
Citation: Cunha, C.A.S.; Duarte, R.P.

Multi-Device Nutrition Control.

Sensors 2022, 22, 2617. https://

doi.org/10.3390/s22072617

Academic Editor: Ivan Miguel

Serrano Pires

Received: 25 February 2022

Accepted: 21 March 2022

Published: 29 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Multi-Device Nutrition Control
Carlos A. S. Cunha *,† and Rui P. Duarte †

CISeD—Research Centre in Digital Services, Polytechnic Institute of Viseu, 3504-510 Viseu, Portugal;
pduarte@estgv.ipv.pt
* Correspondence: cacunha@estgv.ipv.pt
† Current address: Department of Informatics, School of Technology and Management, Campus de Repeses,

3504-510 Viseu, Portugal.

Abstract: Precision nutrition is a popular eHealth topic among several groups, such as athletes, people
with dementia, rare diseases, diabetes, and overweight. Its implementation demands tight nutrition
control, starting with nutritionists who build up food plans for specific groups or individuals. Each
person then follows the food plan by preparing meals and logging all food and water intake. However,
the discipline demanded to follow food plans and log food intake results in high dropout rates. This
article presents the concepts, requirements, and architecture of a solution that assists the nutritionist
in building up and revising food plans and the user following them. It does so by minimizing
human–computer interaction by integrating the nutritionist and user systems and introducing off-
the-shelf IoT devices in the system, such as temperature sensors, smartwatches, smartphones, and
smart bottles. An interaction time analysis using the keystroke-level model provides a baseline for
comparison in future work addressing both the use of machine learning and IoT devices to reduce
the interaction effort of users.

Keywords: precision nutrition; food plans; IoT; machine learning; food logging

1. Introduction

Disease caused by inappropriate diets is responsible for 11 million deaths and hun-
dreds of millions of disability-adjusted life years [1]. The use of technology to support
health (eHealth) opens an expansive landscape of opportunities. The emergence of a large
set of smart devices capable of facilitating physiological data recording and other forms of
recording the health status has potentiated many new eHealth applications. Mobile phones
and smartwatches are among the devices with the most potential because of their ubiquity
and sensor capabilities installed [2–4].

The importance of nutrition to health is unquestionable. However, the specificity of
nutritional requirements for a person demands personalized nutrition control. Nutritional
requirements lean on body parameters, genetic and epigenetic makeup, daily routines, and
history of disease or allergies. Thus, health professionals (e.g., doctors and nutritionists)
must intervene to keep food plans adequate for the target person. Nonetheless, the biggest
challenge is not elaborating the food plan but instead is the follow-up. That includes
keeping the food plan always present to the user, replacing unavailable or undesired
foods, adjusting food quantities to exceptional energy consumption, and using logged
food intake data to readjust future food plan revisions. Food intake logging, in particular,
benefits from automation since it is time-consuming, and the discipline demanded by its
operationalization leads to high dropout rates of food plan execution.

State-of-the-art approaches for automation food intake logging exploit the recognition
of food and quantities in images [5,6] taken using the phone camera and unconventional
intrusive devices to detect swallowing patterns associated with calories intake [7]. Notwith-
standing the innovation inherent to these approaches, they suffer from measurement errors
summing to the error introduced by food tables to quantify nutrients. Plus, these solutions
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still require some interaction (e.g., opening the application and taking pictures). A more
realistic solution to reduce human interaction costs is integrating the nutritionist and user
systems and resorting to off-the-shelf smart devices.

Smart devices are essential tools to enable the ubiquity of food plans by allowing
their visualization anywhere. Plus, they act as a data-gathering mechanism for logging
macronutrients, micronutrients, and hydration levels. These data feed into a nutritional
model that can support the nutritionist (or other health professionals) adjusting the next
food plan iteration.

This article presents the requirements and concepts of a solution covering the food
plan life-cycle from its creation by the nutritionist to its visualization, adaptation, and
logging of food intake by the person. It also discusses the system architecture and design
by focusing on

• Devices for food plan creation, visualization, and food logging (smartphones, smart-
watches, and smart bottles).

• Devices for capturing relevant data for food plan adaption (e.g., energy consumption).
• Data integration mechanism.

The rest of this article is organized as follows. Section 2 presents the related work.
Section 3 defines the problem addressed in this article and enumerates the requirements of
a possible solution. Section 4 presents the concepts and formulas used in food plan creation.
Section 5 describes the system architecture and implementation. Sections 6 and 7 describe
the scenarios where the system will be tested. Finally, Section 9 presents the conclusions.

2. Related Work

This paper addresses a multidisciplinary problem connecting several research areas, such
as precision nutrition, Internet of Things (IoT), web technologies, and machine learning.

Precision nutrition is an eHealth research area that depends on the person’s character-
istics to deliver nutritional advice [8]. One prominent research topic in this area is when
advice is supported by machine learning models created from several sources of data—e.g.,
dietary intake (content and time), personal, genetics, nutrigenomics, activity tracking,
metabolomics, and anthropometric. Food intake monitoring, in particular, provides a
fundamental source of data to machine learning algorithms for creating adequate diet
models. However, traditional food logging systems are intrusive, forcing users to change
their routines. Hence, user interaction with the system makes this activity one of the main
contributors to food plan execution dropouts.

Several approaches for automatic food intake logging have been proposed. Wearables
are devices with high potential in healthcare [9], since they could automate the process of
food intake logging. The results of their exploratory use in nutrition to reduce the burden
of manual food intake logging are presented in [7]. The authors explored using a smart
necklace that monitors vibrations in the neck and a throat microphone to classify eaten
food into three food categories. The resultant models trained with data produced by these
wearables revealed higher accuracy for the microphone when compared to the vibrations
sensor. Notwithstanding the potential of wearables for automatic logging of food intake,
they are still in their infancy, requiring development to reduce intrusiveness and achieve
close to perfect accuracy.

Visual-based dietary assessment approaches represent another type of appealing
solution that resorts to pictures to determine the intake of food nutrients. Lo et al. [5]
explores deep learning view synthesis for the dietary assessment using images from any
viewing angle and position. An unsupervised segmentation method identifies the food
item, and a 3D image reconstruction estimates the portion size of food items. Despite the
high accuracy of the approach, the results depend on depth images with separable and
straightforward objects, notwithstanding typical dishes that may overlap several food items.
Another work estimates food energy based on images using the generative adversarial
network (GAN) architecture [6]. It resorts to a training-based system, which contrasts with
approaches based on predefined geometric models which bound the evolution of models to
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food with known shapes. The authors’ approach provides visualization of how food energy
estimation is spatially distributed across the image, enabling spatial error evaluation.

While visual food inference represents a promising research topic for automatic log-
ging of food intake, its accuracy is still unacceptable for most applications. An alter-
native method for food logging is using speech-to-text conversion to reduce the user’s
interaction effort required to introduce nutrient information in the software application.
Speech2Health [10] allows recording of food intake through natural language. A user-
acceptance study using Speech2Health has shown several advantages of a speech-based
approach over text-based or image-based food intake recording. Nevertheless, even minor
errors resulting from identifying food names and portion sizes from voice excerpts are un-
acceptable for generic use. Privacy represents another issue that speech-to-text introduces
in public environments.

Most related work addresses the problem of automatic food intake monitoring. Instead
of explicitly addressing that problem, we devised a holistic approach that depends on food
plans created by nutritionists and followed by target users. By confirming meals or logging
changes, these users produce data for feeding the feedback loop that approximates the
food plan progressively to the actual user’s needs. The availability of a baseline plan and
the use of intelligent devices to record hydration, temperature, and energy expenditure
reduce user interaction effort. Additionally, machine learning is applied to user preferences
modeling, helping nutritionists choose the best food for the plan.

3. Problem Definition

Nutrition is a topic that has received more attention in the last decades due to its
potential for benefiting from advances in technology. The ubiquity of smartphones and the
emergence of wearable devices has created the opportunity to gather data automatically
and support the user in deciding the best food to eat at each meal.

Many smartphone apps provide features to log intake meals and present nutritional
statistics. However, choosing the best food plan for an individual requires a professional
analysis that considers their physical condition (e.g., fat mass, lean mass, and weight),
clinical condition, and goals. Discarding the health practitioner from the process may lead
to inadequate food plans and be dangerous for individuals with health issues. Fortunately,
it is possible to use technology to reduce the manual effort needed to manage the food plan
life-cycle. The problems solved by a holistic solution span over the nutritionist and user
(person following the food plan) domains.

We specified the requirements for the user and nutritionist domains with the support
of several experts, such as nutritionists and doctors from a private hospital. We scheduled
several meetings with these experts in two different phases: (1) requirement analysis, with
the support of high-definition interface prototypes, and (2) deliverable analysis, where we
tested software increments within a limited group of people by creating appointments,
food plans, and performing food logging. Appendices A.1 and A.2 in Appendix A present
the use cases for each of these domains.

3.1. Nutritionist Domain

We identified the following requirements for the nutritionist domain:

1. The nutritionist creates an appointment with the person’s data and all the parameters
needed to obtain the nutrients required to build the food plan. The system should
calculate the energy expenditure.

2. The nutritionist creates the food plan aligned with the nutrition goals obtained from
the appointment. The system should suggest food according to user preferences
and goals.

Nutritionists gather several types of data in the course of the appointment, which
allows determining the person energy expenditure (Section 4) and other metrics and goals
that can further support decisions during food-plan-making.
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Energy expenditure is the core metric for devising the food plan. It provides the calo-
ries further distributed between macronutrients (i.e., proteins, carbs, and lipids) as follows:

energy = α ∗ protein + γ ∗ carbs + β ∗ lipids (1)

After providing the data required to calculate the energy expenditure to the system,
the nutritionist defines values for α, γ, and β. These values represent the contribution
ratio of each macronutrient to the energy expenditure, which is fixed to a specific day and
distributed between meals.

The energy expenditure and its distribution between macronutrients and meals are
dependent on the person’s profile. For example, athletes have an increased demand
for energy compared with sedentary people, and distribution of nutrients needs to be
adapted to specific days (e.g., carbohydrate intake before and after exercise to help restore
suboptimal glycogen reserves).

Fiber, water, and micronutrients are essential food plan elements unrelated to energy
expenditure. The nutritionist adjusts the quantity of each nutrient to the person’s goals and
condition. For instance, during demanding physical activity, the person may need drinks
with added sodium to replace electrolyte losses. On the other side, a person with the risk
of high blood pressure would benefit from lowering sodium intake.

Food plan creation is time-consuming because it involves the combination of different
types of food adequate to the person. That combination should fulfill the target energy
expenditure and its distribution between macronutrients, and approximate the micronutri-
ents specified for the food plan. As for selecting alternative food when the user follows the
plan (user domain), the user preferences model also supports the nutritionist in choosing
the food to be added to the plan. Here, the contribution of each food to the goals established
for energy, macronutrients, and micronutrients represents a crucial input for the classifier.

The nutritionist needs to revise the food plan to adjust the energy and nutrients
to the user goals, respecting the subsequent appointments. For example, suppose the
user goal is not to reduce fat mass but increase muscle instead. In that case, the total
energy intake specified for the plan must be reduced and, consequently, the proportion
of macronutrients contributing to that energy. Since energy expenditure occupies the top
of the energy breakdown hierarchy, it will drive food plan adaption according to data
gathered during previous food plan executions. Smart devices may improve the accuracy
of energy expenditure in further food plan revisions. The physical activity energy expenditure
(Section 4.2) represents one component of energy expenditure that can be easily captured
with acceptable accuracy by smartwatches (or fit bands), alone or combined with heart
rate straps. These data combined with food and water intake logs—registered through the
system interface or obtained through intelligent bottles—provide elements required to tune
the successive food plan revisions.

3.2. User Domain

We identified the following requirements for the user domain:

1. The person accesses the meals defined in the food plan for the current day or specific
event using the mobile phone or smartwatch.

2. The person confirms the ingestion of the meal as it is in the food plan.
3. The person searches for alternatives to the current meal with equivalent nutrition

characteristics aligned with their preferences model.
4. The person logs other food eaten not present in the food plan.
5. The smart bottle logs water ingestion with respect to a specific period.
6. The smartwatch logs the calories spent by the person during the day with respect to

physical activity.
7. All logs are either associated with a specific day or to an event (e.g., sports practice).

Nutritionists must design food plans aligned with user conditions and preferences.
Further, users demand ubiquitous food plan visualization and logging mechanisms with
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small interaction costs. While interaction efforts depend heavily on user interface design,
off-the-shelf IoT devices can be valuable tools to reduce human interaction with the sys-
tem. These devices may be balanced with efficient user interfaces to reduce food plan
execution abandonment.

As food plans are fixed to days of the week, repeating for several weeks, users may
often lack some ingredients when executing the plan. Hence, the system may suggest
alternative food according to the nutritional equivalence and user preferences—using
historical data for similar meals, days of the week, months, or even weather contexts.

3.3. Automation Limits

The number of interactions with the system and the individual interaction cost deter-
mine the total user interaction effort. Logging of meals intake as in the food plan requires
a small interaction effort since the only input is the user confirmation in either the smart-
phone or smartwatch. Sometimes that happens in batches (e.g., by the end of the day),
resulting in low interaction costs and a small number of interactions (one per meal), as
presented in Table 1. In this scenario, the user domain can benefit from integrating the food
plan built by the nutritionist with the smartphone application that allows its visualization
and confirmation of intake meals.

Water intake logging demands a higher number of user interactions when compared
with meal confirmation. The user may take a sip of water dozens or hundreds of times a
day to be hydrated. Consequently, water intake logging is more complex unless they stick
to a standard behavior, such as drinking from the same bottle and logging the bottle storage
capacity when they finish. However, even that standard method has flaws because the user
may never finish the last bottle refill during the day or replace it with new water. Smart
bottles may potentially reduce the number of user interactions for water intake logging
since all the logged water intake is sent to the cloud service and made accessible to our
system without user interaction.

While the previous scenarios offer an automation opportunity, some actions are dif-
ficult to automate, such as logging food not registered in the food plan. As shown in
Table 1, notwithstanding the small number of interactions during the day, the interaction
cost of individual actions is high—justified mainly by the search for additional food and
the introduction of respective quantities. In addition, their automation is complex, and the
closest state-of-the-art approaches rely on machine learning to identify food in pictures
taken using the phone. However, these approaches are still far from one hundred percent
of accuracy, which leads to large errors summed from

• Errors resultant from the identification of food objects;
• Errors inherent to values presented in food nutrient composition tables;
• Food quantification errors, introduced either by visual approximation or predicted

from the picture.

Reduction of interaction costs with respect to activities with low automation potential
needs to be handled at the interface design level. The user application interface should
be optimized to reduce the effort of food-searching for the changing meal and add extra
food actions.
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Table 1. Interaction effort of main actions for each device.

Action

Smartphone Smartwatch Smart Bottle

Interaction Cost Number of
Interactions Interaction Cost Number of

Interactions Interaction Cost Number of
Interactions

Meal
confirmation low low low low n/a n/a

Changing meal high low n/a n/a n/a n/a

Add extra food high low n/a n/a n/a n/a

Water logging low high low high none none

4. Energy Expenditure

The user energy expenditure drives the creation of food plans. Adequate diets ap-
proximate intaken calories to the total energy expenditure, which includes the resting
energy expenditure (REE), physical activity energy expenditure (PEE), and thermic effect
of food (TEF).

CB (caloric balance) in the human body approximates the CC (caloric consumption) to
the sum of PEE, REE, and TEF.

CB = CC − PEE − REE − TEF (2)

This section presents the calculation of PEE and REE. Notwithstanding the low contri-
bution of the TEF (between 3% and 10%) to the total energy expenditure (TEE), it may have
an impact on obesity. However, we do not handle it in this article due to its high measure-
ment complexity [11] created by dependency on several other variables (e.g., measurement
duration) [12].

4.1. Resting Energy Expenditure

REE is considered equivalent to the basal metabolic rate (BMR). BMR is the minimum
number of calories required for basic functions at rest. On the other side, RMR is the
number of calories our body burns while at rest. Despite both definitions slightly differing,
the Harris–Benedict equation [13,14] can approximate REE or other equivalent equations
presented in Table 2 for calculation of BMR.

4.2. Physical Activity Energy Expenditure

PEE calculation involves converting metabolic equivalents of activities to calories
expended per minute (cal/min), based on body weight and the varying exercise intensities.
The physical activity level (PAL) is an inexpensive and accurate method for calculation of
PEE, based on the average values of 24 h of TEE and REE, as follows:

PAL = TEE/REE (3)

The effect of gender does not interfere with PAL calculation because the BMR absorbs
the gender difference in energy needs accentuated by the heavier weight of men.

A table that associates physical intensity lifestyles to PAL values (Table 3) can simplify
PAL calculation. In that context, TEE is the result of multiplying REE by the PAL value
associated with the person’s lifestyle category [15].

Another method for PAL calculation combines the time allocated to habitual activities
and the energy cost of those activities (Table 4). In this case, PAL represents an energy
requirement expressed as a multiple of 24-hour physical activity ratio (PAR). Here, PAR is
a factor of BMR (PAR is 1 when there is no energy requirement above REE). Intuitively, the
energy cost (PAR) is multiplied by the activity time to obtain PAL [15,16].
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4.3. Distribution of Nutrients

The TEE estimate represents the total calories in the food selected for the food plan.
TEE is then broken down into macronutrients complemented with micronutrients.

Macronutrients are typically specified in grams per kilo of body weight; such is the
case of protein, carbohydrates, and fat (lipids). The exception is fibers that are specified
in total grams. Water is frequently classified also as being a macronutrient [17]. However,
water and fiber have zero calories, unlike protein, fat, and carbs. Notwithstanding that
fibers do not usually count as calories in food plans, one type of fiber, named soluble
fiber [18], may be absorbed by the organism and thus provide the body with calories.

Compared with macronutrients, the number of micronutrients is vast, and for that
reason, nutritionists only select a few to be used as control metrics during food plan creation.
From the conversation with several nutritionists, we have chosen iron, calcium, sodium,
and magnesium, because of their transversality over several population groups. However,
the selection of micronutrients depends always on the target population group (e.g., elderly,
young people, and athletes).



Sensors 2022, 22, 2617 8 of 24

Table 2. Metrics provided by the user (rows) and calculated by the application (columns).

Body Composition Basal Metabolic Rate Obesity

Muscle
Mass (Lee) Fat-Free Mass AEC Rate

Harris-
Benedict

[19]

Mifflin-St
Jeor [20]

Katch-
McArdle

[21]

Cunningham
[22]

Body Mass
Index [23]

Evans 3SKF
[24] Withers [25]

body composition

weight X X X (muscle mass) (muscle mass) X

height X X X X

fat mass X

skeletal
muscle

bone mass

body cell
mass

bone
mineral
content

intracellular
water X

extracellular
water X

gender X X X X

age X X X

race X X

girths

tight X

calf X

relaxed
biceps

contracted
biceps

waist

gluteus

chest

crural
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Table 2. Cont.

Body Composition Basal Metabolic Rate Obesity

Muscle
Mass (Lee) Fat-Free Mass AEC Rate

Harris-
Benedict

[19]

Mifflin-St
Jeor [20]

Katch-
McArdle

[21]

Cunningham
[22]

Body Mass
Index [23]

Evans 3SKF
[24] Withers [25]

lean mass segments

left/right
arm

trunk

left/right leg

fat mass segments

left/right
arm

trunk

left/right leg

skinfold

corrected
upper arm X

calf X

biceps X

triceps X X

supraspinal X

subscapular X

chest

axila

iliac crest

abdomen X X

thigh X X

level of fat visceral fat
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Table 3. Classification of lifestyles according to physical intensity (PAL values).

Category PAL

Sedentary or light activity lifestyle 1.40–1.69

Active or moderately active lifestyle 1.70–1.99

Vigorous or vigorously active lifestyle 2.00–2.40

Table 4. Total energy expenditure for a population group.

Activities Time
Allocation PAR Time × PAR Mean PAL

Sleeping 6 1.0 6.0

Personal Care
(dressing, showering) 2 2.3 4.6

Eating 2 1.5 3.0

Walking without a load 2 3.2 6.4

Sitting 4 1.5 6.0

Cooking 2 2.1 4.2

Household work 2 2.8 5.6

Light leisure activities 2 1.4 2.8

Driving car 2 2.0 4.0

Total 24 42.6 42.6/24 = 1.8

5. Architecture and Implementation

This section presents the architecture and implementation of the solution proposed in
this article, divided between two front-ends: nutritionist front-end and user front-end.

5.1. Nutritionist Front-End

The nutritionist front-end (Figure 1) implements two important concepts: appointment
and food plan.

The appointment is the concept responsible for managing the energy expenditure—and
its distribution throughout macronutrients—and micronutrients, as presented in Section 4.
Moreover, to support user monitoring between appointments, it should present all historical
data entailing previous food plans and energy distribution by day of the week, event, and
meal type.

Monitoring of physical conditions frequently resorts to the person’s goals, specified in
terms of:

• Weight.
• Body fat.
• Visceral fat.
• Fat-free mass.
• Muscle mass.
• Body mass index.
• Exercise performance.

Control and analysis of generic user goals depend on the previous metrics, although
specific people groups may require other specific metrics; such is the case of groups with
specific diseases that require the control of specific body parameters.

Other important appointment data required for food plan making include the following:

• Bowel function.
• Sleep quality, and wake up and sleeping times.
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• Person’s race.
• Food likes and dislikes.
• Night shifts.
• Job.
• Lifestyle.
• Clinical conditions.
• Current water intake.

Nutritionists rely on the appointment of data for food plan creation. While adding
new meals and foods to the food plan, the nutritionist can balance the food calories with
target energy and nutrients. They can also visualize other relevant information gathered
during the elaboration of appointments.

Nonamed person
Street 1, Some Country

Information and Habits1 Measurements and Planning2 Meals defined in the Food Plan3

Follow Up4 Training5 Analysis6

1. Muscle Analysis - Fat

Height (cm)

Weight (kg)

Hip Girth (cm)

Weist Girth (cm)

Fat Mass (Kg)

Skeletal Muscle Mass (Kg)

Lean Mass (Kg)

Fat Free Mass (Kg)

Bone Mass (Kg)

2. Obesity Analysis

Body Fat Percentage (%)

Body Mass Index (Kg/m2)

3. Segmental Analysis

3.1. Segmental Lean Mass

Left Arm (Kg)

Right Arm (Kg)

Trunk (Kg)

Right Leg (Kg)

Left Leg (Kg)

3.2. Segmental Fat

Left Arm (Kg)

Right Arm (Kg)

Trunk (Kg)

Right Leg (Kg)

Left Leg (Kg)

4. Skinfolds

middle axillary skinfold (mm)

Abdominal Skinfold (mm)

Thigh skinfold (mm)

Pectoral skinfold (mm)

Subscapular skinfold (mm)

Suprailiac Skinfold (mm)

Triceps skinfold  (mm)

6. Viceral Fat Level

Insert a value

5. AEC Rate Analysis

AEC Rate

Measurements

Planning

1. Body Composition History

Intracellular Water (20.8 - 25.4 L)
26.2

Extracelular Water (12.8 - 15.6 L)
16.0

Basal Metabolic Rate (1419 - 1652 Kcal)
1621

Waist-Hip Ratio (0.75 - 0.85)
0.8

Waist Circumference  (cm)
0.8

Bone Mineral Content (2.56 - 3.12 Kg)
3.65

Body Cell Mass (29.8 - 36.4 Kg)
37.6

Arm Circumference  (cm)
29.8

Arm Muscle Circumference (cm)
27.1

Recommended Calorie Intake 2700 Kcal

2. Goals 

Current Goal Recommended

Weight (Kg)
Define the client weight goal

70 Insert a value (Kg) 58.8

Fat mass percentage (%)
Define the client goal

25,8 Insert a value (%) ——

Body mass index (Kg/m2)
Define the client goal

70 Insert a value (Kg/m2) ——

Physical activity level
Define the client goal

Regular Select….

Basal metabolic rate (Kcal/dia)
Define the client goal

1621 Insert a value (Kg)

Daily Energy Needs (Kcal)
Define the client goal

Insert a value (Kg) ——

Information

Overweight

Reduction of 11.2

Regular

1321

2300

(a)

2. Clinical Information

Smoker Alchool Consumption

Pathologies Medication

Personal History Family History

3. Other Information

Information and Habits1

Clique na etiqueta acima 
para ver detalhes

Nenhuma etiqueta selecionada

Food Supplements

No information inserted…

OK

Other Clinical Information 
Provided by the client

No information provided

Goals  
Client’s intention

The  client wants a healthier lifestyle. His profession is quite 

sedentary and needs to improve the quality of the food he eats.

Gender
Male

1. Personal Data

Date of birth
01-01-2004

Marital status
Single

Profession
Teacher

Mobile
9191919191

Email
johndoe@email.com

Intestinal function
Normal

Sleep quality
Good

Physical activity
Regular

Race
Caucasian

Time to get up
08:00

Time to go to bed
22:00

Water intake
1,5l/day

Deprecated foods
apple, beans, rice

Work shifts?
2 shifts

Nonamed person
Street 1, Some Country

Measurements and Planning2 Meals defined in the Food Plan3

Follow Up4 Training5 Analysis6

(b)

Same every day Sportsman Generic Diet No restrictions

CREATE PLAN

Nonamed Person 
200 calories food plan (no restrictions)

Add Meal Add Activity
Total calories of food plan 
based on the meals created for the plan

Total
42459

Total meal nutrients 
based on the meals created for the plan

Energy

Lipids

10 g

Carbohydrates

10 g

Protein

10 g

20 Kcal

Morning Snack

1 apple

Add new food 

10:00

Energy 

0 kcal

Lipids 

0 g

Carbohydrates 

0 g

Protein 

0 g

Observations 
Relevant information about the meal

No observations were registered so far…

2 -  Fol low up 1 -  Meal Definit ion

(c)

Figure 1. Nutritionist front-end. (a) Appointment. (b) Client details. (c) Food plan.
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5.2. User Front-End

The user front-end (Figure 2a) uses the food plan as the basis for preparing meals,
searching for alternative foods, monitoring consumption of water and calories during the
day, and food logging. Food is presented on the plate (Figure 2b)—useful for elderly, people
with vision impairment, or those that may find it difficult using mobile/smartphones with
mobile devices—and in the list format.

Daily statistics (Figure 2c) are valuable assets for monitoring calories, macronutrients,
micronutrients, and hydration during the day. These values are paired with target values
defined by the nutritionist in the food plan.

Next Meals

Snack
1 dish

Dinner
1 dish

Tomorrow

Today

Lunch
Soup, Main dish, Drink, Desert

ACEITAR

VERIFY

ACCEPTED

Snack
1 dish

Dinner
1 dish

Lunch
Soup, Main dish, Drink, Desert

ACEITAR
ACCEPTED

VERIFY

Water
Consumption during the day

REGISTER

(a)

Soup Main dish Salad Drink

Composition

ACCEPT

Lunch

(b)

Daily Statistics

366kcal 
remain

1247 kcal consumed

3/40 g 3/40 g

3/40 g3/40 g

Protein Lipids

HydrateVitamin

Macronutrients

(c)

Figure 2. User front-end. (a) Daily meals. (b) Meal visualization. (c) Daily statistics.

Notwithstanding the small screen sizes of smartwatches, they are practical for present-
ing meals (Figure 3a), sending notifications, and logging food intake. They also present
statistics regarding nutrients intake (Figure 3b) and hydration (Figure 3c).

5.3. Architecture

Figure 4 presents the solution architecture composed of four different interfaces. The
nutritionist interacts with the system to create appointments and food plans using a web
application. On the other side, the user visualizes the current food plan or logs food
ingestion using a mobile phone or smartwatch.

5.3.1. Web Applications

The mobile application is delivered as a PWA (progressive web application). PWAs
represent a new class of applications alternative to traditional mobile phone apps, with
several advantages over them. Instead of being developed to a specific platform (e.g., iOS
or Android), they are built as a web application that can work offline and be installed on
any smartphone. A previous study reported PWAs 157 times smaller than React Native-



Sensors 2022, 22, 2617 13 of 24

based interpreted apps and 43 times smaller than Ionic hybrid apps [26]. The Twitter PWA
consumes less than 3% of the device storage space as compared to Twitter for Android [27],
and the Ola PWA is 300 times smaller than their Android app [28]. Additionally, they
are cross-platform, although current implementations may require adaptation between
some browsers.

(a) (b) (c)

Figure 3. Smartwatch. (a) Food plan visualization and logging. (b) Daily control of nutrients. (c) Daily
control of water.

Both applications with respect to the user and nutritionist front-ends were developed
in LitElement [29], a base class to create lightweight web components. Design of the
user front-end for smartphones embraces the PWA principles [30] (e.g., web application
installability, and offline usage).

5.3.2. Smart Bottle

Water consumption is logged either by the user—using the smartphone or smartwatch—
or automatically by a smart bottle. We tested several smart bottles and decided on the
Hidratespark [31], justified by its mature API and good construction and usability of the
bottle. Plus, it can be easily integrated with Fitbit [32], which is used as a gateway to
retrieve data to the user’s back-end.

Water intake goals defined in the food plan are adjusted according to the environment
temperature. Temperature sensors provide the inputs to make that adjustment according
to the rules stated in the food plan.

5.3.3. Smartwatch

As explained in Section 4, determining the energy expenditure of one person is one of
the main challenges in the creation of a food plan. Modern smartwatches provide a good
approximation of energy consumption during physical activity. They provide valuable
information to be used by food plan revision activities, enabling correction of energy
expenditure values predicted by traditional methods during follow-up appointments
(Section 4.2). Pedometers and heartbeat monitors incorporated in devices provide a good
approximation of calories burned data [33].
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Figure 4. Architecture.

5.3.4. Preference Learning

Exploring machine learning techniques on logged data makes it possible to help
nutritionists model user food preferences. These techniques build up a recommendation
system [34], based on food preference models, that supports the selection of food during
food plan creation. That system will also allow proposing food alternatives to the person
following the plan. That may occur when the food is unavailable, or the person prefers
other equivalent food.

Reinforcement learning seems an adequate tool for applying preference learning to
food recommendation [35]. Starting without knowledge, the agent helps the nutritionist to
choose the food and quantity for the food plan without breaking the constraints imposed by
the goals established for macronutrients and micronutrients. The agent accuracy improves
with the feedback received from the nutritionist and the intake of food logged by the user.
The same agent can help the user choose equivalent food and quantities when executing
the plan based on learned preferences and goals of nutrients.

5.4. Security

Security is a complex and wideband problem. It spans the human-related processes
and the system level (e.g., network and application). Human misconduct is in the origin
of several security threats in eHealth systems [36]. Training people and auditing security
procedures is a natural way of reducing the risk of threats occurrence. Coordination
between developers, users, organizations, and government regulators represents another
security flaw source [37].

In this work, we handle security at the system design level. E-Health systems contain
data that are sensitive to confidentiality, integrity, and availability threats [38]. There
are different types of data sensitiveness. Personal data are the most critical data under
management; thus, ensuring the confidentiality of these data is of the utmost importance.
Hence, we segregate the user data in the application and provide one feature to remove
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these data anytime without compromising their food plan while an anonymous entity. The
latter offers less security risk when unrelated to the person.

The design of the nutritionist application allows deletion of the user’s personal data
without compromising the food plan management features, as long as an ID can identify
the user. The segregation of functionality and data between the user and nutritionist
applications offers an additional protective barrier. The user application uses an application
token to communicate with the nutritionist application, and the former does not store or
handle personal data—an ID identifies the user.

As much as personal data, authentication credentials are sensitive data demanding
theft protection. The HTTPS already ensures protocol-level privacy in the communication
channel. Plus, the front-end encrypts passwords before transmitting them to the back-end,
and they are then handled and stored in an encrypted form.

Feature-oriented access control constrains the access to features available on each web
page. There are three profile types: nutritionists, administrators, and users.

Risk management models, such as the one presented in [39], may complement our
system design. Additionally, other protection schemes against complex attacks [40] are
orthogonal to our system and may also be used.

6. Case Study: Alzheimer’s

Alzheimer’s disease is a progressive loss of mental function, characterized by degener-
ation of brain tissue, including loss of nerve cells, accumulation of an abnormal protein,
and development of neurofibrillary braids [41]. Alzheimer’s patients become dependent on
others, even for the most basic tasks. Controlling feeding and hydrating for an Alzheimer’s
patient is thus a crucial activity performed by the person who supports their daily routine,
called the informal caregiver (IC).

Conditions of malnutrition, super nutrition, and dehydration are common in people
with diseases causing dementia. The loss of autonomy also manifests itself in their inability
to demonstrate food needs. Therefore, it is fundamental to support the nutritionist in the
preparation and follow-up of a food plan aligned with the patient’s needs. Food plan
monitoring is undoubtedly a process that demands much discipline from the IC and the
ability to deal with possible circumstantial adaptations, such as replacing foods prescribed
in the food plan with other equivalents or changing the quantity of water consumed as a
function of ambient temperature.

This case study investigates the problem of creating and monitoring diet plans in pa-
tients with dementia—such as those with Alzheimer’s. It allows the creation of nutritional
plans by the nutritionists and the follow-up of these plans by the ICs through a mobile app
to significantly increase the patient’s quality of life. The app will send the IC notifications
regarding proper nutrition and hydration in the due moment. It also controls hydration
using the smart water bottle. In addition, the application will suggest alternatives to plan
foods if they are unavailable or rejected by the patient. Another feature important for this
group is the dynamic adaptation of water administration to the patient as a function of
environmental conditions observed by temperature and humidity sensors. This feature is
vital when the patient is unable to express thirstiness.

7. Case Study: Sports

The recent growth in the pursuit of sporting activities, motivated by a widespread
increase in the perception of the importance of maintaining physical fitness, campaigns
explicitly aimed at combating physical inactivity, and opportunities created by the reve-
lation of lesser-known modalities, has brought forward fundamental questions such as
the correct nutrition of the practitioners. Several institutions and individuals involved in
physical activity have integrated these concerns into their scope, including nutritionists.

Food plan elaboration and monitoring present two main challenges: (1) obtaining the
person’s biometric data, eating habits, and energy consumption, and (2) monitoring user
food intake and providing dynamic adaptation of the food plan.



Sensors 2022, 22, 2617 16 of 24

Sports nutrition is one of the most complex areas of nutrition. It requires observing a
comprehensive set of metrics, encompassing the athlete’s physical aspects, physical activity,
and eating habits. Fortunately, devices for measuring specific physical parameters represent
a common practice among athletes. The creation of data repositories to help nutritionists
build the plan is only possible by automatically integrating data collected by these devices
with other data not directly observable—such as dietary habits and subjective metrics.
These repositories also contain data that can help adapt the food plan at its execution stage.
For example, variations in temperature or physical intensity may demand quick changes
in individual energy or hydration needs. In these scenarios, the support system uses data
collected by devices to dynamically adjust the food plan and send alerts to athletes to eat
food or water at the right time.

8. Interaction Results

This section presents the human–computer interaction cost associated with typical
user tasks to visualize the food plan and log food intake.

Traditional methods used in the usability evaluation of an interface fall into two cate-
gories: (1) subjective opinion of users and experts—mainly applying questionnaires [42]
and inspection methods [43,44]—and (2) objective techniques such as rules [45], analytics
modeling [46], and automated testing [47,48]. Notwithstanding that these approaches pro-
vide important tools to determine the usability of the user interface, there is both cost and
time needed to implement user interaction evaluation with acceptable coverage, coupled
with the need to use experts to compensate for the user’s faults.

8.1. Keystroke-Level Model

We applied the keystroke-level model (KLM) [49] to the user interface depicted in
Figure 2, for testing the quality of the human–computer interaction and estimating the time
spent in critical tasks. In this model, a unit task is defined with two parts: task acquisition and
task execution. The total time to complete a unit task is given by Ttask = Tacquire + Texecute.

At the execution level, KLM provides physical, mental, and response operators
with predefined time values. These operators are defined by a letter and include K
(keystroke ≈ 0.12 s), P (point ≈ 1.1 s), H (homing the hand(s) on the keyboard or other
device ≈ 0.4 s), D (draw is measured in real time), B (button press ≈ 0.1 s), M (mental
preparation for action ≈ 1.35 s), and R (system response, which is a parameter measured in
real time). The execution time is the sum of the time for each of the operators from the final
KLM string Texecute = TK + TP + TH + TD + TB + TM + TR.

8.2. Interaction Results

Table 5 presents the time required to execute each application task. The KLM string
generated is represented in the sequence of operators column and the respective time required
to execute each task in the estimated time column. The task “update food entries for train and
competition” allows the creation of periodic food requirements and is specific to the sports
scenario. In contrast, the Alzheimer’s and the sports scenarios share the other tasks. The
results are presented for the user application since we aim to reduce user abandonment
motivated by interaction costs resultant from food logging activities.

As expected, results show that tasks that change the original food plan for logging
purposes manifest higher interaction costs. Food plan visualization requires 1.2 or 2.3 s,
depending on the UI view. Logging one meal by confirming the original food plan only
requires 1.2 s. On the other hand, logging tasks regarding food intake not present in
the food plan are costly. Each extra food added to the food plan requires 8.66 s of the
user’s time.

Manual logging of water using the application requires 3.6 or 4.8 s, depending on the
view. The adoption of smart bottles avoids that interaction, which may repeat dozens of
times during the day.
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The interaction time of tasks performed by the smartwatch (e.g., energy expenditure
logging) is not presented in this section. Despite the automation of the data logging process,
the user can not perform any equivalent task manually.

Table 5. Interaction results.

Actor Tasks Sub-Tasks Sequence of Operators Estimated Time (s)

User Visualize food plan
Graphical representation of

the meal PB 1.20

Composition of the meal
(by food) PBP 2.30

Add new food to the meal * PBPBMHKKKMHPBPB 8.66
Add new extra food (snack

between meals) * PBPBMHKKKMHPBPB 8.66

Remove food * PBPBPB 3.60

User
Log food intake

(items of the sub-tasks column
marked with * repeat in

the meal)

Specify percentage of
food intake * PBPBPBPB 4.80

Change food plan food * PBPBPB 3.60
Confirm food intake from food

plan with no changes * PB 1.20

User Log water intake Through food plan PBPBPB 3.60
Through interaction menu PBPBPBPB 4.80

Fitbit (bottle) Update water intake - 0.00

User Visualize statistics PBPB 1.20

System Update food entries for train
and competition - 0.00

User Change active food plan (train
or competition) PBPBPBPB 4.80

User Connect watch API PBPBPBMH42KMHPB 13.34

User Provide consent to access
Fitbit API PBPBPBR 4.60

8.3. Analysis of Results

The observed results of human–computer interaction times pinpointed the tasks
requiring improvement of interaction times. They provide a baseline for evaluating other
interaction schemes and assessing the contribution of automation (e.g., using IoT devices)
to the goals established in this article. The lower the interaction time, the lower the user
discipline needed to maintain a food plan visualization and logging process, and the lower
the user abandonment rate.

We designed the application to minimize human interaction with the support of UI
experts. The most challenging tasks using a UI (those with more significant interaction
times) require the search of new food manually. Although the interface implementation can
still be questionable in terms of the specific design that may compromise the generalization
of results, it is evident that there is little space for improvement when we need to perform
a generic search for food using text.

Machine learning techniques are natural solutions to help reduce the time required
for logging extra food in addition to—or in replacement of—those present in the food
plan. As referred to in Section 2, there have been several attempts to recognize food objects
in pictures taken with the mobile phone to reduce the burden of manually logging food.
However, interaction is still required to take the picture, and an accuracy less than perfect
could even increase the interaction time since the user would need to correct these data.
The previous rationale leads to a different strategy for exploring machine learning for
reducing interaction time. Creating a food preferences model customized to each user
would likely lessen the food search interaction time considerably. By resorting to historical
data and observable features (e.g., user location, day of the week, and weather), the system
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can anticipate the consumption of specific food. In that scenario, the interaction time would
be equivalent to confirming a meal in the food plan.

9. Conclusions

This article unveils the concepts, requirements, and technologies needed to build a
system that could support the nutritionist in creating food plans aligned with the individual
profile. Further, it presents an architecture and software developed for smartphones (PWA)
and smartwatches. The software furnishes food plan visualization logging of food and
water intake, among other related features. It also integrates other devices, such as smart
bottle technology and temperature sensors, to reduce human–computer interaction.

The availability of off-the-shelf devices has brought unprecedented ways of gathering
data from physical phenomena without resorting to direct human–computer interaction.
We propose an architecture that integrates the nutritionist back-office, the user application,
and smart devices, focused on interaction cost reduction when users follow a food plan.
We presented a baseline of the human interaction effort associated with several tasks
pinpointing the most critical (expensive) operations. Such baseline sustains the evaluation
of future machine learning and IoT approaches targeting the reduction of human interaction
effort when completing critical operations.

As future work, we plan to explore machine learning techniques to reduce interaction
times in two demanding user groups: Alzheimer’s patients and athletes. The Alzheimer’s
group offers interaction challenges since several caretakers are elderly and have difficulties
using apps or are not motivated to use apps as a data logging mechanism. On the other
hand, athletes are very disciplined but need tight control of food intake before, during, and
after physical activity.
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Appendix A

This appendix presents the use cases described using the unified modeling language
(UML) related to the application requirements.

Appendix A.1. Nutritionist Use Cases

Figure A1. Nutritionist login.
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Figure A2. Person registration.

Figure A3. Appointment creation.
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Figure A4. Visualize food nutrients.

Figure A5. Import food table with nutrients.

Figure A6. Food plan creation.
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Appendix A.2. User Use Cases

Figure A7. Visualize food plan.

Figure A8. Log food and water intake.

Figure A9. Update water intake.

Figure A10. Visualize statistics.
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Figure A11. Update periodic food entries and train for competition.

Figure A12. Change active food plan.

Figure A13. Connect watch API.

Figure A14. Provide Fitbit consent.
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