo virus and Great island virus (GIV) species.

The coding assignments of the 10 BTV genome segments were

initially determined in 1983 [2,3,4]. Seven distinct structural

proteins (VP1 to VP7) and 3 distinct non-structural proteins (NS1,

NS2 and NS3) were identified in orbivirus infected cells, or after in

vitro translation of viral RNA. In most cases each genome segment

encodes a single protein from a single open reading frame (ORF),

expect segment 9 (Seg-9) and segment 10 (Seg-10), both of which

encode two nearly identical proteins initiated from in-phase AUG

codons close together near the upstream termini (VP6 and VP6a

encoded by Seg-9, and NS3 and NS3a encoded by Seg-10) [2,5].

However, in vitro translation of BTV RNA segments reproducibly

generated a number of smaller translation products of unknown

significance, that were usually dismissed as unimportant by-

products of translation [2].

The icosahedral orbivirus core-particle is constructed as two

concentric protein shells, the sub-core layer which contain 120

copies/particle of the T2 protein (VP3 of BTV), and the core-

surface layer composed of 780 copies/particle of the T13 protein

(VP7 of BTV). VP1, VP4 and VP6 are minor enzymatic proteins

that are packaged along with the ten genome segments within the

central space of the virus core [6,7]. The orbivirus outer-capsid layer

is composed of two additional structural proteins (VP2 and VP5 of

BTV), which mediate cell-attachment and penetration during

initiation of infection. These outer-capsid proteins are more variable

than the core proteins and most of the non-structural proteins, and

the specificity of their reactions with neutralising antibodies

determines the virus serotype (as exemplified by VP2 of BTV [8]).

The relative number and locations of the BTV structural proteins

have been determined in biochemical and structural studies using

cryo-electron microscopy and X-ray crystallography [7,9,10,11,12].

NS1 is the most abundant protein in BTV infected cells,

forming tubules that may be involved in translocation of progeny

virus particles to the cell membrane [13,14]. BTV NS2 can be

phosphorylated by ubiquitous cellular kinases and is an

important matrix protein of the granular viral inclusion bodies

(VIB) that form within the cytoplasm of infected cells. VIB
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represent the primary site of virus replication and assembly. The

smallest of the BTV non-structural proteins that were previously

identified, are membrane glycoproteins NS3 and NS3a, which

are expressed in large amounts in insect cells, but not in

mammalian cells. They are involved in the release of progeny

virus particles from infected cells [15]. In some orbiviruses (e.g.

AHSV) NS3/NS3a are highly variable and it has been suggested

that they may be involved in determination of both vector

competence and virulence [16].

BTV-Seg-9 encodes the minor core protein VP6, which is a

helicase. Recent bioinformatic analyses have identified a new

overlapping ORF in Seg-9 of both insect-borne and tick-borne

orbiviruses, although the putative protein (identified here as NS4)

varies in size between 10 kDa and 22.5 kDa [17,18].

We report the synthesis and detection of NS4, in the cytoplasm

and nuclei of cells infected with insect-borne and tick-borne

orbiviruses (represented by BTV and GIV respectively).

Materials and Methods

Ethics statement
All animal immunisation work was conducted according to the

recommendations in the Animals (Scientific procedures) Act of the

Home Office of the UK and the Directive on the protection of

Animals used for Experimental and other scientific purposes of the

EU. The protocol was approved by the Ethics Committee of

animal experiments at the Institute for Animal Health in the UK

(Project license number 70/7060). All surgery was performed

under sodium pentobarbital anaesthesia, and all efforts were made

to minimize suffering.

Cell cultures and viruses
BHK-21 (American type cell culture collection) were grown at

37uC under 5% CO2 in Glasgow’s minimum essential medium

(GMEM), supplemented with 10% foetal bovine serum, 10%

tryptose phosphate broth, penicillin G (100 IU/ml) and strepto-

mycin (100 mg/ml). Culicoides sonorensis KC cells were grown at

28uC in Schneider’s insect medium supplemented with 15% fetal

bovine serum.

Confluent monolayers of BHK-21 cells were infected with either

BTV-8 (isolate NET2006/04) or Great Island virus (GIV) (isolate

CAN1971/01) at a multiplicity of infection (MOI) of 0.1 pfu/cell.

Infected cell cultures were incubated at 37uC for 72 hours until

cell lysis began. The cells were then scraped into the supernatant

and centrifuged at 3,000 g for 10 minutes. RNA was extracted

from cell pellets using guanidinium isothiocyanate (RNA NOW

reagent: Biogentex, Tx, USA) as described earlier [19].

KC cells were infected at an MOI of 0.1 pfu/cell and then

incubated at 28uC for 7 days. Both BHK-21 and KC cell pellets

were used in western blot analyses as described below.

Viruses were purified from BHK-21 infected cells, as previously

described using a discontinuous sucrose gradient [20]. Virus

particles formed a blue opalescent band at the interface of the

sucrose solutions. This was recovered and further purified by

layering onto a continuous PercollH gradient as previously

described [21], using an SW41 rotor (100000 g, 1 hour, 4uC).

The virus formed a blue band which was collected, diluted in

0.1 M Tris-HCl and pelleted at 10000 g for 1 hour.

Bioinformatic analyses of the overlapping ORF in Seg-9 of
BTV and GIV

The hydrophobicity profile of different NS4 proteins was

analysed using the Kyte and Doolittle hydrophobicity plot with a

window size of 11 amino acids (aa) [22]. Sequence relatedness to

proteins in public databases was assessed using the NCBI’s BLAST

(http://blast.ncbi.nlm.nih.gov/Blast.cgi)) and the pfam software

(http://pfam.sanger.ac.uk/search/sequence). Amino acid align-

ments of NS4 of various orbiviruses were generated using the

Clustal X program [23] and pairwise aa identities calculated using

the MEGA 4 package [24]. The presence of ‘coiled-coils’ was

indicated by analyses using the program ‘COILS’ (http://www.ch.

embnet.org/cgi-bin/COILS_form_parser) and the PredictProtein

server (http://www.predictprotein.org). The presence of nuclear

localisation signals were analysed by PredictNSL, implemented in

the PredictProtein server, and the cNLS Mapper (http://nls-

mapper.iab.keio.ac.jp/cgi-bin/NLS_Mapper_form.cgi). Synony-

mous site conservation within the BTV VP6 coding sequence

was analysed as described previously [25]. For this procedure,

alignment columns in which the reference sequence (GenBank

accession number: NC_006008) contained gap characters were

removed so that the plots are in reference sequence coordinates.

Cloning of BTV and GIV NS4
The RNA of BTV-8 or GIV was separated by 1% agarose gel

electrophoresis. Seg-9 was cut from the gel using a clean scalpel

blade, purified using RNaid kit (MP Biomedicals) and cDNA was

synthesised using a single primer amplification technique as

previously described [19]). The ORFs in Seg-9 from BTV-8

(between nucleotides 182 and 415, accession number: AM498059)

and GIV (between nucleotides 176 and 748: accession number

HM543473) were PCR amplified using specific primers tailed with

restriction enzyme sites shown in table 1.

The pGEX-4T-2 vector and Seg-9 PCR products were double-

digested with EcoRI and NotI (BTV-8) or EcoRI and XhoI (GIV)

Table 1. Primer sequences used for cloning of NS4 ORF into pGEX-4T-2 or pCI-neo.

Primer Sequence (59R39) Plasmid Segment ORF position Orientation

NS4-BTVfor tacgGAATTCaccATGGTGAGGGGGCGCAGTCG pGEX-4T-2/pCI-Neo 9 BTV 182-201 Forward

NS4-BTVrev tgagGCGGCCGCTCACTATACCCATCTTCCTCCATTC pGEX-4T-2/pCI-Neo 9 BTV 412-396 Reverse

NS4-GIVfor atcgGAATTCaccATGAGTTACCGGCAGGAGCA pGEX-4T-2/pCI-Neo 9 GIV 176-195 Forward

NS4-GIVrev-pGEX tgatCTCGAGTCACTATTGCTGAACGCACCTTGTCC pGEX-4T-2 9 GIV 748-726 Reverse

NS4-GIVrev-pCI tgatTCTAGATCACTATTGCTGAACGCACCTTGTCC pCI-neo 9GIV 748-726 Reverse

Underlined sequences are specific to the NS4 ORF. Sequences in italics in the reverse primers indicate two successive stop codons. Sequences in bold characters are
restriction enzyme sites (in NS4-BTVfor and NS4-GIVfor, the site is EcoRI; in NS4-BTVrev the site is NotI, in NS4-GIVrev-pGEX the site is XhoI and in NS4-GIVrev-pCI the site
is XbaI). Sequences in lower case characters are non-specific nucleotides added for an efficient restriction enzyme digestion.
doi:10.1371/journal.pone.0025697.t001

NS4, a New Orbivirus Non-Structural Protein

PLoS ONE | www.plosone.org 2 October 2011 | Volume 6 | Issue 10 | e25697



enzymes (Invitrogen). The pCI-neo vector and Seg-9 PCR

products were double-digested with EcoRI and NotI (BTV-8) or

EcoRI and XbaI (GIV) enzymes. Digested products were gel

purified using Genclean kit (Qbiogen). Corresponding vectors and

PCR products were ligated overnight (O/N) at 16uC using T4

DNA ligase (Roche) to generate pGEX-BTVNS4, pGEX-

GIVNS4, pCI-BTVNS4 or pCI-GIVNS4. These recombinant

plasmids were used to transform XL1-Blue bacteria (Stratagene).

Clones were recovered and grown in trypticase-soy-casein (TSC)

medium containing 100 mg/ml ampicillin. The plamsids were

subsequently purified using Qiaquick plasmid miniprep kit

(Qiagen) and sequenced using the D-Rhodamine DNA sequencing

kit and an ABI prism 377 sequence analyser (Perkin Elmer).

Expression of BTV and GIV NS4 in bacteria
Confirmed pGEX-BTVNS4 or pGEX-GIVNS4 plasmids were

used to transform BL21 or C41 bacteria. A single colony of each

plasmid was grown overnight (ON) in TSC/ampicillin, then used

to seed 200 ml of fresh TSC/ampicillin. The bacteria were grown

until OD600 0.5, then 0.5 mM IPTG was added for induction, for

4 hours at 37uC, or for 8 hours at 28uC. The bacterial cells were

pelleted and processed using Bugbuster protein purification

(Novagen) as previously described [26]. The soluble fraction of

the fusion protein was purified by glutathione affinity chromatog-

raphy using glutathione sepharose, as directed by the manufac-

turer (GE Healthcare). Proteins were analysed by sodium dodecyl

sulfate/polyacrylamide gel electrophoresis (SDS-PAGE) using a

10% polyacrylamide separating gel (Miniprotean III) with a 3%

stacking gel and stained with Coomassie brilliant blue, as described

Table 2. Percentage amino acid identity values between NS4
of BTV, EHDV, AHSV, GIV, PHSV and YUOV.

BTV-
8(NET2006/04)

EHDV-
1(NJ) AHSV-3 GIV PHSV

BTV-
8(NET2006/04)

EHDV-1(NJ) 50

AHSV-3 20 16

GIV 15 18 17

PHSV 15 12 11 10

YUOV-1 9 11 10 5 30

Amino acid identity ranged from 5% to50%. The highest identity exists between
BTV and EHDV (50%) followed by PHSV and YUOV-1 (30%). Amino acid identity
in NS4 between the tick-borne and insect-borne viruses ranged between 5%
and 18%.
doi:10.1371/journal.pone.0025697.t002

Figure 2. Recombinant NS4 proteins of BTV and GIV. NS4 of BTV
and GIV were expressed as soluble GST fusion proteins in C41 bacteria,
purified as described in Materials and Methods, then analysed by SDS-
PAGE and stained with Coomassie blue. M indicates the molecular
weight marker, labelled in kDa.
doi:10.1371/journal.pone.0025697.g002

Figure 1. Synonymous site conservation in BTV VP6 coding sequence. Comparison of 67 BTV Seg-9 sequences. Panels 1 and 2 show the
positions in the aligned sequences, of stop codons (blue triangles) in the +1 and +2 reading frames relative to the VP6 reading frame, and alignment
gaps (green rectangles). Note the conserved absence of stop codons in the +1 frame in the region corresponding to the NS4 ORF. The vertical red line
in panel 1 indicates the location of a completely conserved +1 frame AUG codon. One sequence (out of 67) with premature termination codons (PTC)
within the NS4 ORF is indicated. Panel 3 shows the probability that the degree of conservation within a given window could be obtained under a null
model of neutral evolution of VP6-frame synonymous sites. Panel 4 shows the level of conservation represented by the ratio of the observed number
of substitutions within a given window, to the number expected under the null model.
doi:10.1371/journal.pone.0025697.g001
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previously [21]. The purified fusion protein was used to immunize

rabbits (Harlan) with an initial injection, followed by 4 boosts at 2

weeks interval in the presence of Montanide ISA50 (Seppic) as an

adjuvant.

Western blot analysis of purified BTV and GIV virus
particles and infected cell cultures

BTV-8 or GIV infected BHK-21 cells (56106 cells) and BTV-8

infected KC cells (56106 cells) were dissolved for 10 min at 100uC
in 1 ml of sample denaturation buffer (160 mM Tris-HCl, 4 mM

EDTA, 3.6% SDS, 60 mM DTT, 0.2% ß-mercaptoethanol, 0.8%

methionine, 800 mM sucrose). A volume of 20 ml was analysed per

well, by electrophoresis in a minigel (Miniprotean III tank - Bio-

Rad). Purified and pelleted virus particles were also dissolved in

sample buffer and analysed by SDS-PAGE, using a 4-20%

gradient polyacrylamide gel.

Resolved proteins were electro-blotted on 0.2 mm nitrocellulose

membrane (Bio-Rad) using 20 mM Tris, 0.05% SDS, 150 mM

glycine and 20% V/V isopropanol transfer buffer. Membranes

were blocked with 5% skimmed milk, in Tris buffered saline (TBS:

25 mM Tris/HCl, 150 mM NaCl, 2 mM KCl, pH 7.4) and

incubated over night with a dilution of 1/300 rabbit antisera.

Membranes were washed three times with TBS-Tween-20 (TBS

containing 0.05% Tween-20) and further incubated with mono-

clonal, anti-rabbit, peroxydase conjugate (Sigma), diluted at 1/750

in 5% skimmed milk. After 2 hours the membrane was washed

three times with TBS-Tween-20 and developed using 4-chloro-

naphthol (Sigma) in presence of hydrogen peroxide.

Preparation of the nuclear fraction of BHK-21 cells
infected with BTV-8

Logarithmically growing BHK-21 cells were infected with BTV-

8 (1pfu/cell) for 24 hours then harvested and washed once with

PBS. Nuclear extracts were prepared from 2.56107 cells using the

NE-PER nuclear and cytoplasmic extraction reagent kit (Pierce),

as directed by the manufacturer. The nuclear extract was mixed

volume to volume with sample denaturation buffer and analysed

by SDS-PAGE using a 4–20% gradient polyacrylamide gel.

Resolved proteins were electro-blotted on 0.2 mm nitrocellulose

membrane as described above, blocked with 5% skimmed milk, in

TBS-Tween-20 and incubated over night with a dilution of 1/300

anti-BTV-8 NS4 rabbit antiserum. The membranes were washed

three times with TBS-Tween-20 and further incubated with

monoclonal, anti-rabbit, peroxydase conjugate (Sigma), diluted at

1/750 in 5% skimmed milk. After 2 hours the membranes were

washed three times with TBS-Tween-20 then incubated with

Lumilight plus (Roche) chemiluminescent detection reagent, as

described by the manufacturer. X-Omat radiographic films

(Kodak) were exposed for 10 minutes to membranes then

developed as described by the manufacturer.

Localization of NS4 in infected cells by confocal
fluorescence microscopy

BHK-21 cells were grown on coverslips placed at the bottom of

a 24 well plates. 50% confluent cells were infected with 0.1 pfu/

cell of BTV-8 or GIV, incubated at 37uC for 4 hours or 24 to

72 hours, then fixed in 4% paraformaldehyde and processed for

immuno-fluorescence. Briefly, rabbit antisera raised against NS4

of BTV-8 or GIV and a mouse anti-alpha tubulin antibody were

both diluted 1/500 in PBS containing 0.5% bovine serum albumin

(PBS-A) and applied to the fixed cell. After 1 hour incubation at

room temperature (RT), slides were washed in PBS, then

incubated with Alexa Fluor 488 conjugated anti-rabbit IgG

(Invitrogen) and Alexa Fluor 568 conjugated anti-mouse, both

diluted 1/250 in PBS. After labelling with primary and secondary

antibodies, the cells were stained with DAPI (1:10,000) for 15

Figure 3. Western blot analysis of BTV-8 in KC cells. BTV-8
infected KC cell lysates analysed by SDS PAGE/Western blot using anti-
BTV NS4 antibodies. BTVKC7 = KC cells harvested at 7 days post-infection.
M indicates the molecular weight marker, labelled in kDa. Lane NI
indicates non-infected KC cells which do not show any cross reactivity
of anti-BTV NS4 antibody and cellular proteins. NS4 that was identified
in infected cells using anti-NS4 antibodies (,12 kDa) was absent from
non-infected cells.
doi:10.1371/journal.pone.0025697.g003

Figure 4. Western blot analysis of BTV-8 in BHK-21 cells. BTV-8
infected BHK-21 cell lysates analysed by SDS PAGE/Western blot using
anti-BTV NS4 antibodies. M indicates the molecular weight marker,
labelled in kDa. BTVBHK24 = BHK-21 cells harvested at 24 hours hours
post-infection, respectively. Lane NI indicates non-infected BHK-21 cells
which do not show any cross reactivity of anti-BTV NS4 antibody and
cellular proteins. NS4 that was identified in infected cells using anti-NS4
antibodies (,12 kDa) was absent from non-infected cells.
doi:10.1371/journal.pone.0025697.g004

NS4, a New Orbivirus Non-Structural Protein
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minutes for nuclear staining and mounted with Vectashield

(Vector Laboratories) for confocal microscopy.

Localization of NS4 by confocal fluorescence microscopy
in cells transfected with pCI-BTVNS4 or pCI-GIVNS4

BHK-21 cells grown in 24 well plates (75% confluence), were

transfected in triplicate, with pCI-BTVNS4 or pCI-GIVNS4

(4 mg/well) using Fugene-6 (Roche). At 48 hours post-transfection,

the cells were fixed in 4% paraformaldehyde and processed for

immuno-fluorescence, using anti-NS4 antibodies, as described

above.

Identification of NS4 in cells transfected with pCI-
BTVNS4, using anti-BTV-8 immune serum from infected
mice

BHK-21 cells were transfected with pCI-BTVNS4 using

Fugene-6. At 48 hours post-transfection, the cells were dissolved

in sample denaturation buffer as described above. Cell lysates were

analysed by SDS-PAGE/Western blot, using an immune serum

Figure 5. Western blot analysis of GIV in BHK-21 cells. GIV
infected BHK-21 cell lysates analysed by SDS PAGE/Western blot using
anti-GIV NS4 antibodies. Lane GIVBHK24 = BHK-21 cells harvested at
24 hours post-infection. Lane M indicates the molecular weight marker,
labelled in kDa. Lane NI indicates non-infected BHK-21 cells which do
not show any cross reactivity of anti-GIV NS4 antibody and cellular
proteins. A protein was identified by the anti-GIV NS4 antibody in
infected cells (approximately 20 kDa) that is absent from non-infected
cells.
doi:10.1371/journal.pone.0025697.g005

Figure 6. Western blot analysis of purified BTV-8. A: SDS-PAGE of
purified BTV-8 showing all seven structural proteins stained with
Coomassie blue (note the absence of a detectable band of the
appropriate size for NS4). B: western blot analysis using purified BTV-8
virus particles (as shown in panel D) probed with anti-NS4 antibodies.
The reaction is negative, indicating that NS4 is truly non-structural. Lane
M: molecular weight markers, labelled in kDa. Lane V: the structural
proteins of purified BTV-8 virions are indicated.
doi:10.1371/journal.pone.0025697.g006

Figure 7. Western blot analysis of BTV-8 infected and non-
infected BHK-21 cells using anti-VP2 antibodies. Non-infected
(lane N-INF) and BTV-8 infected cells (lane INF) probed with anti-BTV-8
VP2 antibodies raised in mice against recombinant VP2. The antiserum
did not cross react with non-infected cells and identified a protein of
approximately 110 kDa in infected cells (corresponds to the theoretical
size of VP2).
doi:10.1371/journal.pone.0025697.g007

NS4, a New Orbivirus Non-Structural Protein
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(diluted 1/50, in 5% skimmed milk) from mice infected with BTV-

8. Non-transfected cells were used as control.

Nucleic acid protection assays
dsRNA binding proteins can compete with Dicer (an

endoribonuclease of the RNAse III family), reducing its ability

to cleave long dsRNAs into 21 bp-long ‘interfering’ RNAs [27]. A

dsRNA ladder (New England Biolabs) with sizes ranging from

500 to 21 bp was used as a template for Dicer cleavage. A

competition assay with Dicer (Mobitech), was carried in the

presence of 150 ng of expressed BTV-8 or GIV NS4, in a final

volume of 20 ml containing 8 ml of the Dicer reaction, 2 mg of

dsRNA, 1 mM ATP, 2.5 mM MgCl2. The reaction was

incubated at room temperature for 20 minutes, followed by

addition of a 1.5 U of Dicer, then incubated for a further 6 hours

at 37uC. The reaction products were analysed by 3% agarose gel

electrophoresis.

DNAse I is an endodeoxyribonuclease that can degrade dsDNA

into 59 phosphorylated tetranucleotides [28]. A dsDNA ladder

(Promega) with sizes ranging from 2645 to 36 bp provides a target

for DNAse I cleavage. Competition assays between DNAse I

(Roche) and BTV-8 or GIV NS4, were carried out in a final

volume of 20 ml, containing 2 ml of 10X DNAse I buffer and 2 mg

of dsDNA. The reaction was incubated at room temperature for

20 minutes, followed by addition of a 2 U of DNAse I, then

incubated for a further 30 minutes at 37uC. The completed

reaction was heated at 99uC for 1 minute to inactivate the DNase

and the reaction products were analysed by 2% agarose gel

electrophoresis.

The outer capsid protein VP9 of Banna virus (BAV, genus

Sedaornavirus, family Reoviridae) expressed in E.coli [29] was used as a

control in both RNAse and DNAse assays.

Interaction of NS4 with dsRNA
A colorimetric assay was developed to detect interactions

between NS4 and dsRNA. Synthetic dsRNA was prepared with

the 59-end of one strand linked to biotin via a 15-atom mixed

polarity tetraethylene glycol spacer (59-Biotine TEG). This design

allows the dsRNA to be captured at the bottom of a well of 96 well

plate coated with streptavidin, while keeping the dsRNA free as a

target for NS4 binding. The sequence of the +ve strand is: 59-

Biotine-TEG-UGGAAGCGGCUGGCAAUUAAUUUUGGU-

GUC-39 and that of the negative strand is 59-GACAC-

CAAAAUUAAUUGCCAGCCGCUUCCA-39. Increasing con-

centrations (from 1 to 640 ng) of the dsRNA in PBS were added

to separate wells of a streptavidin-coated 96 well plate (Pierce)

and allowed to bind at room temperature for 2 hours. The wells

were washed three times with TBS-Tween-20, then two

hundred microlitres of a 5% solution of bovine serum albumin

(BSA) in PBS, was added in each well, to block non-specific

sites. After washing 3 times with TBS-Tween-20 a fixed amount

(150 ng) of either BTV or GIV NS4 in binding buffer (20 mM

Tris-HCl pH 7.5, 50 mM KCl, 2 mM MgCl2, 2 mM MnCl2

and 5% glycerol) was added per well, prior to incubation for 30

Figure 8. Western blot analysis of BTV-8 infected and non-
infected BHK-21 cells using anti-BTV-8 antibodies. Non-infected
(lane N-INF) and BTV-8 infected cells (lane INF) probed with anti-BTV-8
immune serum from infected mice. The antiserum did not cross react
with non-infected cells and identified several viral proteins in infected
cells. Lane M represents the marker labelled in kDa.
doi:10.1371/journal.pone.0025697.g008

Figure 9. Western blot analysis of the nuclear fraction from
BTV-8 infected BHK-21 cells. The nuclear fraction was prepared as
described under materials and methods. Infected and non-infected cells
were used for the assay. The extracts were analysed by SDS-PAGE/
Western blot. Anti-BTV NS4 antibodies identified a protein in the
nuclear fraction of infected cells (NFin, indicated by an arrow) which is
absent from the nuclear fraction of non-infected cells (NFnin).
doi:10.1371/journal.pone.0025697.g009

NS4, a New Orbivirus Non-Structural Protein
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minutes at 25uC. After the wells had been washed 3 times with

TBS-Tween-20, rabbit anti-BTV or anti-GIV NS4 sera was

diluted 1/250 in 5% BSA and 100 ml was added to each well,

then the plates were incubated at 25uC for 2 hours. After

washing three times, 100 ml of peroxydase conjugated anti-

rabbit antibody was added (diluted 1/750 in 5% BSA) to each

Figure 10. Distribution of NS4 in BTV-8 and GIV infected BHK-21 cells at 4 hours post-infection. A: BHK-21 cells infected with BTV-8
showing NS4 mainly in the cytoplasm. B: BHK-21 cells infected with GIV showing NS4 both in the cytoplasm. Cells were incubated with anti-BTV-8
NS4, or anti-GIV NS4 rabbit antibodies and anti-alpha tubulin mouse antibodies. Cells were then incubated with Alexa Fluor 488 (green fluorescence)
conjugated anti-rabbit IgG and Alexa Fluor 568 (red fluorescence) conjugated anti-mouse.
doi:10.1371/journal.pone.0025697.g010

Figure 11. Distribution of NS4 in BTV-8 and GIV infected BHK-21 cells at 24 hours post-infection. A: BHK-21 cells infected with BTV-8
showing NS4 both in the cytoplasm and nucleus. B: BHK-21 cells infected with GIV showing NS4 both in the cytoplasm and nucleus. Cells were
incubated with anti-BTV-8 NS4, or anti-GIV NS4 rabbit antibodies and anti-alpha tubulin mouse antibodies. Cells were then incubated with Alexa
Fluor 488 (green fluorescence) conjugated anti-rabbit IgG and Alexa Fluor 568 (red fluorescence) conjugated anti-mouse.
doi:10.1371/journal.pone.0025697.g011
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Figure 12. Distribution of NS4 in BTV-8 and GIV infected BHK-21 cells at 72 hours post-infection. A: BHK-21 cells infected with GIV
showing fluorescence in the cytoplasm and cell membrane but less in the nucleus. B: BHK-21 cells infected with BTV-8 showing fluorescence in the
cytoplasm and cell membrane but less in the nucleus. Cells were incubated with anti-BTV-8 NS4, or anti-GIV NS4 rabbit antibodies. Cells were then
incubated with Alexa Fluor 488 (green fluorescence) conjugated anti-rabbit IgG.
doi:10.1371/journal.pone.0025697.g012

Figure 13. BTV-8 infected and non-infected BHK-21. A: BTV-8 infected BHK-21 cells at 36 hours pi, showing cells at different stages of
infection. This panel shows a cell (bottom of the panel) with depleted tubulin and an accumulation of the NS4 in the cytoplasm and to a much lesser
extent in the nucleus. The panel show cells with a less advanced infection (top) with lower expression of NS4 and an intact alpha-tubulin network. B:
Non-infected BHK-21 cells stained with DAPI, anti-alpha-tubulin and anti-NS4 antibodies. Cells were incubated with anti-BTV-8 NS4 rabbit antibodies
and anti-alpha tubulin mouse antibodies. Cells were then incubated with Alexa Fluor 488 (green fluorescence) conjugated anti-rabbit IgG and Alexa
Fluor 568 (red fluorescence) conjugated anti-mouse.
doi:10.1371/journal.pone.0025697.g013
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well. The plates were incubated at 25uC for 2 hours, then washed 3

times with TBS-Tween-20. One hundred microliters of SureBlue

TMB 1-component microwell peroxidase substrate (tetramethyl

benzidine from KPL) was added per well, then incubated for 30

minutes at 25uC. The reaction was stopped by adding 100 ml of 1 M

HCl and the plate was read at OD 450 nm.

Wells not containing dsRNA/NS4, were included as negative

controls. Wells from which the dsRNA was omitted, but in which

NS4 (BTV or GIV) alone was incubated were also included as

controls.

Results

Bioinformatic analyses
The program MLOGD models and compares sequence

evolution in single-coding and dual-coding sequences. It has

previously been used to identify a second ORF, in a different but

overlapping reading frame from that encoding the viral helicase

(VP6 of BTV), within Seg-9 of the insect-borne orbiviruses

[17,18,30]. This ORF was also identified in tick-borne orbiviruses

[18]. The length of the putative translation product is highly

variable, even between closely related Orbivirus species. In BTV

and EHDV it is approximately 10 kDa, in Peruvian horsesickness

virus (PHSV) and Yunnan orbivirus (YUOV) it is approximately

13.5 kDa, while in AHSV it is approximately 17 kDa, and in GIV

it is approximately 22.5 kDa (twice as long as in BTV). These NS4

sequences contain a high proportion of charged residues, with

basic R+K (arginine + lysine) content ranging from 13% to 22%,

while acidic E+D (glutamic + aspartic acids) content ranges from

12% to 22%. Each NS4 protein contains 4–5 histidine residues,

with the exception of the BTV protein, which contains none.

The levels of pairwise nucleotide conservation at synonymous sites

within aligned sequences of the VP6 ORF, were used to assess the

functional importance of the NS4-ORF. Complete or near-complete

VP6-encoding sequences from BTV showed strikingly enhanced

conservation in the region corresponding to the NS4 ORF (figure 1),

supporting and extending previous computational analyses [17].

Enhanced conservation was also apparent at the 59 end of the VP6

coding sequence, indicating that this region (like the terminal non-

coding regions of orbiviruses) is likely to contain functionally

important elements.

Amino acid identity between NS4 of the different Orbivirus

species compared ranged from 5% to 50%. Highest identity was

detected between BTV and EHDV (50%), followed by PHSV and

YUOV-1 (30%). Amino acid identity in NS4 between the tick-

borne and insect-borne viruses, ranged between 5% to 18%

(table 2). Local blast analyses using BLAST-P or TBLAST-N

identified significant matches (as defined by the E value in BLAST)

between NS4 proteins encoded by other orbiviruses. Analysis of

NS4 protein sequences using the pfam program, which uses the

hidden Markov model (HMM) based profiles to identify or predict

protein functionalities [31,32], revealed strong similarities to

certain conserved functional motifs. AHSV NS4 exhibits strong

relatedness over almost its entire length with DUF domains that

have helical structures known to be involved in nucleic acid

binding and/or modification [33]. Previous analysis of GIV NS4

identified a 72 amino acid fragment (aa 82 to 153) with 39%

similarity to dsRNA-binding domains of similar length (approx-

imately 68aa) in other reovirus proteins [ [18] or other dsRNA

binding proteins [34]. BTV NS4 (77aa long) also exhibits

relatedness (over aa 14–54) to a DUF domain, belonging to the

MetJ/Arc repressor superfamily [35], which has a ribbon-ribbon-

helix-helix DNA-binding motif, with the beta-ribbon located in

and recognising the major groove of operator DNA.

BTV NS4 shows strong relatedness to fzo-mitofusin protein, a

putative transmembrane GTPase. The fzo protein has a coiled-coil

structure and mediates mitochondrial fusion [36]. Another protein

family with a coiled-coil structure, which also shows a strong

Figure 14. BTV-8 infected BHK-21 showing fluorescence in the nucleoli. A: fluorescence signal using anti-NS4 antibodies showing the NS4
in the cytoplasm and nucleus. B: Fluorescence signal using anti-NS4 antibodies overlaid onto cells imaged by differential interference contrast
showing fluorescence around the nucleus in the cytoplasm and green fluorescence indicated by an arrow overlaid onto the nucleolus. Cells were
incubated with anti-BTV-8 NS4 rabbit antibodies and then incubated with Alexa Fluor 488 (green fluorescence) conjugated anti-rabbit IgG.
doi:10.1371/journal.pone.0025697.g014
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match with BTV NS4, is EMP24_GP25L. Members of this family

have been implicated in transporting ‘cargo’ from the endoplasmic

reticulum (ER) and are related to the previously described GOLD

domain [37], which is always found combined with lipid- or

membrane-association domains.

Sequence analyses indicate that PHSV NS4 (111 aa long)

contains a coiled-coil domain between aa 75 and 111, YUOV NS4

(113 aa long) contains two coiled-coils domains between aa 5 to 45

and 75 to 105, and AHSV NS4 (143 aa long) contains coiled-coil

domains between aa 5 to 85 and aa 110–140. The BTV NS4 (77

aa long) appears to contain only a single coiled coil structure,

between aa 27 and 77.

Two overlapping potential nuclear localisation signals’ (NLS)

were identified in the aa sequence of PHSV NS4 (positions 86–99:

RKLERVEMERKMKK and 95–109: RKMKKSEVNKAR-

RKL) and a single NLS in YUOV (position 99–112: RTPER-

VESVKKRLN). NLS were also identified in the EHDV NS4

(position 4–13: RHRKGAKRKR) and in BTV NS4 (position 12–

24: ‘RKRAAKRLKMQMW). The NLS Mapper predicted 3

potential overlapping NLS in AHSV NS4 (position 4–15:

RRTRVKRKRTKY, position 5–15: RTRVKRKRTKY and

position 7–16: RVKRKRTKYM). Although all of these NLS were

monopartite, the GIV NS4 was found to contain a bipartite NLS

(position 113–141: RKRGLEFLLLPLHEYVTHCAKEDIR-

IYES). The prediction cut-off scores for all these NLS as defined

by PredictNSL and cNLS ranged from 4 to 8, indicating dual

nuclear/cytoplasmic localisations of a given protein [38].

The aa region 55 to 129 of GIV NS4 showed 29% identity

(55% similarity) to aa 1823 to 1890 of UTP20 (a component of the

nucleolus).

Cloning and expression of BTV and GIV NS4
NS4 of BTV and GIV were successfully cloned into pGEX-4T-

2 and expressed in C41 at 28uC, as partially soluble proteins fused

to GST (figure 2). The soluble fraction was used in competition

assays with DNase I or endoribonucleases belonging to the RNAse

III family and in binding assays with dsRNA. In contrast when

these proteins were expressed in BL-21 they were totally insoluble

and formed inclusion bodies. The inclusion bodies fraction was

purified using bugbuster reagent, solubilised and used for

immunization of rabbits.

Western blot analysis of infected cells
Western blots analyses, using rabbit antisera raised against

recombinant BTV-8 NS4, showed that NS4 is expressed in BTV-8

infected Culicoides KC cells and BHK-21 (figure 3, figure 4). The

antiserum identified a single protein band with an apparent

molecular weight of approximately 12 kDa in BTV-8 infected

cells, which is close to the molecular weight calculated for NS4,

from the sequence of Seg-9 (,10 kDa). The anti-BTV NS4

antiserum is therefore specific to NS4 and does not cross react with

other viral proteins. Western blot analysis using non-infected

BHK-21 cells, showed that anti-BTV NS4 rabbit antiserum does

not cross react with cellular proteins. A similar analysis, using

antisera raised against recombinant GIV NS4, identified a protein

of approximately 20 kDa in GIV infected cells (figure 5),

corresponding to the theoretical molecular weight of NS4 deduced

from the sequence of GIV Seg-9. The anti-GIV NS4 antiserum is

therefore specific to GIV NS4 and does not cross react with other

viral proteins. Western blot analysis using non-infected BHK-21

cells, showed that anti-GIV NS4 rabbit antiserum does not cross

react with cellular proteins. Western blot analyses of purified BTV

virus particles showed no reaction with anti-BTV NS4 antibodies,

indicating that NS4 is ‘non-structural’ (figure 6A, 6B). Figure 7

shows infected and non-infected BHK-21 cells probed with anti-

BTV-8 VP2 antibodies raised in mice. Figure 8 shows infected and

non-infected BHK-21 cells probed with anti-BTV8 immune

serum from experimentally infected mice.

Identification of NS4 in the nuclear fraction of BTV-8
infected BHK-21 cells

NS4 was identified in the nuclear fraction of BTV-infected

BHK-21 cells harvested at 24 hours post-infection by western blot.

Rabbit anti-BTV NS4 immune serum, identified the same band in

the nuclear extract that was previously identified in infected cell

lysates (figure 9). No band was identified in non-infected nuclear

extracts.

Localisation of NS4 in infected cells
NS4 was detected as early as 4 hours post-infection, mainly in

the cytoplasm of BHK-21 cells infected with BTV-8 or GIV

(figure 10A, 10B). At 24 hours post-infection, NS4 formed small

aggregates throughout the cytoplasm and nucleus, suggesting that

it makes specific interactions with itself and/or other infected cell

components (figure 11A, 11B). This is consistent with bioinfor-

matic analyses which identified nuclear localisation signals in NS4

of GIV and BTV (as well as YUOV, PHSV, EHDV, AHSV).

Although not all cells are morphologically intact at 72 hours post-

infection, with GIV or BTV-8, at this stage NS4 was present in the

cell membrane (figure 12A, 12B). This is consistent with

Figure 15. Co-localisation of NS4 and fibrillarin in BTV-8
infected BHK-21. Confocal image of cells infected with BTV-8
showing fibrillarin (A: in red) detected by anti-fibrillarin antibody
(Serotech), NS4 (B: in green) identified by anti-BTV-8 NS4 antibodies,
nuclei stained blue with DAPI (C) and a merge of these 3 subsets (D)
showing co-localisation of the BTV-8 NS4 and the fibrillarin (yellow).
doi:10.1371/journal.pone.0025697.g015
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bioinformatic analysis showing similarities between NS4 and

membrane-associated proteins. Another set of cells, which were

collected at 36 hours PI contained cells at different stages of

infection. Those at an advanced stage of infection had depoly-

merised and depleted tubulin (figure 13A). No immuno-fluores-

cence signal was detected when non-infected cells were labelled

using anti-NS4 antibodies (figure 13B, indicating that the anti-NS4

antiserum does not cross react with cellular proteins.

Further analyses with confocal microscopy identified nucleolar

fluorescence using anti-NS4 antibodies in cells infected with either

BTV or GIV. Localisation of the NS4 to the nucleoli was visible by

confocal fluorescence as well as by overlaying the fluorescence

signal onto cells imaged by differential interference contrast

microscopy (figure 14A, 14B). Localisation of NS4 to the nucleoli

was confirmed using anti-fibrillarin antibodies, giving a fluores-

cence signal that was super-imposable on that of NS4 in the

nucleoli (figure 15).

Localization of NS4 in cells transfected with pCI-BTVNS4
or pCI-GIVNS4

BHK-21 cells transfected with pCI-BTVNS4 or pCI-GIVNS4

resulted in expression of NS4 in both the cytoplasm and nucleus

(figure 16A, 16B). NS4 was also detected in the nucleoli

(figure 16B). Expressed NS4 was abundant in the cytoplasm

where it formed aggregates similar to those found in infected cells.

In many cells NS4 formed spherical bodies with 0.7 and 1 mm in

diameter (figure 16A and 16B). Similar spherical bodies were

occasionally also observed in cells infected with BTV-8 or GIV

(figure 17A). Staining with the lipid stain oil-red-O, showed that

these spherical bodies are associations between NS4 and lipid

droplets (figure 17B and figure 18A, 18B). These bodies were

identified in BTV-8 infected cells (figure 17B and figure 18B),

where the oil-red-O stains lipids in the centre of the droplet while

NS4 surrounds the lipid droplet. Figure 18A shows cells

transfected with pCI-GIVNS4 stained with oil-red-O. Figure 19

shows non-infected cells stained with oil-red-O, where lipid

droplets stain with red only. Similar data were recently reported

for rotaviruses, where VP2, VP6 or NSP5 were found to associate

with lipid droplets [39].

Western blot analysis of cells transfected with
pCI-BTVNS4

The mice immune serum from an animal infected with BTV-8

identified a protein in cells transfected with pCI-BTVNS4

expressing BTV-8 NS4. The protein band had the same size as

that identified by the anti-BTV NS4 rabbit immune serum in

BTV-infected cells. No band was identified in non-transfected cells

(figure 20).

Nucleic acid protection assays
Incubation of a dsRNA ladder (500-21 bp) with Dicer led to

cleavage of long dsRNAs, generating 21 bp-long RNAs. Incuba-

tion of the dsRNA ladder with BTV NS4 or GIV NS4 alone did

not alter dsRNA integrity. dsRNA preincubated with NS4 of GIV

was protected against Dicer cleavage, consistent with previous

findings regarding the presence of a dsRNA-binding domain.

However, BTV NS4 did not protect dsRNA against Dicer and

dsRNA was still processed into 21 bp long fragments, as analysed

by agarose gel electrophoresis (figure 21). Incubation of dsRNA

with BAV outer capsid protein VP9 (as a control) did not affect

Figure 16. Confocal fluorescence microscopy of BHK-21 cells expressing NS4 of BTV-8. Cells were transfected with pCI-BTVNS4 expressing
NS4 of BTV-8. At 48 hours post-transfection, cells were fixed with paraformaldehyde, permeabilised with 0.1% Triton X-100 and incubated with anti-
BTV-8 NS4 antibodies. Cells were then incubated with Alexa Fluor 488 (green fluorescence) conjugated anti-rabbit IgG (Invitrogen). A: a focal plane of
BHK-21 cells expressing NS4 and showing cytoplamsic fluorescence. In a large number of cells, NS4 was found to form spherical bodies (as shown in
the figure) having a diameter between 0.7 and 1 mm. B: a focal plane of BHK-21 cells showing both cytoplasmic and nucleolar (indicated by arrows)
fluorescence. Similar results were obtained with cells transfected with pCI-GIVNS4 expressing NS4 of GIV.
doi:10.1371/journal.pone.0025697.g016
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dsRNA integrity. However, pre-incubation of dsRNA with VP9

then treatment with Dicer resulted in cleavage into 21 bp long

fragments (figure 21). Similar results were obtained with RNAse

III (data not shown).

Incubation of a dsDNA ladder (2645–36 bp) with DNAse I led

to degradation, while incubation with BTV or GIV NS4 only did

not affect dsDNA integrity. However, dsDNA pre-incubated with

either BTV or GIV NS4 was at least partially protected against

Figure 18. Co-localisation of GIV NS4 or BTV NS4 with lipid droplets in BHK-21 cells. A: cells transfected with pCI-GIVNS4 stained with oil-
red-O and probed with anti-GIV NS4 antibodies. F: Cells infected with BTV-8 stained with oil-red-O and probed with anti-BTV NS4 antibodies.
doi:10.1371/journal.pone.0025697.g018

Figure 17. Confocal fluorescence microscopy of GIV or BTV-8 infected BHK-21 cells. A: cells were infected with GIV and show spherical
bodies (identified by anti-GIV NS4 antibodies) similar to those identified in cells transfected with pCI-BTVNS4. B: identification of the spherical bodies
(in BTV-8 infected cells) as lipid droplets, by staining with the lipid stain oil-red-O. B-1: cells stained with oil-red-O. B-2: cells probed with anti-BTV
NS4 antibodies. B-3: cells stained with DAPI. B-4: Co-localisation of NS4 with lipid droplets; oil-red-O stains the lipid droplet in red while the green
fluorescence surrounding the lipids indicates BTV NS4.
doi:10.1371/journal.pone.0025697.g017
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DNAse I (figure 22), as analysed by agarose gel electrophoresis.

Incubation of dsDNA with BAV outer-capsid protein VP9 (as a

control) did not affect the dsDNA integrity and did not protect the

DNA from degradation by DNAse I (figure 22).

Interaction of NS4 with dsRNA
In the colorimetric assay to detect NS4-dsRNA binding, the

wells devoid of dsRNA were all negative, with a very low

background (values close to zero). Negative control wells,

containing only dsRNA, also had OD values close to zero

(figure 23). Wells containing biotinilated dsRNA and BTV NS4

were also negative, indicating that BTV NS4 does not bind

dsRNA. However, the wells containing dsRNA and GIV NS4,

had increasing OD values with an almost linear relationship

between the fixed NS4 concentration (150 ng/well) and the

increasing dsRNA concentration, reaching a plateau at 320 ng of

dsRNA/well (figure 23). This confirms the existence of a dsRNA-

binding domain in GIV NS4, which is absent from BTV NS4.

Discussion

Within the family Reoviridae, genome segments encoding more

than one protein, from distinct, ORFs have been previously

reported for the aquareoviruses, fijiviruses, orthoreoviruses,

rotaviruses, phytoreoviruses and oryzaviruses [1]. Genome

segments of the orthoreoviruses, phytoreoviruses, oryzaviruses

and rotaviruses can be bi- or tri-cistronic with overlapping ORFs.

Those in the phytoreoviruses (Seg-9 and Seg-12), orthoreoviruses

(segment S1) and rotaviruses (Seg-11) were also found to be

expressed in infected cell cultures [40,41,42,43,44]. Translation of

overlapping ORFs from reovirus genome segments has usually

been shown to be dependent on leaky scanning [41,43,44]

although scanning-independent ribosome shunting has also been

described [42,45].

An overlapping ORF in Seg-9, designated as ORFx, was

recently identified by bioinformatic analysis in both insect-borne

and tick-borne orbiviruses [17,18]. ORFx appeared to encode a

protein with the potential to bind dsRNA that was tentatively

named as VP6db [18]. However, in line with previous orbivirus

protein nomenclature, we have renamed these proteins, based on

their theoretical size and absence from the virion, as non-structural

Figure 19. Non-infected BHK-21 cell stained with oil-red-O and
anti-BTV NS4.
doi:10.1371/journal.pone.0025697.g019

Figure 20. Western blot analysis BHK-21 cells transfected with
plasmid pCI-BTVNS4. Cells were transfected with pCI-BTVNS4
expressing NS4 of BTV-8. At 48 hours post-transfection cells were
scraped, lysed in sample denaturation buffer and analysed by SDS-
PAGE/Western blotting, using BTV-8 immune serum from experimen-
tally infected mice as primary antibody. M indicates the molecular
weight marker, labelled in kDa. Lane labelled as pCI-BTVNS4 indicates
cells transfected with pCI-BTVNS4 plasmid, NT indicates non-transfected
cells. NS4 that was identified in transfected cells using anti-NS4
antibodies (,12 kDa) was absent from non-transfected cells.
doi:10.1371/journal.pone.0025697.g020

Figure 21. Dicer competition assay. Lane RL: dsRNA ladder
labelled in base pairs. Lane 1: dsRNA ladder pre-incubated with GIV
NS4 followed by Dicer. GIV NS4 prevented cleavage by Dicer. Lane 2:
dsRNA ladder pre-incubated with BTV-8 NS4, followed by Dicer. BTV-8
NS4 did not prevented Dicer from cleaving long dsRNAs into 21 bp
long siRNAs. Lane 3: ladder incubated with Dicer as a positive
digestion-control. Lane 4: dsRNA ladder pre-incubated with VP9 of BAV
followed by Dicer. VP9 of BAV did not prevent Dicer from cleaving long
dsRNAs into 21 bp long siRNA. Lane 5: dsRNA ladder incubated with
VP9 of BAV. VP9 of BAV did not affect the integrity of dsRNA.
doi:10.1371/journal.pone.0025697.g021
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protein 4 (NS4). GIV NS4 was previously shown to contain

significant aa sequence matches with dsRNA-binding domains

[18]. Further analyses of their amino acid sequences indicate that

NS4 may be structured as ‘coiled-coils’ and that BTV NS4 exhibits

significant relatedness (as identified by the pfam programme) with

nucleic acid binding proteins that also have coiled-coils or helical

structures and are associated with ER or cell membranes.

It was suggested that translation of ORFx may be initiated via

‘leaky ribosome-scanning’ [17], although the presence of addi-

tional AUG codons between the VP6 initiation codon and the

presumed NS4 initiation codon in some orbiviruses (including

BTV) suggests that additional mechanisms for bypassing inter-

vening AUG codons may be operating [17]. An A-rich polypurine

tract is present upstream of the NS4 ORF in all of the sequenced

Orbivirus species, except the tick borne St. Croix River virus

(SCRV, [46]. The SCRV NS4-ORF (nt 101-379) is interrupted by

a stop codon at position 217. Although hydrophobicity profiles of

putative NS4 proteins from BTV, AHSV, PHSV, YUOV and

GIV as analysed using the Kyte and Doolittle algorithm [22] are

somewhat variable, overall they show broadly similar patterns of

conserved domains, indicating that the NS4 proteins are generally

hydrophilic (figure 24).

BTV-8 infected KC or BHK-21 cells and GIV infected BHK-

21 cells all contain NS4, as revealed by western blot analyses and

confocal microscopy, confirming the existence of a new and

previously un-described protein, encoded by ORFx of orbivirus

Seg-9. NS4 has not previously been detected in purified BTV virus

or core particles [20]. Western blot analyses of purified BTV-8

particles confirmed that the protein is ‘non-structural’.

Bioinformatic analyses indicate that NS4 contains coiled-coils

and is structurally related to other mammalian proteins, with

helical or coiled-coil regions. These analyses also suggest that the

NS4 may be functionally related to proteins involved in nucleic

acid binding, or associated with lipids and membranes. Nuclear

localisation signals were predicted in NS4 of PHSV, YUOV,

EHDV, BTV, AHSV and GIV. All these proteins are rich in

arginine and lysine residues that are essential for NLS [47].

Double-stranded RNA-binding proteins (DRBPs) do not

recognize specific nucleotide sequences but interact primarily

with A-form double helix RNAs, which differ from the typical

dsDNA B-form helix in that the minor groove is shallow and

broad while the major groove is narrow and deep. This

conformation allows DRBPs to bind non-specifically to dsRNAs.

Indeed, the lack of nucleotide binding recognition suggests that

target specificity may generally be governed through interactions

with other proteins, since many DRBPs bind strongly but non-

specifically to any dsRNA structure in vitro. GIV NS4 can protect

dsRNA from degradation by RNAse III endoribonucleases,

confirming previous sequence analyses indicating the presence of

a dsRNA-binding domains [18]. BTV NS4 which is half the

theoretical size of its counterpart in GIV, lacks dsRNA binding

domains and did not protect dsRNA from Dicer or RNAse III.

NS4 of GIV and BTV both failed to protect ssRNA or ssDNA

from degradation by RNAse A, or nuclease S1 respectively (data

not shown). However, NS4 of both GIV and BTV did protect

dsDNA from degradation by DNAse I, indicating an ability to

bind dsDNA.

Fluorescent confocal microscopy confirmed that NS4 is

expressed in both BTV and GIV infected cells, and starts to

accumulate in the cytoplasm and nucleus (as fine aggregates) as

early as 4 hours post-infection. However, at 72 hours post-

infection NS4 was associated with the cell membrane. This is

consistent with analyses suggesting similarities between NS4 and

ER- lipid- or membrane-associated proteins [37]. Cells infected

with BTV or GIV or transfected with plasmids expressing NS4,

showed interaction of NS4 with lipid droplets within the

cytoplasm. This is consistent with bioinformatic analysis that

identified similarities between NS4 and lipid-associated domains.

Similar data were recently reported for VP2, VP6 and NSP5 of

rotavirus [39].

Figure 22. DNase I competition assay. Lane DL: dsDNA ladder
labelled in base pairs. Lane 1: dsDNA ladder pre-incubated with GIV
NS4 followed by DNase I. GIV NS4 protected the ladder against DNase
cleavage. Lane 2: dsDNA ladder pre-incubated with BTV-8 NS4,
followed by DNase I, showing that BTV NS4 protected against DNase
cleavage. Lane 3: Ladder incubated with DNase I as positive control of
digestion. Lane 4: dsDNA ladder pre-incubated with VP9 of BAV
followed by DNAse I. VP9 of BAV did not prevent DNAse I from
degrading dsDNA. Lane 5: dsDNA ladder incubated with VP9 of BAV.
VP9 of BAV did not affect the integrity of dsDNA.
doi:10.1371/journal.pone.0025697.g022

Figure 23. Colorimetric assay to detect interactions of NS4 with
dsRNA. The graph shows colorimetric OD readings plotted against
concentrations of dsRNA. Increasing concentrations (from 1 to 640 ng)
of a biotinylated dsRNA were bound to wells coated with streptavidin.
BTV NS4 or GIV NS4 were added to the wells in triplicate. Wells not
containing dsRNA/NS4 were included as negative controls. Wells from
which dsRNA was omitted, but in which NS4 (BTV or GIV) alone was
incubated were also included as controls. Only wells containing the
dsRNA to which GIV NS4 was added reacted with anti-GIV antibodies as
indicated by increasing OD readings. The readings were almost linear
(reaching a plateau at 320 ng of dsRNA) indicating that dsRNA acted as
a target for binding of GIV NS4.
doi:10.1371/journal.pone.0025697.g023
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Viruses can interact with components of the nucleolus [48,49]

and viral proteins can co-localise with proteins such as nucleolin,

B23 and fibrillarin (components of the nucleolus). The use of anti-

fibrillarin antibodies identified NS4 in the nucleoli of cells

harvested at 24 hours post-infection. Although NS4 was detected

in the nucleoli late in infection, anti-fibrillarin antibodies failed to

detect fibrillarin. This may reflect BTV induced apoptosis, leading

to nuclear condensation and DNA fragmentation, blebbing of the

plasma membrane and shrinkage [50,51], and/or host cell shut-off

[4]. Similar findings were reported in rotavirus (another member

of the family Reoviridae, genus Rotavirus) where NSP2 protein was

found to cause depolymerisation of tubulin [52].

As part of their replication strategy, viruses can use nucleolar

components to favour viral transcription and translation, or alter

the cell cycle [48,49]. Western blot analysis indentified NS4 in the

nuclear fraction of BTV infected cells, while immunofluorescence

confocal microscopy co-localised NS4 to the nucleolus. GIV-NS4

showed sequence similarity to UTP20, a small subunit processome

component and a component of the nucleolus. UTP20 is part of

the U3 small nucleolar RNA (snoRNA) protein complex (U3

snoRNP) and is involved in 18S rRNA processing [53]. Whether

NS4 interferes with the processing of the 18s rRNA remains to be

clarified in future work.

The ability of GIV NS4 to protect dsRNA from cleavage by

endoribonucleases of the RNAse III family and its ability to bind

dsRNA agree with sequence analyses that indicated the presence

of a dsRNA binding domain in GIV NS4 [18]. The inability of

BTV NS4 to protect dsRNA from cleavage by endoribonucleases

of the RNAse III family and its inability to bind dsRNA in a plate-

based colorimetric assay are in agreement with sequence analyses

that failed to detect a dsRNA binding domain in its aa sequence

[18]. Other reoviruses dsRNA-binding proteins include Sigma 3 of

mammalian orthoreovirus (found in both the cytoplasm and

nucleus), and pns10 of rice dwarf virus [54,55].

SCRV, which persistently infects tick cells but does not grow in

mammalian cells, appears to have a non-functional NS4 ORF that

is interrupted by a stop codon. These observations suggest that

NS4 expression could play a role in productive infection of

mammalian cells.

The data presented here show that the orbivirus genome

encodes four distinct non-structural proteins (NS1-NS4). NS1 and

NS3 play an important role in orbivirus exit mechanisms from

infected cells [15]. BTV infects mammalian cells, usually resulting

in a lytic infection, while infection of KC cells derived from the

BTV vector Culicoides sonorensis, become persistently infected with

little or no evidence of cell lysis [56,57]. Previous work showed that

intracellular expression of an NS1 specific antibody fragment

(scFv) destabilised the formation of NS1 tubules in BTV infected

cells [14]. As a consequence, cells became persistently infected and

viruses exited by budding instead of via cell lysis. Although BTV

NS3 is effectively expressed in insect cells [15], it is much less

abundant in mammalian cells [4]. It was suggested previously [14]

that the relative levels of NS1 to NS3 synthesised during infection

dictate the fate of cellular pathogenesis as of whether the virus exit

occurs by lysis or budding.

The rapid accumulation of NS4 in the cytoplasm as early as 4

hours post-infection suggests that this protein plays an early role in

the virus replication cycle. At 72 hours post-infection NS4 was

absent from the nucleus which could be the consequence of changes

affecting the nucleus and the integrity of the nuclear membrane.

The presence of the NS4 in the plasma membrane late in infection

suggests that it may play a role, alongside NS1 and NS3, in virus

exit. Further co-localisation studies will be carried out to assess NS4

interactions with other viral or cellular protein components.
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