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Iterative protecting group-free cross-coupling
leading to chiral multiply arylated structures
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The Suzuki–Miyaura cross-coupling is one of the most often utilized reactions in the synthesis

of pharmaceutical compounds and conjugated materials. In its most common form, the

reaction joins two sp2-functionalized carbon atoms to make a biaryl or diene/polyene unit.

These substructures are widely found in natural products and small molecules and thus the

Suzuki–Miyaura cross-coupling has been proposed as the key reaction for the automated

assembly of such molecules, using protecting group chemistry to affect iterative coupling. We

present herein, a significant advance in this approach, in which multiply functionalized

cross-coupling partners can be employed in iterative coupling without the use of protecting

groups. To accomplish this, the orthogonal reactivity of different boron substituents towards

the boron-to-palladium transmetalation reaction is exploited. The approach is illustrated in

the preparation of chiral enantioenriched compounds, which are known to be privileged

structures in active pharmaceutical compounds.
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T
he Suzuki–Miyaura cross-coupling, in which organobor-
anes are coupled with organic halides or their equivalents
(Fig. 1a), has changed the way organic molecules are

assembled1,2. This reaction is the method of choice for the
preparation of biaryl or polyene units in pharmaceutical3 and
materials industries4. Because of the ease with which biaryl
molecules are prepared using the Suzuki–Miyaura reaction, these
substructures are now widely found in pharmaceutical products
and precursors, perhaps even to the detriment of structural
diversity. Indeed, evidence is emerging that ‘flat’ molecules
lacking stereochemistry are suboptimal drug candidates when
compared with chiral molecules, which have a more complex and
tunable three-dimensional shape and improved pharmacokinetic
properties5,6. Molecules with chiral centres are found with
significantly greater frequency (up to 30%) in final drugs than
in discovery compounds, a fact attributed to improved drug
performance compared with flat structures composed of sp2

centres5. Despite these compelling facts, the creation of C–C
bonds with stereochemistry using the Suzuki–Miyaura reaction
has only been demonstrated in the last few years, enabling the
preparation of molecules with considerable diversity (Fig. 1b)7–23.

The development of methods to include the construction of
chiral centres with control of stereochemistry is clearly critical to

access more complex and valuable structures, and doing this in an
iterative manner is a key for efficient, potentially automated
applications. In fact, Burke has proposed the use of the Suzuki–
Miyaura reaction as the key reaction with which the majority of
non-peptidic organic molecules can be assembled in an
automated manner (Fig. 1c)24,25. One critical component in any
iterative synthesis involving organoboranes is the ability to
modulate the reactivity of B–C bonds between ‘off’ states, where
no reaction takes place; and ‘on’ states, from which coupling can
occur. At present, this can only be accomplished through the use
of blocking ligands on boron that deactivate the substrate towards
coupling, which is followed by chemical removal of these ligands
to generate an active-coupling partner26,27.

In a significant divergence from existing approaches, we
describe herein the first example the iterative coupling of up to
three B–C bonds within the same molecule without employing
protecting group chemistry. This is accomplished by taking
advantage of inherent differences in the transmetalation efficiency
of closely related C–Bpin bonds (Fig. 1d). The orthogonal
reactivity of B–C bonds in different positions in a single molecule
permits the chemoselective, sequential coupling of aromatic,
aliphatic and stereochemistry-bearing B–C bonds. This method
permits the rapid generation of multiply arylated, chiral organic
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Figure 1 | Advances in the Suzuki–Miyaura cross-coupling reaction. (a) Classical Suzuki–Miyaura reaction for the formation of C–C bonds between aryl or

alkenyl electrophiles and aryl or alkenyl organoboron nucleophiles. (b) Selected examples of molecules prepared by enantiospecific Suzuki–Miyaura cross-

coupling reactions. (c) Iterative coupling concept employing the Suzuki–Miyaura reaction as the key structure-building component. (d) This work:

chemoselective, protecting group-free cross-coupling of multiply borylated organic compounds, including the coupling of chiral, enantioenriched B–C bonds.

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms11065

2 NATURE COMMUNICATIONS | 7:11065 | DOI: 10.1038/ncomms11065 | www.nature.com/naturecommunications

http://www.nature.com/naturecommunications


molecules with control of stereochemistry, without the need for
protection/deprotection sequences. The method is simple,
straightforward and holds considerable promise for the facile
synthesis of new classes of pharmaceutical structures with
improved properties. The Molander group has reported examples
of protecting group-free iterative couplings accomplished
employing the differential ability of benzylic RBF3K salts to
undergo radical-based transmetallation19,28,29. Although this has
not been reported on molecules containing more than one
identical boron substituent, such reactivity can be envisioned.

Results
Orthogonal coupling of benzylic and non-benzylic C–B bonds.
In 2009, we reported the first example of the cross-coupling of
chiral benzylic boronic esters (1) that occurred with retention of
stereochemistry (Fig. 2)9. This method has been extended to
include the cross-coupling of allylic11,30, propargylic31 and
doubly benzylic boronic esters14. Using different substrates,
Suginome10, Hall13, Molander16 and Biscoe15 have reported
groundbreaking invertive couplings under alternative conditions.

In our 2009 report, two key observations were critical for the
current work. First, we noted that when bases other than silver
oxide were employed with benzylic boronic ester 1, the starting
boronic ester was recovered untouched, indicating that silver
oxide was required for transmetalation. Second, under optimized
conditions for the coupling of 1, namely Pd(0)/PPh3 and Ag2O,
its linear achiral isomer 3 was completely unreactive, such that
3 could be recovered from the reaction mixture with the B–C
bond intact (Fig. 2a)9. Thus, the mild silver oxide-promoted
conditions employed for branched substrate 1 were clearly
insufficient to promote transmetalation of isomer 3. This
orthogonal reactivity offered the exciting opportunity to control
the arylation of multiborylated organic compounds based on
inherent differences in transmetalation efficiencies of different
types of B–C bonds.

The critical question, then, was whether the relative reactivity
described in Fig. 2 would translate to distinct B–C bonds in
diborylated molecules. We first chose to examine the reactivity of
1,2 diboronates (5), which contain both a linear and a branched
benzylic boron substituent. These compounds can be easily
prepared with high enantioselectivity by diboration of the
corresponding styrene derivative 4 (refs 32–34). Pinacol
substituents were chosen on boron, as these are among the
most common and stable ancillary groups for boron8,35. The

coupling of one B–C(OR)2 unit in diborylated compounds
followed by oxidation or, less commonly, amination or
homologation of a remaining B–C bond has been amply
demonstrated by Fernández36, Morken37–39 and Suginome40.
However, with the exception of one example of a hydroxyl-
promoted coupling39, there have been no reports describing the
use of unprotected multiborylated compounds in iterative cross-
couplings.

Initial attempts at reacting the benzylic, secondary B–C bond
selectively in the presence of the adjacent linear B–C bond were
unsuccessful, leading to a mixture of products, including those
resulting from protodeboronation. However, the linear B–C bond
in 5 could be enticed to undergo transmetalation and cross-
coupling with aryl bromides in the presence of Pd(OAc)2 with
RuPhos (2-dicyclohexylphosphino-20,60-diisopropoxybiphenyl)
or SPhos (2-dicyclo-hexylphosphino-20,60-dimethoxybiphenyl)
as ligand, and K2CO3 as base, leaving the branched B–C bond
intact (Fig. 3a). Although counterintuitive, substrates showing
sensitivity to deboronation benefited from the use of a
significantly higher proportion of water (as seen in substrates
6aC, 6bC, 6gA, 6gE and 6hA, and later in the linear B–C(sp3)

coupling of trisborylated substrate 11a (Fig. 4b)). On the basis of
the work of the Lloyd-Jones group41, this could be due to a
decrease in the effective pH of the reaction medium as the
proportion of water is increased. In some cases, lower yields were
obtained due to losses upon chromatography, as illustrated with
compound 6hA (Fig. 3a). Under these relatively simple coupling
conditions, a variety of coupling partners for the linear position
were tolerated, including electron-rich, electron-poor and
p-extended substrates. Heteroaromatic aryl bromides were less
successful in this position, with 2-thienyl, 3-bromopyridyl
and 3-bromoquinoline giving suboptimal yields, although
4-pyridylbromide could be effectively coupled as shown in
Fig. 4c. In all cases studied, this reaction occurred without
compromising the stereochemistry at the benzylic B–C bond.

For the next step in the iterative sequence, the branched B–C
bond was coupled using our previously described silver oxide-
promoted conditions (Fig. 3b)9. Again, electron-rich, electron-
poor, p-extended and heteroaromatic aryl iodides were well
tolerated as coupling partners under the conditions shown in
Fig. 3b. Enantiospecificities of this reaction are on the order of
90%, which is slightly lower than those observed in couplings of
simpler 1-phenethyl boronic esters9,42, possibly indicating a
slightly increased susceptibility to stereochemical erosion, because
of the conjugated nature of any presumed stilbene intermediate
resulting from b-hydride elimination; however, no regioisomeric
products were observed, and thus the possibility of loss
of stereochemistry during transmetalation must also be
considered (enantiospecificity, e.s.¼ (e.e. product/e.e. starting
material)� 100%). The electronics of the aryl iodide did not
appear to play any effect.

Orthogonal coupling of benzylic sp3 versus sp2 C–B bonds.
Having demonstrated that two adjacent aliphatic B–C bonds can
be sequentially coupled with high chemoselectivity, we next
probed whether the same approach could be used in molecules
containing other types of B–C bonds with different propensities
for transmetalation. Thus, we chose to pit B–C(sp2) bonds against
secondary B–C(sp3) bonds, as in substrate 8, which was prepared
by hydroboration of 4-pinacol boronato styrene. This reaction
took place with 95:5 e.r. (ref. 43). In this case, the B–C(sp2) bond
was targeted for initial coupling since it should clearly undergo
transmetalation, the most readily based on 430 years of
precedent. Although a number of conditions were effective for
cross-coupling of this B–C bond and indeed left the secondary
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benzylic B–C bond untouched, small impurities derived from the
incorporation of phenyl rather than aryl substituents were
observed consistently. These side products originated from the
use of triphenylphosphine as the ligand via well-documented
P–Ph activation44. After several unsuccessful attempts to circum-
vent this unwanted side reaction, the use of PtBu3 proved
successful45, giving the desired arylated products 9aX in high
isolated yields, with the benzylic B–C bond intact for the next
coupling (Fig. 4a). The reaction was readily scalable and could be
routinely run on several hundred milligrams scale. Comparison of
the enantiopurity of products 9aX, after coupling at the B–C(sp2)

bond indicated, as expected, that there was no detectable loss of
enantiopurity during this coupling.

With these products in hand, we next examined the scope of
the Ag2O-promoted benzylic cross-coupling reaction (Fig. 4a).
The enantiospecific cross-coupling took place as expected, except
that p-extended biphenyl boronic esters 9aX displayed higher
sensitivity to the loss of enantiomeric purity during coupling than
previously observed for simple phenylated boronic esters9. In
particular, we noted that electron-withdrawing substituents on
the biphenyl derivative as in 9aJ led to a greater erosion in
enantiospecificity (for example, 76% e.s. for coupling with
4-iodotrifluoromethyltoluene yielding 10aJk and 54% e.s. for
coupling of the same boronic ester with 3-iodopyridine yielding
10aJi).

To confirm that this effect was due to the starting boronic ester,
3-iodopyridine and 4-iodotrifluoromethyltoluene were reacted
with coupling partner 9aF, bearing a methoxyphenyl instead of
phenacyl substituent. As shown in Fig. 4a, these reactions
occurred with very high enantiospecificities (96% and 89%,
respectively), confirming that it is the electron-withdrawing

substituent on the biphenyl that leads to higher loss of enantio-
purity in the coupling. Bulky aryl iodides such as 1-napthyliodide
were effective, but also resulted in decreased enantiospecificity
(that is, 10aDm). Comparing simple 1-phenethyl pinacol
boronate with the p-extended systems illustrates the sensitivity
of the latter systems: p-extended 9aD reacts with 1-naphthylio-
dide with 76% e.s., while PhCH(BPin)CH3 reacts with 85% e.s.
when coupled with the same aryl iodide46. These results will
provide important information in ongoing mechanistic studies of
this reaction.

Protecting group-free iterative coupling of trisborylated species.
To fully illustrate how the orthogonal reactivity of the various B–C
bonds can be applied in iterative couplings, we prepared
compound 11a containing three different types of B–C bonds: a
B–C(sp2) bond, a primary B–C(sp3) bond and a secondary B–C(sp3)

bond, and we attempted all three couplings in the same pot. For
the first B–C(sp2) coupling, Fu-type conditions45, previously shown
to be optimal for the coupling of diborylated substrate 8, were also
effective with trisborylated substrate 11a, giving the desired
product without loss of either aliphatic pinacol boronate. The
yield of this first arylation was determined to be 92–95% by NMR
analysis. Optimized conditions for the second-coupling reaction
involved the use of solvent with a high proportion of water
(1:2 ratio of organic solvent:water) as described above. In test
studies, these conditions led to NMR yields on the order of 70%,
boding well for a fully iterative coupling of 11. Indeed, we found
the reaction proceeded with good yield, and importantly, leaving
the benzylic B–C bond intact. Although the final benzylic cross-
coupling worked well with isolated starting materials, when run in
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sequence, the one-pot procedure required filtration of the reaction
mixture through a small silica plug, likely to deal with excess
halides remaining from previous coupling reactions (Fig. 4b). In
this manner, triarylated product 12aBaJ could be obtained in
32% overall yield, representing an average yield per step of just
over 70%.

Application to compounds of medicinal importance. Finally, to
illustrate the effectiveness of our orthogonal coupling metho-
dology, we carried out the synthesis of a triarylated compound of
pharmaceutical importance. Thus, compound 16 was prepared by
diborylation of styrene 13 as shown in Fig. 4c, and, in only two
steps, converted into biologically active derivative 14, otherwise
known as CDP 840. This compound is a prototype orally active
anti-inflammatory phosphodiesterase with potential inhibitory
effects against phosphodiesterase-4 (ref. 47). The key coupling
step occurred with 93% e.s. giving the final product in 95.5:4.5 e.r.
Although outside the scope of this paper, we envisage that our
iterative coupling approach will be highly effective for the
rapid preparation of derivatives of active compounds by the
introduction of a series of different aryl groups at various
borylated positions of a central core molecule.

In conclusion, we have shown that the resistance of certain
types of B–C bonds to transmetalation, one of the key steps in the
Suzuki–Miyaura reaction48, can be capitalized upon to develop a
protecting group-free sequential cross-coupling of multiply
borylated organic compounds. This approach is complementary
to other approaches that involve the manipulation of the
substituents on boron to control reactivity of the B–C bond.
In all cases, we employed pinacol esters since these are the
most versatile and readily employed type of organoboron
substituent8,35. Chiral substrates are compatible with the
method, leading to products with significant complexity, which
are likely to provide interesting leads for pharmaceutical and
medicinal applications.

Methods
Coupling of linear B–C(sp3) bond in 1,2-diborylated compounds 5x. In a
nitrogen-filled glovebox, diboronate 5x (1 equiv.), bromoarene (1.2 equiv.),
Pd(OAc)2 (0.1 equiv.), RuPhos (0.25 equiv.) and K2CO3 (1.9 equiv.) were
weighed into a vial and tetrahydrofuran was added. The reaction was sealed
with a septum and removed from the glovebox, and placed under a flow of
argon. Degassed water was added (20:1, organic:water) and the septum was
replaced with a teflon cap. The reaction mixture was sonicated for about
2 min before being stirred at 80 �C for 15 h. The reaction mixture was cooled
and filtered through a plug of silica, washed through with EtOAc and
concentrated in vacuo. Purification by column chromatography was affected
as the final purification.

Coupling of branched B–C(sp3) bond in 1-boryl,1,2-diaryl species 6xX. In a
nitrogen-filled glovebox, boronic ester 6xX (1 equiv.), iodoarene (1.5 equiv.),
Pd(dba)2 (0.08 equiv.), PPh3 (0.64 equiv.) and Ag2O (1.5 equiv.) were weighed
into a 1 dram vial and dimethoxyethane (DME) was added. The reaction vessel
was sealed, removed from the glovebox and heated at 70 �C for 16 h. The reaction
mixture was cooled and filtered through a plug of silica, eluted with EtOAc and
concentrated in vacuo. Purification by column chromatography was affected as
the final purification.

Coupling of aromatic B–C(sp2) bond in diboryl species 8x. An oven-dried
pressure tube with a stir bar in a glovebox was charged with diboronate
8x (1 equiv.), Pd2(dba)3 (0.05 equiv.), [(tBu)3PH]BF4 (0.2 equiv.), K2CO3

(3 equiv.), bromoarene (1.2 equiv.) and toluene (3.4 equiv.). The pressure
tube was sealed with a rubber septum, removed from the glovebox and placed
under argon. Water degassed (34:1 organic to water) was added and the rubber
septum was replaced with a lid. The reaction was heated to 60 �C for 24 h. After
cooling to room temperature, the reaction mixture was filtered through a plug of
silica gel (ca. 2 mL) and a PROMAX 0.22 mm polytetrafluoroethylene (PTFE)
syringe filter using copious ethyl acetate. The resulting product was purified by
chromatography.

For NMR and super critical fluid chromatography (SFC) analysis of the
compounds in this article, see Supplementary Figs 1–99.
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