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We illustrated the development of a simple pharmacokinetic (SPK) model aiming to estimate the absorbed chlorpyrifos doses
using urinary biomarker data, 3,5,6-trichlorpyridinol as the model input. The effectiveness of the SPK model in the pesticide
risk assessment was evaluated by comparing dose estimates using different urinary composite data. The dose estimates resulting
from the first morning voids appeared to be lower than but not significantly different to those using before bedtime, lunch or
dinner voids. We found similar trend for dose estimates using three different urinary composite data. However, the dose estimates
using the SPK model for individual children were significantly higher than those from the conventional physiologically based
pharmacokinetic (PBPK) modeling using aggregate environmental measurements of chlorpyrifos as the model inputs. The use of
urinary data in the SPK model intuitively provided a plausible alternative to the conventional PBPK model in reconstructing the
absorbed chlorpyrifos dose.

1. Introduction

A physiologically based pharmacokinetic (PBPK) model
would allow for simulating the dynamics of pesticide absorp-
tion, distribution, metabolism, and elimination (ADME)
from different routes of exposures and, in theory, could be
used as a tool for evaluating biomarker measurements (e.g.
blood or urine levels) associated with the exposures [1–
4]. The mechanistic representation of biological processes
embedded in the PBPK model allows systematic route, dose,
and species extrapolation, and for these reasons, PBPK
models have been applied in pesticide risk assessments that
are relevant for the interpretation of biomarker data [5–12].

Although the interpretation of PBPK model outputs
could provide a link to the regulatory metrics in the form
of reference dose, its application remains problematic due
to the fundamental limitations resulting from the potential
measurement errors associated with the aggregate exposure
measurements [11, 13]. Although those aggregate exposure

data are needed in order to simulate the dynamics of ADME
for a specific pesticide, the uncertainties, mainly the temporal
and spatial variations, associated with the measurements
may inadvertently be carried over to the model outcomes.
Those uncertainties, however, are merely explicit statements
of underlying assumption applied in the analysis of urinary
biomarker data.

A simple pharmacokinetic (SPK) model incorporating
reverse dosimetry and PBPK modeling approach, on the
other hand, only requires urinary biomarker data as inputs
and the a-priori knowledge of the exposure pathways for
individuals [14, 15]. The use of urinary biomarker data in the
SPK simulation might be advantageous over the traditional
PBPK model because urinary excretion is a primary route
of elimination for many compounds, and urine samples are
relatively easy to collect from individuals comparing to the
aggregate environmental samples. The SPK model allows for
the estimation of absorbed dose from a dominated route of
exposure while reducing the number of inputs into the model
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Figure 1: Sampling schedule for the 1998 study1 and the corresponding PBPK model simulation2.

and could potentially minimize the uncertainties. Therefore,
the development of SPK model may be important in the field
of PBPK model by reducing the resources needed to model
the dose metrics of certain chemicals.

In this paper, we illustrated the development of an SPK
model adapted from a previously published PBPK model and
the performance of the exploratory analysis using urinary
biomarker data as inputs to the SPK model. The effectiveness
of the SPK model in the pesticide risk assessment was
evaluated by comparing the dose estimates among three
different composites of biomarker data.

2. Methods

The development of the SPK model began with the phar-
macokinetic equations that are used in previously developed
PBPK models for animal and human data [2, 11, 16, 17].
While the solution of a conventional PBPK model results in a
uniquely determined excretion profile of urinary biomarker,
the “reverse” dosimetry analysis in this SPK model develop-
ment, which uses urinary biomarker concentrations as input,
does not lead to a unique solution. It is, therefore, necessary
to constrain the dose profile with additional information
to reach an optimum dosing profile. We assumed that the
predominant exposure pathway for organophosphorus (OP)
pesticides is via foods and, therefore, constructed the SPK
model focusing on oral ingestion. Such assumption was
based on the results of aggregate exposure assessment, and
the previous PBPK model outputs which shows very little
OP residues in the environment [18] and suggests dietary
intakes of OP pesticides constitute the majority of urinary
metabolite concentrations [11], respectively.

2.1. Urinary Biomarker Data. Data employed in this SPK
model simulation were collected from a cross-sectional
study with repeated biological and environmental sampling
conducted in Washington State in 1998. Results for the
environmental measurements of several OP pesticides and
their respective urinary metabolites, as well as for absorbed
dose reconstruction using a conventional PBPK model, were
published previously [11, 18–20]. In brief, the study was
conducted in the homes of 13 children ages 3–6, who either
lived in an urban/suburban (nonagricultural) area or in
the agricultural region in which OPs have been used in

the nearby fruit tree orchards. Each home was sampled
for two 24-hour periods (over 3 days) in summer and fall
of 1998. Environmental and biological sample collections
included 24-hour indoor air, drinking water; outdoors soil,
house dust, toy wipes, 24-hour duplicate diets, and 4 spot
urine samples over a 24-hour period (Figure 1). The 1998
study was designed to capture the aggregate OP exposures
in the subsequent 4 spot urines over the course of a 24-
hour period. These were the before bedtime voids on the first
day and the first morning lunch, and dinner voids on the
second day. Chlorpyrifos (CPF) was selected as the modeled
pesticide in this study because it was commonly detected
in the environmental matrices, and its specific metabolite,
3,5,6-trichlorpyridinol (TCPY), was frequently measured in
the urine samples, as compared to other OP pesticides.

Urinary data from the 1998 study, including TCPY con-
centrations, urine void volumes, and urine sample collection
times, were used as inputs into the SPK model to estimate the
absorbed dose of CPF. The study protocol and procedures
to obtain the assent of the children and informed consent
of their parents or guardians were reviewed and approved
by the University of Washington Institutional Review Board
(IRB). The use of those data in the PBPK model anal-
ysis was reviewed and approved by Emory University
IRB.

2.2. Model Development and Validation

2.2.1. Input File Construction. A database was created in
Microsoft Access 2002 to hold study variables and data.
Tables in the database were structured in the same form as
the raw study data to allow for easier manipulation of the
data later in the analysis. There were missing values (not
collected), including the void and exposure times, values for
void volumes, and values for the weight of the study subjects
that were necessary to create the data file. Values for the
default void and exposure times were chosen based on a
previous data file for the Matlab PK model script. Values for
the default void volume were taken from a study by Voorhess
[21] which examined urinary catecholamine excretion by
healthy children. Lastly, values for the default weights of
children were taken from table 7-3 of the Exposure Factors
Handbook [22]. Tables were created to hold these values
specific to sample, age, or sex depending on the measure.
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Queries were written in SQL to create the data files for
input into the SPK model. SQL was used to join data from
separate data tables into one query output, to make logic
and arithmetic transformations to the data for input into
the model, and to allow for dynamic creation of data files
simplifying modification of data input file creation. Since
some of the data that are necessary to create the input file
were missing, default values had to be calculated. This was
done according to the type of data that was available and
which data would provide values that would best represent
the inputs. The script would first try to determine values
based on data that would yield the most representative
values. If this data was not available, then it would try other
data that would yield less representative values successively
based on availability of the relevant data until it reached the
least representative values.

The main query that produced the data file was
qry createdata. This query pulled data from database tables
and other queries. These queries were qry calcttime and
qry urinesampcalc. The qry calcttime query was used to
calculate the previous and current void times using available
data and default values depending on the data that was
available. The qry urinesampcalc query was used to calculate
the urinary excretion rate from metabolite concentrations,
sample void volumes, and times from qry calcttime. Once
these queries produced the correct data for input into the
model, the main query was used to export the data from
Access into Excel 97–2002 format.

Once constructed, each of the input file for the Matlab
SPK model script (see supplementary material available
online at doi:10.1155/2012/131854) had nine variables. The
first variable held the subject ID and study period. The
subject ID was the part before the separator, and the study
period was the part after the separator. For the study period,
1 signified the summer period, and 2 signified the fall period.
For example, the identifier 114.1 denoted subject ID 114
in the summer study period. The second variable reflected
whether the subject resided in an agricultural area. The third
variable held the average metabolite urinary excretion rate
that was calculated using the urinary metabolite concentra-
tion, the volume of the void, and the times for the previous
and current void

UERavg (mmoL/hr) = CuVu(
tc − tp

) . (1)

In this formula, UERavg is the average urinary excretion rate
between the current void and the previous void, Cu is the
measured metabolite concentration in the urine, Vu is the
volume of the void, tc is the time of the current void, and tp
is the time of the previous void [1]. The fourth variable held
the body weight of the child in kilograms. The fifth variable
denoted the route of the exposure and scenario, where 1 is an
inhalation exposure, 2 is a dermal exposure, and 3 through 7
are bolus events. In this analysis, 3 was the first morning void
on the second day, 4 was the lunchtime void, 5 was the before
bedtime void on the first day, and 6 was the dinnertime void
on the second day. The sixth variable held the start time of the
exposure event on a 24-hour clock with 0 at midnight before

the exposure event. The seventh variable held the end time
of the exposure event. However, for the current analysis, this
variable was not used since the exposures that were analyzed
were bolus events. The eighth variable held the time of the
previous urine void before the exposure event on a 24-hour
clock. The ninth variable held the time of the current urine
void sample before the exposure event on a 24-hour clock.

2.2.2. Data Processing. Once input files were created, the SPK
model was run using Matlab version 7.0.1. Each input into
the simple SPK model was able to calculate an estimated
absorbed dose for CPF by fitting the input variables to a
generalized dose absorption curve. It then calculated the
absorbed dose by finding the area under the curve over the
course of a day. Due to the construction of the script, the
model was only able to compute one dose estimate from one
exposure rather than from a collection of exposures. Using
the output from the SPK model script, we composited four
spot urine samples in three different ways in order to estimate
the daily absorbed doses of CPF in three different scenarios.

For the first composite (SPK I) scenario, only TCPY
concentrations from the first morning void were used to
calculate the dose estimate. This void was suggested to be
an accurate measure of TCPY metabolite because it was
assumed that TCPY concentrations in the urine were 0 after
the before bedtime void [20]. Urine would then be formed
and held during the night and voided in the morning,
which would give the sample greater accuracy in determining
metabolite concentrations since a long period of time had
elapsed before the void.

For the second composite (SPK II) scenario, dose esti-
mates from the before bedtime void and the first morning
void were averaged normalized by the volume of each void.
This was done because the SPK model was only able to
analyze one sample at a time rather than taking a collection
of samples and computing a dose from them. In this calcula-
tion, it was assumed that metabolite concentrations from the
before bedtime void and the first morning void were both
due to exposure from dinner on the first day. Since metabo-
lite concentrations were assumed to be caused by the same
exposure event (dinner event), they should compute to the
same absorbed dose. Therefore, the two dose estimates were
averaged to provide a fair measure based on both outputs.

In order to determine the times used to calculate the
urinary excretion rate for the before bedtime sample of SPK
II, we used the volume of the void sample to estimate the
time that the urine was allowed to collect in the bladder.
This estimate was based on the average daily void volume of
children of the same age and gender over a 24-hour period
[21]. By dividing the sample void volume by the average daily
void volume, the time that the urine was allowed to collect in
the bladder was estimated using (2), in which (tc − tp) is the
difference in hours from the time of the current void (tc) to
the time of the previous void (tp), Vu is the volume of the
urine sample, and Vavg24 is the volume of the average daily
void over the span of 24 hours:

(
tc − tp

)
≈
(

Vu

Vavg24

)
∗ 24 (2)
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For the third composite (SPK III) scenario, dose esti-
mates from the before bedtime void on the first day, and
the first morning void, the lunchtime void, and the dinner
void on the second day were averaged to reach a single
absorbed dose estimate. For this calculation, the beginning
exposure time for the lunch and dinner voids on the second
day was set at dinner time on the first day. We assumed
that part of the urinary metabolite measurements from the
lunchtime and dinner voids on the second day may come
from dinnertime exposure on the first day. Since absorbed
dose estimates could not be calculated using more than
one exposure, a composite meal exposure was created using
urinary metabolite measurements from the before bedtime
void on the first day, the first morning void, the lunchtime
void, and the dinnertime void on the second day. The time
of the composite meal exposure was set at dinnertime on
the first day. The results from the four estimates were then
averaged to get an overall absorbed dose estimate. Again,
the times used to calculate the urinary excretion rate were
estimated from dividing the sample void volume by the
average daily void volume using (2).

3. Results and Discussion

The PBPK model was developed to quantitatively integrate
the physiological, metabolic, and biochemical factors asso-
ciated with ADME. Although the initial model validation
has proven the accuracy of predicting CPF exposures, it
was found later that the effectiveness of the PBPK model
was highly dependent on the model parameters and the
limitation of the input exposure data [2]. This limitation has
been highlighted in a recent study in which the PBPK model
failed to predict TCPY excretion as compared to TCPY levels
measured in urine collected from study subjects [11]. Such
failure exposes the vulnerability of employing PBPK models
in risk assessment without sufficient knowledge or assurance
of the quality of exposure data that are used as PBPK model
inputs. Therefore, we were prompted to develop this simple
pharmacokinetic model in order to improve the ability for
estimating absorbed dose using urinary metabolite data as
the model inputs. Should TCPY levels measured in urine be
considered the gold standard in reflecting the exposure to
CPF (by subtracting the preformed portion of TCPY), the
use of urinary TCPY data in the pharmacokinetic analysis
would provide more reliable dose estimates of CPF than
using aggregate exposure data.

The SPK model simulation yielded to a total of 88 CPF
dose estimates, separated by summer and fall seasons. The
dose estimates resulted from the first morning void mea-
surements appeared to be lower than but not significantly
different to those using before bedtime, lunch, or dinner
voids (Figure 2). Those estimates were modeled assuming
that the exposure to CPF occurred during dinner meal (at
7 pm) on the first day. Knowing that the biological half-
life for orally ingested CPF is approximately 16 hours [23],
the estimated absorption curve for the first morning void
may mostly reflect the intake of CPF from dinner last night.
Dose estimates for spot urine samples collected later in the
2nd day were increasingly larger, suggesting additional CPF
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Figure 2: The dose estimates (CPF DOSE, µg/kg/day) for chlor-
pyrifos using 3,5,6-trichlorpyridinol concentrations in the spot
urine samples collected at before bedtime in Day 1 and the first
morning, lunch, and dinner voids in Day 2 as the SPK model inputs.

exposures from earlier in the day (breakfast and lunch). Dose
estimates from before bedtime void samples were likely to be
representative of CPF exposures that occurred throughout
the first day rather than intakes from dinner, as was mod-
eled.

The disparity among the dose estimates using spot
urinary TCPY measurements in different time points raises
the concern of the validity of using single spot urinary mea-
surement as the basis of dose estimation in risk assessment.
The magnitude of such uncertainty would be considerably
larger under the circumstance in which spot urine samples
are collected at different time points within a predetermined
time period (e.g., 24 hours) from individuals. For instance,
the National Health and Nutrition Examination Survey
(NHANES) conducted by the Center for Disease Control
and Prevention (CDC) collected single spot urine samples
from subjects based on their appointments. If TCPY data
from NHANES were used in the SPK model simulation,
the interpretation and the conclusions of the estimated
doses for CPF in NHANES subjects should therefore be
cautiously made. Georgopoulos et al. [13] also raised this
issue in their case study involving the use of a physiologically
based toxicokinetic modeling in conjunction with numerical
“inversion” techniques for reconstructing CPF exposure
using TCPY data measured in the National Human Exposure
Assessment Survey (NHEXAS). As authors stated “Although
the NHEXAS data set provides a significant amount of
supporting exposure-related information, especially when
compared to national studies such as the NHANES, this
information is still not adequate for detailed reconstruction
of exposures under several conditions,” as demonstrated in
the paper.

We estimated the daily absorbed CPF doses for individual
children using three different composites of the 4 spot
urine biomarker measurements (Table 1). Dose estimates for
SPK I, II and III were not significantly different (one-way
ANOVA); however, the box plot in Figure 3 showed that
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Table 1: Descriptive statistics for the estimated daily dose (µg/kg/day) of chlorpyrifos in thirteen children ages 2–5 using the simple
pharmacokinetic model.

Overall SPK I SPK II SPK III

Mean (St. Dev.) 0.98 (1.95) 0.97 (1.19) 0.87 (0.81)

Median 0.37 0.82 0.92

N 21 23 26

95% confidence interval (lower, upper) (0.09, 1.86) (0.43, 1.51) (0.51, 1.24)

Min–max (0, 9.13) (0, 5.5) (0, 3.65)

Summer season

Mean (St. Dev.) 0.55 (0.58) 0.8 (1.0) 0.73 (0.68)

Median 0.34 0.27 0.52

N 10 11 13

95% confidence interval (lower, upper) (0.19, 0.91) (0.24, 1.37) (0.37, 1.09)

Min–max (0, 1.89) (0, 3.36) (0, 2.5)

Fall season

Mean (St. Dev.) 1.3 (2.53) 1.32 (1.42) 1.13 (0.9)

Median 0.42 0.97 0.94

N 11 12 13

95% confidence interval (lower, upper) (0, 2.67) (0.55, 2.09) (0.66, 1.6)

Min–max (0.05, 9.13) (0.2, 5.5) (0.23, 3.65)

Urban/suburban children

Mean (St. Dev.) 0.48 (0.52) 0.67 (0.64) 0.63 (0.55)1

Median 0.35 0.48 0.45

N 11 12 12

95% confidence interval (lower, upper) (0.19, 0.77) (0.31, 1.03) (0.32, 0.94)

Min–max (0.04, 1.88) (0.02, 2.27) (0.01, 1.97)

Agricultural children

Mean (St. Dev.) 1.53 (2.73) 1.51 (1.58) 1.19 (0.92)1

Median 0.88 1.06 1.04

N 10 11 14

95% confidence interval (lower, upper) (0.1, 2.96) (0.91, 2.11) (0.68, 1.7)

Min–max (0, 9.12) (0, 5.5) (0, 3.65)
1 Marginally significantly different (one-way ANOVA, P = 0.077).
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Figure 3: The dose estimates (CPF DOSE, µg/kg/day) for chlor-
pyrifos using urinary 3,5,6-trichlorpyridinol concentrations in
three different spot urine sample composite methods; SPK I,
SPK II, and SPK III.

the median dose estimate from SPK I model simulation
are lower than those of SPK II and III, consistent to the
trend for the individual void simulations. While this may
suggest that dose estimates between models reflect similar
CPF exposure among subjects, it is also possible that the
similarity among dose estimates is merely the result of the
dose estimation being based on shared data. For instance,
SPK II was based on the average between SPK I and the dose
estimates using the before bedtime voids, and SPK III was
based on the estimates that comprised the SPK II estimate
and estimates from the lunch and dinner samples. The SPK
II dose estimates seemed to be more accurately representative
of the daily exposure to CPF simply because it takes into
account the excretion of TCPY in before bedtime voids in
day 1 and the first morning voids in day 2. The additional
CPF exposure between lunch and dinner, if any, captured
in the SPK III dose estimates did not significantly increase
the overall daily dose estimates would support the validity
of using SPK II as the benchmark for daily CPF absorbed
dose. Comparing the dose estimates by seasonality and the
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Table 2: The dose estimates (µg/kg/day) for chlorpyrifos using PBPK, SPK I, SPK II and SPK III model simulations.

Subject ID1 Season Body wt. (kg) PBPK SPK I2 SPK II3 SPK III4

R1 Summer 15.5 0.004 0.546 0.273 1.140

R2 Summer 21.4 0.003 0.281 0.246 0.380

R3 Summer 14.5 0.004 0.043 0.022 0.014

R4 Summer 16.8 0.003 0.831 1.439 0.987

R5 Summer 13.4 0.004 0.338 0.213 0.158

R6 Summer 19.6 0.003 n.a.5 0.840 0.520

S1 Summer 17.3 0.003 0 0 0

S2 Summer 18.2 0 0.224 0.112 0.488

S3 Summer 15 0 n.a.5 3.357 2.497

S4 Summer 15.5 0 1.881 1.450 1.282

S5 Summer 16.8 0.004 n.a.5 n.a.5 0.326

S6 Summer 22.7 0.440 0.808 0.820 0.672

S7 Summer 14.5 0 n.a.5 n.a.5 1.056

R1 Fall 15.5 0.004 1.881 2.274 1.973

R2 Fall 21.4 0.003 0.051 0.204 0.229

R3 Fall 14.5 0.012 0.347 0.980 0.944

R4 Fall 16.8 0.003 0.366 0.541 0.603

R5 Fall 13.4 0.018 0.082 0.483 0.368

R6 Fall 19.6 0.005 0.476 0.476 0.250

S1 Fall 17.3 2.302 9.125 5.496 3.647

S2 Fall 18.2 0.003 0.172 0.949 1.110

S3 Fall 15 0.004 1.060 1.060 1.219

S4 Fall 15.5 0 0.956 1.260 1.017

S5 Fall 16.8 0 1.028 1.184 0.922

S6 Fall 22.7 0.001 0.041 0.969 0.934

S7 Fall 14.5 0.006 n.a.5 n.a.5 1.513
1“R” for children living in agricultural community and “S” for children living in urban/suburban community.
2Significantly different to PBPK dose estimates (paired t-test, P < 0.001).
3Significantly different to PBPK dose estimates (paired t-test, P = 0.02).
4Significantly different to PBPK dose estimates (paired t-test, P < 0.001).
5Missing data due to missing spot urine samples.

community where children lived in 1998, we found that
children living in urban/suburban have higher CPF exposure
than those lived in agricultural community, and their CPF
exposure was higher in fall than in summer season.

The SPK dose estimates for individual children partic-
ipating in the 1998 study were significantly higher than
those using the conventional PBPK model approaching, as
published earlier [11]. The highest PBPK predicted CPY dose
of 2.3 µg/kg/day resulted from the consumption of a food
item containing 350 ng/g of CPF remained as the highest in
the SPK I, II, and III simulations with the estimated CPF
doses of 9.1, 5.5, and 3.7 µg/kg/day, respectively (Table 2).
The striking difference of dose estimates between these
two pharmacokinetic models may be primarily due to the
differences of input data. The use of aggregate exposure
assessment as the input variables in the PBPK models
targeted at chemicals with short biological half-lives, such as
CPF, is prone to significant spatial and temporal variations
associated with exposures that would lead to inaccurate
outcome measurements. This is evident by the fact that
the majority of the data collected from the environment

(Figure 1) where the children lived were nondetectable for
CPF residue, while spot urine samples collected from those
same children frequently contained TCPY. By taking into
account the degradation of CPF in the environment (or
in foods) in the PBPK model simulation as described in
previous studies [11, 24, 25], the PBPK model predicted
that TCPY excretion was still not within a reasonable range
of accuracy to the measured TCPY levels which are used
in the SPK model simulation. It is apparent that the 24-hr
aggregate exposure assessment is not capable of capturing
CPF exposure in those children. This leads to the serious
doubt of the validity of applying aggregate exposure mea-
surements to the PBPK model simulation and subsequently
in the risk assessment. The use of urinary TCPY data in
the SPK model simulation intuitively provided a plausible
alternative to PBPK model in reconstructing the absorbed
CPF dose. In theory, the dose estimates resulting from either
PBPK or SPK approach should yield to numerical values
that are not significantly different to each other, particularly
in this case in which both models were constructed using
identical parameters, and the input data were collected from
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a study that is designed specifically for validating the PBPK
model simulation. However, the problem of significant under
estimation of CPY doses using the traditional PBPK, as
identified in this paper, would be even more prevalent and
dramatic under other circumstances in which less-structured
environmental exposure data are collected and used as the
PBPK model inputs.

4. Study Limitations

Similar to other PBPK model applications, assumptions
are needed in the SPK models in order to facilitate the
model simulation. The unique assumptions for SPK model
simulation include the prior knowledge of the predominant
exposure pathway (such as dietary intake in this project) and
the default time of exposure (dinner in Day 1). Without
detail information of the exposure, those assumptions have
to be made either arbitrarily (time of exposure) or by
interpretation of study observations (dietary ingestion). A
mischaracterization of the predominant exposure pathway
(such as dietary intake versus inhalation) will lead to
completely different SPK simulation and outcomes.

Due to the limitation in constructing the script files,
the SPK model is only able to compute one dose estimate
from one urinary biomarker data input, instead of from a
series of urinary biomarker data input within 24 hours. In
order to overcome this limitation, we used the average dose
estimates in SPK II and SPK III to incorporate more urinary
biomarker data that is related to the interest of a specific
exposure event in the simulation. It is likely that we would
introduce unknown uncertainties to the overall simulation
because urinary TCPY levels measured in the dinner time
may include CPF exposure in Day 2 which is not the interest
of the analysis. Although the magnitude of such uncertainty
is relatively minimal in this study, by further examining the
data for SPK II and SPK III, we acknowledge the existence of
such uncertainty.
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